Movatterモバイル変換


[0]ホーム

URL:


JPS6053083B2 - Control method for pulverized fuel injection into blast furnace - Google Patents

Control method for pulverized fuel injection into blast furnace

Info

Publication number
JPS6053083B2
JPS6053083B2JP5423382AJP5423382AJPS6053083B2JP S6053083 B2JPS6053083 B2JP S6053083B2JP 5423382 AJP5423382 AJP 5423382AJP 5423382 AJP5423382 AJP 5423382AJP S6053083 B2JPS6053083 B2JP S6053083B2
Authority
JP
Japan
Prior art keywords
blast furnace
injection
powdered fuel
burner
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5423382A
Other languages
Japanese (ja)
Other versions
JPS58179723A (en
Inventor
富雄 鈴木
量一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel LtdfiledCriticalKobe Steel Ltd
Priority to JP5423382ApriorityCriticalpatent/JPS6053083B2/en
Publication of JPS58179723ApublicationCriticalpatent/JPS58179723A/en
Publication of JPS6053083B2publicationCriticalpatent/JPS6053083B2/en
Expiredlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】 本発明は、高炉への粉体燃料吹込条件を制御する方法
に関し、詳細には、燃焼性が向上するにつれて灰分の付
着が充進するという粉体燃料の特性を利用し、平常時は
燃焼性の向上を主眼とする吹込みを行ない、灰分付着が
認められる異常時には付着物の成長抑制を主眼とする吹
込みを行なう粉体燃料吹込制御法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the conditions for injecting powdered fuel into a blast furnace, and in particular, it utilizes the characteristic of powdered fuel that ash content increases as the combustibility improves. The present invention relates to a powder fuel injection control method in which injection is performed with a focus on improving combustibility during normal times, and injection is performed with a focus on suppressing the growth of deposits during abnormal times when ash adhesion is observed.

高炉操業における吹込燃料は、石油価格の高騰の影響
を受けて重油単独吹込みが影をひそめオールコークス操
業が主流となつている。しかしながら、オールコークス
操業の困難性の緩和や高価なコークスの節約のために微
分決算の粉体燃料吹込みが検討あるいは実施されつつあ
る。しかるに微 粉決等の粉体燃料(以下本明細書にお
いては粉体燃料と総称する)は重油に比べて燃焼速度が
遅くかつ灰分等の未燃分を含有するという欠点を有する
ので、吹込みに当つては種々の対策を構する必要がある
。これを更に具体的に説明すれば以下の通りである。従
来の重油吹込みでは、バーナの先端が高炉別口とブロー
パイプの境界点近傍に配置され、吹込まれた重油が別口
内及び別口直後のレースウェイ内でほぼ完全に燃焼され
ていたのに対し、粉体燃料を同じ位置から吹込んだ場合
は羽口やレースウェイ内で完全に燃焼し尽すことができ
ず、結果として燃焼率が悪くなる。そこで更に検討の結
果燃焼率を向上させる為には、吹込位置をもつと上流に
移動させてブローパイプ内に吹込み、ブローパイプ内に
おいて着火燃焼させればレースウェイ内においてほぼ完
全燃焼が行なわれるということが明らかとなつた。 し
かしその反面下記の如き問題を表面化した。
As for the fuel injected in blast furnace operations, due to the effects of soaring oil prices, heavy oil injection alone has faded, and all-coke operation has become the mainstream. However, in order to alleviate the difficulty of all-coke operation and save on expensive coke, powder fuel injection based on differential accounting is being considered or implemented. However, pulverized fuel such as pulverized fuel (hereinafter collectively referred to as pulverized fuel in this specification) has the disadvantage that it has a slower combustion rate than heavy oil and contains unburned matter such as ash, so it is not suitable for injection. In this regard, it is necessary to take various measures. This will be explained more specifically as follows. In conventional heavy oil injection, the tip of the burner was placed near the boundary between the blast furnace outlet and the blow pipe, and the injected heavy oil was almost completely burned inside the outlet and in the raceway immediately after the outlet. On the other hand, if powdered fuel is injected from the same position, it will not be completely burned within the tuyere or raceway, resulting in a poor combustion rate. As a result of further study, we found that in order to improve the combustion rate, if we move the blowing position upstream and blow into the blowpipe, then ignite and burn it in the blowpipe, almost complete combustion will occur in the raceway. It became clear that. However, on the other hand, the following problems have surfaced.

即ち粉体燃料中には程度の差はあれ若干の灰分が・含ま
れており、この灰分は燃焼熱によつて溶融する性質のも
のであるが、上記の如く吹込位置を上流側に移動させた
場合にはこの溶融物がブローパイプの内面に衝突し易く
なり、その衝突部に付着・堆積する。また灰分が未溶融
であつても熱風・通路たるブローパイプや羽口の高温内
面に衝突することにより、その部分で溶融物となり同じ
く付着・堆積する。その結果熱風通路を狭くし、燃料の
安定吹込みを継続することが困難になるばかりか、遂に
は羽口からの熱風吹込みが不能になるという最悪の事態
に発展するという危険もある。そこで本発明者等はこう
した灰分の付着・堆積を発生乃至進行させずに燃焼性を
向上させ得る様な適当な吹込制御法を求めて更に鋭意研
究を重ねた結果、遂に本発明に到達した。しかしてこの
様な本発明の粉体燃料吹込み制御法とは、粉体燃料吹込
用バーナを、高炉羽口に連接された熱風吹込用ブローバ
イブの壁を貫通して該ブローバイブ内へ突入させ、前記
バーナから吹込まれた粉体燃料をブローバイブ内の熱風
と共に高炉羽口から吹込むに当り、前記粉体燃料吹込用
バーナの取付位置を予め前記ブローバイブ側寄りに配置
し、運転開始時には粉体燃料の吹込速度を23Nm/S
ec未満の燃焼性能が良好な範囲で吹込みを行なうと共
に、ブローバイブ内壁面に付着物の成長が認められた段
階で、粉体燃料の吹込速度を23Nm/Sec以上に高
めて吹込みを行なう点に要旨を有するものである。
In other words, powdered fuel contains some ash to varying degrees, and this ash has the property of being melted by the heat of combustion. In such a case, this molten material tends to collide with the inner surface of the blow pipe, and adheres and accumulates on the collision part. Furthermore, even if the ash is unmelted, when it collides with the hot inner surface of the blow pipe or tuyere, which serves as a hot air passage, it turns into molten material and adheres to and accumulates there. As a result, the hot air passage becomes narrow, and not only does it become difficult to continue the stable injection of fuel, but there is also the risk that the worst situation will develop, where the hot air blowing from the tuyeres becomes impossible. Therefore, the present inventors conducted further intensive research in search of an appropriate blowing control method that would improve combustibility without causing or promoting the adhesion and accumulation of ash, and finally arrived at the present invention. However, the pulverized fuel injection control method of the present invention is such that the pulverized fuel injection burner penetrates the wall of the hot air blowing blow vibe connected to the blast furnace tuyere and enters the blow vibe. In order to blow the powdered fuel injected from the burner from the blast furnace tuyeres together with the hot air in the blow vibe, the burner for blowing powder fuel is placed in advance near the blow vibe side, and the operation is started. Sometimes the injection speed of powdered fuel is 23Nm/S.
Inject in a range where the combustion performance is good below ec, and when the growth of deposits is observed on the blow vibe inner wall surface, increase the injection speed of powdered fuel to 23 Nm/Sec or more and perform injection. The main points are the main points.

以下実施例図面に基つき本発明の構成及び作用効果を説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure and effects of the present invention will be explained below based on the drawings of the embodiments.

第1図は本発明制御法の概略説明図てあり、1は高炉底
部、2は高炉底部1に設けられた羽口、3は該羽口2に
連接されたブローバイブである。
FIG. 1 is a schematic explanatory diagram of the control method of the present invention, in which 1 is a blast furnace bottom, 2 is a tuyere provided in the blast furnace bottom 1, and 3 is a blow vibe connected to the tuyere 2.

又4は粉体燃料吹込用バーナで、該バーナ4の下方先端
はブローバイブ3内の中央部へ突入して配設され、一方
他端は粉体燃料供給部7から供給される粉体燃料を気流
輸送するための輸送管5に接続され、更に輸送管5の上
部には気流輸送用気体.導入管6が連結されている。こ
の様に構成された粉体燃料吹込み装置を使用して下記の
条件で微粉炭の燃焼実験を行なつた。
Further, 4 is a burner for blowing powdered fuel, and the lower end of the burner 4 is arranged so as to protrude into the center of the blow vibe 3, while the other end is the powdered fuel supplied from the powdered fuel supply section 7. The transport pipe 5 is connected to a transport pipe 5 for transporting airflow, and the upper part of the transport pipe 5 is connected to a transport pipe 5 for transporting airflow. An introduction pipe 6 is connected thereto. A pulverized coal combustion experiment was conducted under the following conditions using the pulverized fuel injection device configured as described above.

実験条件吹込燃料:微粉炭(揮発分32%)熱風温度:1200揮C同空気比:2.0燃料吹込用バーナ先端位置(微粉炭吹込み位置):プローパイプ3と羽口2の境界
から該バイブ3側寄りに0.417Tr1.4離れた
所に固定さて図に現われない熱風発生炉で所定の温度(
1200℃)まで上昇させた熱風を、ブローバイブ3を
通して羽口2から高炉底部1へ吹込むと共に、微粉炭を
、輸送管5を通してバーナ4からブローバイブ3内に吹
込む。
Experimental conditions Injected fuel: Pulverized coal (volatile content 32%) Hot air temperature: 1200 vC Same air ratio: 2.0 Burner tip position for fuel injection (pulverized coal injection position): Boundary between blowpipe 3 and tuyere 2
It was fixed at a place 0.417Tr1.4 away from the vibrator 3 side and heated to a predetermined temperature (
Hot air heated to 1200° C. is blown into the blast furnace bottom 1 from the tuyere 2 through the blow vibe 3, and pulverized coal is blown into the blow vibe 3 from the burner 4 through the transport pipe 5.

吹込みに当つてはバーナ4の先端における吹込速度、即
ち微粉炭噴射速度が10Nm/Sで固気比9となる様に
、微粉体供給部7からの微粉炭供給及び気流輸送用気体
導入管6からの空気供給の設定調整操作を行なう。この
様な条件及び操作において微粉炭を燃焼させたとき、ブ
ローバイブ3の内壁面に付着物の形成が確認された。こ
のときのバーナ先端から着火位置)Pまでの距離1は0
.77Trt,であつた。この後微粉炭の噴射速度を徐
々に上げながら付着物の形成状態とその時の距離1を調
べた所、第2図のグラフに示す結果が得られた。図中×
印は付着物の形成が確認されたことを、又0印は付着物
の形成が見ら・れなかつたことを示す。このグラフから
明らかな様に、微粉炭噴射速度が23Nm/S以上では
付着物が全く形成されず、勿論成長することもない。又
このときの距離1は0.0977nであつた。尚このと
き対応する固気比は図示の如く4(K9/K9)以“下
である。一般にバーナ噴射口径を一定にして微粉炭噴射
速度を変化させると、固気比は該速度と一定の関係を維
持する様に変化するので、ある特定のバーナにおいて微
粉炭供給量を一定にしたところ、微粉炭噴射速度23N
m/S以上に限定すれば固気比がほぼ4(K9/Kg)
以下という条件が付随的に得られた。尚吹込開始時の微
粉炭噴射速度を23Nm/S以上に設定する場合には、
同時に固気比も4(K9/K9)以下に設定しおかなけ
ればならないことは言うまでもない。しかし高炉への微
粉炭吹込みはいわゆる間接燃焼方式であり、燃焼性能を
良好に維持する為に一般には固気比を約5(K9/K9
)以上に設定して運転が開始される場合がほとんどある
ので、制御も、運転開始は燃焼性能が良好な範囲〔固気
比が5(Kg/K9)以上〕で行ない、付着物の形成が
確認されれば固気比が結果的に4(K9/K9)以下と
なる様にすることが好ましい。しかして上記実施例では
、微粉炭の吹込み位置を予めブローバイブ側寄りに移動
させて配置することにより完全燃焼が行なわれる状態を
保障し、更に運転開始を燃焼性能が良好な範囲〔固気比
9(K9/K9)、微粉炭噴射速度10Nm/S〕で行
ない、付着物の成長が認められた段階で、微粉炭噴射速
度を23Nm/S以上に高めることにより固気比が付随
的に4(K9/K9)以下となるように制御する。
During the blowing, the pulverized coal is supplied from the pulverized powder supply section 7 and the gas introduction pipe for air flow transport is adjusted so that the blowing speed at the tip of the burner 4, that is, the pulverized coal injection speed is 10 Nm/S and the solid-gas ratio is 9. Perform the air supply setting adjustment operation from step 6. When pulverized coal was burned under these conditions and operations, the formation of deposits on the inner wall surface of the blow vibe 3 was confirmed. At this time, the distance 1 from the burner tip to the ignition position) P is 0.
.. It was 77Trt. Thereafter, while gradually increasing the injection speed of pulverized coal, the state of deposit formation and the distance 1 at that time were investigated, and the results shown in the graph of FIG. 2 were obtained. × in the diagram
A mark indicates that the formation of a deposit was confirmed, and a 0 mark indicates that no deposit was observed. As is clear from this graph, when the pulverized coal injection speed is 23 Nm/S or higher, no deposits are formed at all and, of course, they do not grow. Further, the distance 1 at this time was 0.0977n. In addition, the corresponding solid-air ratio at this time is 4 (K9/K9) or less as shown in the figure.Generally, when the burner injection diameter is kept constant and the pulverized coal injection speed is changed, the solid-air ratio is equal to the constant speed. Since the relationship changes to maintain the relationship, when the pulverized coal supply amount is kept constant in a particular burner, the pulverized coal injection speed is 23N.
If limited to m/S or more, the solid-air ratio is approximately 4 (K9/Kg)
The following conditions were obtained incidentally. In addition, when setting the pulverized coal injection speed at the start of injection to 23 Nm/S or more,
It goes without saying that the solid-air ratio must also be set to 4 (K9/K9) or less at the same time. However, pulverized coal injection into a blast furnace is a so-called indirect combustion method, and in order to maintain good combustion performance, the solid-air ratio is generally about 5 (K9/K9
) or above, the control should be performed at the start of operation in a range where combustion performance is good [solid-air ratio is 5 (Kg/K9) or higher] to prevent the formation of deposits. If confirmed, it is preferable that the solid-gas ratio eventually becomes 4 (K9/K9) or less. However, in the above embodiment, by moving the pulverized coal injection position in advance toward the blow vibe side, it is possible to ensure complete combustion, and furthermore, the operation is started in a range where the combustion performance is good [solid air ratio of 9 (K9/K9) and pulverized coal injection speed of 10 Nm/S], and when the growth of deposits was observed, the solid-gas ratio was increased by increasing the pulverized coal injection speed to 23 Nm/S or more. 4 (K9/K9) or less.

その結果着火点Pは第2図に示す様にP1−P2−P3
・・・・・・と徐々に羽口に近づき、P5に至つたとき
(微粉炭の噴射速度が23Nm/Sのとき)にはもはや
付着物の形成は認められず、その成長は停止する。これ
は着火点が遅れることによつて微粉炭中の灰分がブロー
バイブ羽口内で溶融せず、全て高炉底部内で溶融するか
らである。ところで着火点P,の羽口からの距離は0.
4177TI.−0.0977n=0.3207nであ
るから、微粉炭の吹込み位置は依然として十分、ブロー
バイブ側寄りに存在し、灰分付着物を成長させることな
く良好な燃焼性能を保持しつつ微粉炭燃焼を行なうこと
ができた。本発明の粉体燃料吹込み制御法は以上の様に
構成したので、灰分の付着・堆積を発生乃至進行させる
ことなく燃焼性能を高く維持して粉体燃料の燃焼を行な
えるようになり、高炉操業における燃料コストの低減化
に寄与する所は大きい。
As a result, the ignition point P is P1-P2-P3 as shown in Figure 2.
When the coal gradually approaches the tuyere and reaches P5 (when the injection speed of pulverized coal is 23 Nm/S), the formation of deposits is no longer observed and its growth stops. This is because the ash in the pulverized coal is not melted within the blow-vibrator tuyeres due to the delayed ignition point, but is entirely melted within the bottom of the blast furnace. By the way, the distance of the ignition point P from the tuyere is 0.
4177TI. Since -0.0977n=0.3207n, the injection position of pulverized coal is still sufficiently close to the blow vibe side, and pulverized coal combustion can be achieved while maintaining good combustion performance without growing ash deposits. I was able to do it. Since the pulverized fuel injection control method of the present invention is configured as described above, it is possible to burn pulverized fuel while maintaining high combustion performance without causing or promoting the adhesion or accumulation of ash. It greatly contributes to reducing fuel costs in blast furnace operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明制御法の概略説明図、第2図は微粉炭噴
射速度、固気比、着火位置と灰分付着物形成との関係説
明図である。1・・・・・・高炉底部、2・・・・・・羽口、3・・
・・・・ブローバイブ、4・・・・・・粉体燃料吹込用
バーナ、P・・・・・・着火位置、1・・・・・・バー
ナ先端から着火位置Pまでの距離。
FIG. 1 is a schematic explanatory diagram of the control method of the present invention, and FIG. 2 is an explanatory diagram of the relationship between pulverized coal injection speed, solid-air ratio, ignition position, and ash deposit formation. 1... bottom of blast furnace, 2... tuyere, 3...
... Blow vibe, 4 ... Burner for blowing powdered fuel, P ... Ignition position, 1 ... Distance from the tip of the burner to the ignition position P.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 粉体燃料吹込用バーナを、高炉羽口に連接された熱
風吹込用ブローパイプの壁を貫通して該ブローパイプ内
を突入させ、前記バーナから吹込まれた粉体燃料をブロ
ーパイプ内の熱風と共に高炉羽口から吹込むに当り、前
記粉体燃料吹込用バーナの取付位置を予め前記ブローパ
イプ側寄りに配置し、運転開始時には粉体燃料の吹込速
度を23Nm/sec未満の燃焼性能が良好な範囲で吹
込みを行なうと共に、ブローパイプ内壁面に付着物の成
長が認められた段階で、粉体燃料の吹込速度を23Nm
/sec以上に高めて吹込みを行なうことを特徴とする
高炉への粉体燃料吹込み制御法。
1. A burner for blowing powdered fuel penetrates the wall of a blowpipe for blowing hot air connected to a blast furnace tuyere and enters the blowpipe, and the powdered fuel injected from the burner is transferred to the hot air inside the blowpipe. At the same time, when injecting from the blast furnace tuyeres, the installation position of the burner for blowing powdered fuel is placed in advance near the blow pipe side, and at the start of operation, the blowing speed of powdered fuel is less than 23 Nm/sec, resulting in good combustion performance. When the growth of deposits was observed on the inner wall of the blow pipe, the injection speed of the powdered fuel was increased to 23 Nm.
A method for controlling the injection of powdered fuel into a blast furnace, characterized in that the injection is carried out at a rate higher than /sec.
JP5423382A1982-03-311982-03-31 Control method for pulverized fuel injection into blast furnaceExpiredJPS6053083B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP5423382AJPS6053083B2 (en)1982-03-311982-03-31 Control method for pulverized fuel injection into blast furnace

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP5423382AJPS6053083B2 (en)1982-03-311982-03-31 Control method for pulverized fuel injection into blast furnace

Publications (2)

Publication NumberPublication Date
JPS58179723A JPS58179723A (en)1983-10-21
JPS6053083B2true JPS6053083B2 (en)1985-11-22

Family

ID=12964816

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP5423382AExpiredJPS6053083B2 (en)1982-03-311982-03-31 Control method for pulverized fuel injection into blast furnace

Country Status (1)

CountryLink
JP (1)JPS6053083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7071060B1 (en)1996-02-282006-07-04Sandisk CorporationEEPROM with split gate source side infection with sidewall spacers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7071060B1 (en)1996-02-282006-07-04Sandisk CorporationEEPROM with split gate source side infection with sidewall spacers
US7449746B2 (en)1996-02-282008-11-11Sandisk CorporationEEPROM with split gate source side injection

Also Published As

Publication numberPublication date
JPS58179723A (en)1983-10-21

Similar Documents

PublicationPublication DateTitle
JPH0129847B2 (en)
KR850001278B1 (en)Direct reduction rotary kiln with improved air injection
JPS6053083B2 (en) Control method for pulverized fuel injection into blast furnace
JPS62238307A (en)Method for blowing noncombustible fuel into blast furnace
US1983927A (en)Open hearth furnace operation
JP2005213591A (en) Solid fuel injection method and injection lance for blast furnace
JP4992235B2 (en) Method and apparatus for injecting reducing material into blast furnace
JPS6053082B2 (en) Method of injecting powdered fuel into a blast furnace
JPH08104909A (en) Blast furnace pulverized coal blowing device and blast furnace pulverized coal blowing operation method
US5360202A (en)Blackening Treating furnace for treating stainless steel strip surface
JPH0152643B2 (en)
JP3613902B2 (en) Burner with pulverized coal injection into blast furnace
JPH0778246B2 (en) Method of blowing pulverized coal into the blast furnace
JP3475963B2 (en) Pulverized coal injection method and injection lance into blast furnace
JPH08592Y2 (en) Combustion device for flame-retardant fuel
JPH08157916A (en) Method of blowing pulverized coal into blast furnace and lance for blowing pulverized coal
JPH04354810A (en)Method for blowing fine coal into blast furnace and device therefor
JPH04202708A (en) Method of injecting powdered fuel into blast furnace
KR100389240B1 (en)Gas density control method of blast furnace bottom
KR20010002171A (en)Method for preventing formation of coating sinter in furnace
JP3230420B2 (en) Waste treatment method
JPH09256011A (en)Blowing-off operation in blast furnace
JPS606418Y2 (en) Burner for blowing powdered fuel into blast furnace
JPH0343220Y2 (en)
JPH0129846B2 (en)

[8]ページ先頭

©2009-2025 Movatter.jp