Movatterモバイル変換


[0]ホーム

URL:


JPS6038033B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6038033B2
JPS6038033B2JP51020768AJP2076876AJPS6038033B2JP S6038033 B2JPS6038033 B2JP S6038033B2JP 51020768 AJP51020768 AJP 51020768AJP 2076876 AJP2076876 AJP 2076876AJP S6038033 B2JPS6038033 B2JP S6038033B2
Authority
JP
Japan
Prior art keywords
layer
impurity
distribution
semiconductor equipment
apd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51020768A
Other languages
Japanese (ja)
Other versions
JPS52103986A (en
Inventor
克彦 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co LtdfiledCriticalNippon Electric Co Ltd
Priority to JP51020768ApriorityCriticalpatent/JPS6038033B2/en
Publication of JPS52103986ApublicationCriticalpatent/JPS52103986A/en
Publication of JPS6038033B2publicationCriticalpatent/JPS6038033B2/en
Expiredlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】本発明は、半導体装置の不純物分布構造、特に電子なだ
れを利用する半導体装置の不純物分布構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impurity distribution structure of a semiconductor device, and particularly to an impurity distribution structure of a semiconductor device that utilizes electron avalanche.

GaAsレーザやYAGレーザ等の近赤外光を信号源と
する光通信方式が最も有望なものとして最近、研究開発
が活発に進められている。
Optical communication systems using near-infrared light such as GaAs lasers and YAG lasers as signal sources are considered to be the most promising, and research and development have recently been actively carried out.

一方光通信用受光素子としては電子なだれフオトダィオ
ード(以下APBと呼ぶ)が最も適していると考えられ
てるが、このような近赤外光をシリコンAPBで受けた
とき、効率良くしかも高速で光電流を発生せしめるため
には、数10h一以上の長い空乏層を有するAPDを用
意する必要がある。しかし、単純なpn接合でこのよう
な長に空乏層を形成しようとすれば数100ボルト以上
の高い動作バイアス電圧となってしまうため、この高い
動作バイアス電圧を回避するために、電子なだれを起す
領域のみで高電界が発生し光吸収領域は低電界となる構
造が探られている。この懐合横造は超階段型と呼ばれる
n+−p−m−p十構造で、基板、又は高低抗ェピタキ
シャル層を動作バイアス電圧を印加した時に空乏層化す
るのでリーチ・スルー型とも呼ばれ、その具体的な一例
は、アィ・ィー・イー・イートランザクシヨンズ オン
ヱレクトロンデパィシィーズ誌ED−14萱第5号2
39一251頁(lEEE Transactons
on ElectronDevices,vol.ED
−14,N05,pp.239−251,1967)所
載のェィツチ・ダブリュー・ルェツグ(日.W.Rue
難)氏の論文に記載されている。このn+−p−汀−〆
構造は、多層ェピタキシャル成長法や不純物の熱拡散法
によって得ることも可能である。一方、一般にAPDと
して良好な特性を得るためには、不純物濃度むらが少な
く且つ導入欠陥の少ないイオン注入法でpn接合部分を
形成する方が好結果が得られている。そこで、このn十
−p−m−〆構造をイオン注入法で形成することが考え
られる。しかしn十層の形成の為シリコンに隣等の第V
族原子イオンを注入すると、注入イオンの分布はガウス
分布とはならずに指数関係的に伸びるすそ引きが生じる
ため、低濃度で形成されているp層を覆ってしまい所望
の超階段型不純物分布が得られなくなる。また、n十一
p接合ではn+側の最大電界強度が大きくなるため雑音
が大きくなる。
On the other hand, an avalanche photodiode (hereinafter referred to as APB) is considered to be the most suitable photodetector for optical communication, but when near-infrared light is received by a silicon APB, it can efficiently and rapidly generate a photocurrent. In order to generate this, it is necessary to prepare an APD having a long depletion layer of several tens of h or more. However, if we try to form a depletion layer with such a length with a simple pn junction, the operating bias voltage will be high, over several hundred volts, so in order to avoid this high operating bias voltage, we need to create an electron avalanche. A structure is being explored in which a high electric field is generated only in the region and a low electric field is generated in the light absorption region. This kaiai horizontal structure has an n+-p-m-p ten structure called a super-step type, and is also called a reach-through type because it becomes a depletion layer when the substrate or the anti-epitaxial layer is applied with an operating bias voltage. , a specific example is EI Transactions on Electronic Devices Magazine ED-14 萱 No. 5 2
Pages 39-251 (1EEE Transactons
on ElectronDevices, vol. ED
-14, N05, pp. 239-251, 1967)
It is described in a paper by Mr. This n+-p-layer structure can also be obtained by a multilayer epitaxial growth method or an impurity thermal diffusion method. On the other hand, in general, in order to obtain good characteristics as an APD, it is better to form a pn junction portion by an ion implantation method with less unevenness in impurity concentration and fewer introduced defects. Therefore, it is conceivable to form this n0-p-m-〆 structure by ion implantation. However, due to the formation of n10 layers, Vth layer next to silicon, etc.
When group atom ions are implanted, the distribution of the implanted ions does not become a Gaussian distribution, but an exponentially extending skirt occurs, which covers the p-layer formed at a low concentration, resulting in the desired super-step impurity distribution. will not be obtained. Further, in the n11p junction, the maximum electric field strength on the n+ side increases, so noise increases.

本発明は、上述の問題点を解決し、低雑音で高増倍率の
APDを提供することを目的として、n十(もしくは金
属)−n−p−m−p十構造を有し、このn型層の不純
物濃度分布が指数関数的であることを特徴とした構成と
なっている。
The present invention aims to solve the above-mentioned problems and provide an APD with low noise and high multiplication factor. The structure is characterized in that the impurity concentration distribution of the mold layer is exponential.

図は、本発明の一実施例を説明する不純物分布である。The figure is an impurity distribution explaining one embodiment of the present invention.

この図に示される礎造は例えば次のようにして得られる
。棚素を約1ぴ9弧‐3合むp+シリコン基板上に、同
じく棚素を約1び4肌‐3含む中型ェピタキシャル層を
成長させたゥェハーに、棚素イオンを300keVのエ
ネルギーで約1び2肌‐2注入してp層が形成される。
次いで燐イオンを50keVのエネルギーで約1び4c
の‐2注入すれば燐の最大濃度位置は表面から0.1仏
m以下になるが指数関数に近いすそ引き分布により燐が
p層に到達してn層が形成される。最後にオーミック接
触層として燐を表面濃度が1ぴ9弧‐3以上になるよう
に熱拡散して0.1山肌程度の深さのn+を形成して望
みのn十一n−p−m−〆構造が得られる。n+層は金
属に置換してもよい。このようにして得られた本発明の
n十一n−p−m−p+構造のAPDにおいては、逆バ
イアスを印加したときpおよびm層が空乏層となると同
時に、従来のn+−p−汀−p+構造のAPDとは異な
り、n層がほぼ空乏層となる。また本発明のn層は指数
関数的に表面に近いほどドナー濃度が高いため、n層の
うちn+際までは空乏層が拡がることはない。この空乏
層の拡がる大きさはn層を形成するときのイオン注入量
で容易に決定し得る。本発明のこのようなn層の性質に
よって次のような効果がもたらされる。即ち、n十層及
びその境界近傍には、動作状態で高電界が印加すること
がないため、n十層形成の時に導入された熱拡散による
欠陥が露呈することがなく、欠陥と不純物むらの少ない
イオン注入法によって形成されたn層とp層とによりp
n接合が構成されているため、マイクロプラズマ雑音が
少なく、増倍率の高い、均一な薮合が得られる。また、
この本発明によるn層のもたらす別の効果としては、p
n接合近傍の不純物分布が、従来のn+−p吏造に比し
て、本発明の如くn十一n−p構造とした方が最大電界
強度が小さくなる点に有る。
The foundation shown in this figure can be obtained, for example, as follows. On a wafer on which a medium-sized epitaxial layer containing about 1 and 4 arc-3 shelf elements was grown on a p+ silicon substrate containing about 1 and 9 arc-3 shelf elements, shelf element ions were applied at an energy of about 300 keV. 1 and 2 Skin-2 is injected to form the p layer.
Next, phosphorus ions were irradiated with about 1 and 4 c at an energy of 50 keV.
If -2 is implanted, the maximum concentration of phosphorus will be less than 0.1 m from the surface, but due to the skirting distribution close to an exponential function, phosphorus will reach the p layer and form the n layer. Finally, as an ohmic contact layer, phosphorus is thermally diffused to a surface concentration of 1p9arc-3 or more to form an n+ layer with a depth of about 0.1 mountain surface to form the desired n11np-m. − A closing structure is obtained. The n+ layer may be replaced with metal. In the thus obtained APD having the n11n-p-m-p+ structure of the present invention, when a reverse bias is applied, the p and m layers become depletion layers, and at the same time, the conventional n+-p- Unlike the -p+ structure APD, the n layer almost becomes a depletion layer. Further, in the n-layer of the present invention, the donor concentration is exponentially higher as it approaches the surface, so the depletion layer does not expand to the n+ region of the n-layer. The extent to which this depletion layer expands can be easily determined by the amount of ions implanted when forming the n-layer. The properties of the n-layer of the present invention bring about the following effects. In other words, since a high electric field is not applied to the n-layers and their boundaries during operation, defects caused by thermal diffusion introduced during the formation of the n-layers are not exposed, and defects and impurity unevenness are prevented. The n layer and p layer formed by a small amount of ion implantation make the p
Since an n-junction is configured, a uniform cross-section with low microplasma noise and a high multiplication factor can be obtained. Also,
Another effect brought about by the n-layer according to the present invention is that p
The impurity distribution near the n-junction is such that the maximum electric field strength is smaller when the n11 n-p structure of the present invention is used, compared to the conventional n+-p structure.

シリコンAPDでは、周知の如く、最大電界強度が低い
ほど電子と正孔のイオン化率に差が生じて電子なだれ雑
音が低くなるので、本発明のn十一n−p−汀−p十構
造は、雑音が少なく、増倍率が高い、優れた特性を有す
るAPDを供給するために極めて好ましい不純物分布構
造であるといえる。図面の簡単な説明図は本発明の一実
施例を説明する不純物分布を示す。
In silicon APDs, as is well known, the lower the maximum electric field strength, the greater the difference in ionization rate between electrons and holes, and the lower the electron avalanche noise. This can be said to be an extremely preferable impurity distribution structure in order to provide an APD with excellent characteristics such as low noise and high multiplication factor. A simplified illustration of the drawing shows an impurity distribution illustrating one embodiment of the invention.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 n^+(もしくは金属)−n−p−π−p^+構造
を有し、しかもこのn型層の不純物濃度分布が指数関数
的であることを特徴とする半導体装置。
1. A semiconductor device having an n^+ (or metal)-n-p-π-p^+ structure and characterized in that the impurity concentration distribution of this n-type layer is exponential.
JP51020768A1976-02-261976-02-26 semiconductor equipmentExpiredJPS6038033B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP51020768AJPS6038033B2 (en)1976-02-261976-02-26 semiconductor equipment

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP51020768AJPS6038033B2 (en)1976-02-261976-02-26 semiconductor equipment

Publications (2)

Publication NumberPublication Date
JPS52103986A JPS52103986A (en)1977-08-31
JPS6038033B2true JPS6038033B2 (en)1985-08-29

Family

ID=12036341

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP51020768AExpiredJPS6038033B2 (en)1976-02-261976-02-26 semiconductor equipment

Country Status (1)

CountryLink
JP (1)JPS6038033B2 (en)

Also Published As

Publication numberPublication date
JPS52103986A (en)1977-08-31

Similar Documents

PublicationPublication DateTitle
US3886579A (en)Avalanche photodiode
US12125933B2 (en)Method for manufacturing a uv-radiation detector device based on sic, and uv- radiation detector device based on sic
Harmon et al.Minority‐carrier mobility enhancement in p+ InGaAs lattice matched to InP
Diadiuk et al.Avalanche multiplication and noise characteristics of low‐dark‐current GaInAsP/InP avalanche photodetectors
KR930002320B1 (en) Semiconductor device and manufacturing method thereof
US5233209A (en)Guard ring structure with graded be implantation
EP0205899B1 (en)Planar heterojunction avalanche photodiode
Becla et al.Epitaxial CdxHg1− xTe photovoltaic detectors
JPS63955B2 (en)
JPS61170079A (en)Semiconductor light-receiving element
JPS6038033B2 (en) semiconductor equipment
Shirai et al.A planar InP/InGaAsP heterostructure avalanche photodiode
US4038106A (en)Four-layer trapatt diode and method for making same
Rosen et al.Optically achieved pin diode switch utilizing a two-dimensional laser array at 808 nm as an optical source
Yost et al.Frequency response mechanisms for the GaAs MSM photodetector and electron detector
Heinen et al.Proton bombarded GaAlAs: GaAs light emitting diodes
US4003759A (en)Ion implantation of gold in mercury cadmium telluride
Anderson et al.High‐speed planar GaAs photoconductors with surface implant layers
JPS5936437B2 (en) Semiconductor photodetector
KR970004492B1 (en) Guard ring manufacturing method
JPH1012913A (en) Semiconductor light receiving element
JPH09260686A (en) Semiconductor device and manufacturing method thereof
JPS6373676A (en) Semiconductor photodetector
JPS60178674A (en) Manufacturing method of avalanche photodiode
JP2854634B2 (en) Light receiving device

[8]ページ先頭

©2009-2025 Movatter.jp