【発明の詳細な説明】技術分野この発明は液体などの圧力をダイヤフラムで受け、ダイ
ヤフラム上に設定された感歪抵抗体により歪を電気信号
に変換して取り出す形式の歪センサに関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a strain sensor that receives the pressure of a liquid or the like through a diaphragm and converts the strain into an electrical signal using a strain-sensitive resistor set on the diaphragm.
従来の技術従来より液体などの圧力を測定する圧力センサとしてダ
イヤフラムで圧力を受け、ダイヤフラム上に形成した感
歪抵抗体により歪を電気抵抗の変化として取り出す圧力
センサが広く使用されている。感歪抵抗体には金属ゲー
ジや半導体ゲージの他、/リコン半導体をダイヤフラム
とし、ダイヤフラム上に拡散抵抗層を形成せしめたもの
などがある。感歪抵抗体がシリコンなどの半導体の場合
には特に抵抗やゲージ率が使用温度の影響を強く受ける
ので温度に対する補償をより厳密にすることが必要であ
るが、金属ゲージ式に較ベゲージ率が10倍以上と感度
が優れるという利点がある。BACKGROUND ART Conventionally, pressure sensors have been widely used to measure the pressure of liquids, etc., which receive pressure with a diaphragm and extract strain as a change in electrical resistance using a strain-sensitive resistor formed on the diaphragm. In addition to metal gauges and semiconductor gauges, strain-sensitive resistors include those having a diaphragm made of a silicon semiconductor and a diffused resistance layer formed on the diaphragm. When the strain-sensitive resistor is a semiconductor such as silicon, the resistance and gauge factor are particularly strongly affected by the operating temperature, so it is necessary to compensate for temperature more strictly. It has the advantage of being 10 times more sensitive.
第8図は従来の圧力センサの1例を示したもので、半導
体ゲージをダイヤフラム上に貼着した要部の断面図であ
る。FIG. 8 shows an example of a conventional pressure sensor, and is a sectional view of a main part in which a semiconductor gauge is attached on a diaphragm.
感歪抵抗体3.5はダイヤフラム上に形成されている。A strain-sensitive resistor 3.5 is formed on the diaphragm.
4.6は感歪抵抗体両端の電極部をそれぞれ示している
。感歪抵抗体は温度補償をとるため、通常第9図の如く
、ホイーストンブリノジ(以下ホイーストンブリy)を
ブリッジと略称する)回路接続して使用される。第9図
において、11゜12は感歪抵抗、13.14は金属抵
抗、+5は定電圧電源部を示している。電源41はブリ
ッジ端^、Cに接続され、ブリッジ電圧出方はす、dよ
り得られる。4.6 shows the electrode portions at both ends of the strain-sensitive resistor, respectively. In order to compensate for the temperature, the strain-sensitive resistor is usually used by connecting a Wheatstone bridge (hereinafter simply referred to as a "bridge") circuit as shown in FIG. In FIG. 9, 11° and 12 are strain-sensitive resistors, 13 and 14 are metal resistors, and +5 is a constant voltage power source. The power supply 41 is connected to the bridge end ^,C, and the bridge voltage output is obtained from s,d.
又、感歪抵抗の抵抗温度特性に差がある場合には更に、
ブIJ ’yノを構成する抵抗体部に必要に応じ、金属
抵抗を直並列接続する方法により、ブIJ ツノ出力電
圧す、d間の電圧零点の温度による変動を補償するこ七
が知られている。Furthermore, if there is a difference in the resistance temperature characteristics of the strain-sensitive resistors,
 It is known to compensate for temperature-induced fluctuations in the zero point of the voltage between the output voltages of the IJ and d by connecting metal resistors in series and parallel as necessary to the resistor parts that make up the IJ. ing.
−力出力感度は感歪抵抗のゲージ率に比例するが、ゲー
ジ率が周囲温度の影響を受けるので、使用温度に対する
補償が必要であり、例えば第10図の如く、サーミスタ
ー素子15に金属抵抗IG、 +7を直・並列に接続し
たものをブリッジに直列に外付けして加え、これを定電
圧電源42に接続する方法付けするサーミスター素子の
抵抗温度特性を感歪抵抗体の抵抗温度特性に見合って厳
密に調整することはかなり複雑で手間を要すると共に、
例えば−40″C〜++ 20 ’Cなどの如く、巾広
い使用温度域では充分な感度補償を得ることが困難な場
合が多い。又出力感度補償不一致から(る誤差はブIJ
 ツノ出力電圧零点変動を与えるという問題も内在して
おり、この零点変動が無視出来ないケースも多い。又、
所望のサーミスター素子は必ずしも小型のものが得られ
ず、センサ全体の形状か大きくなるなどの欠点を存して
いた。- The force output sensitivity is proportional to the gauge factor of the strain-sensitive resistor, but since the gauge factor is affected by the ambient temperature, it is necessary to compensate for the operating temperature. For example, as shown in FIG. The resistance-temperature characteristic of the thermistor element is the resistance-temperature characteristic of the strain-sensitive resistor. It is quite complicated and time-consuming to make precise adjustments to match the
 For example, in a wide operating temperature range such as -40''C to +20'C, it is often difficult to obtain sufficient sensitivity compensation.
 There is also the inherent problem of giving a zero point fluctuation in the horn output voltage, and there are many cases where this zero point fluctuation cannot be ignored. or,
 The desired thermistor element cannot necessarily be made small, and there are drawbacks such as the overall shape of the sensor becomes large.
発明の目的それゆえ、本発明の目的は上述の内容に鑑み、感歪半導
体抵抗体で構成されるブリッジ出方電圧の零点変動を最
小限に保ったま\で、感度の温度補償を容易とする小型
の歪センサを1是供することである。OBJECTS OF THE INVENTION Therefore, in view of the above, an object of the present invention is to facilitate temperature compensation of sensitivity while keeping the zero-point fluctuation of the output voltage of a bridge composed of strain-sensitive semiconductor resistors to a minimum. The first thing to do is to provide a small strain sensor.
発明の構成本発明は、感歪半導体抵抗がダイヤフラム上にブリッジ
回路接続され、ブリッジ出力電圧零点が温度補償された
歪セ/すにおいてダイヤフラム上の歪を受けない部分に
感歪抵抗体と同一材料からなる抵抗を形成し、これを感
温抵抗体として具備せしめた歪センサで、該感温抵抗体
はブリッジ回路と直列接続して定電流電源に接続するか
、又は金属抵抗との直列回路をブIJ ツノ回路と並列
接続したものを定電圧電源に接続してなることを特徴と
するもので、ブリッジ出力電圧の零点変動を最小限に保
ったまNで、感度の温度補償を容易とする小型の歪セン
サを提供する。Structure of the Invention The present invention provides a strain-sensitive semiconductor resistor connected to a diaphragm in a bridge circuit, and a bridge output voltage zero point that is temperature-compensated. This is a strain sensor in which a resistance consisting of It is characterized by a bridge IJ connected in parallel with a horn circuit and connected to a constant voltage power supply.It is a compact IJ that facilitates temperature compensation of sensitivity while keeping the zero point fluctuation of the bridge output voltage to a minimum. strain sensors.
実施例第1図は本発明の歪セ/すの実施例で要部の断面図を示
している。第1図において1はステ゛ンレスなどの金属
ダイヤフラム、2は樹脂やセラミック、ガラスなどから
なる電気絶縁層、3,5.7は該絶縁層上に形成された
/リフン、ゲルマニウムなとの感歪半導体抵抗体を示す
。感歪抵抗体3,5はダイヤフラム1に生する歪を受け
る歪センサ部で歪による電気抵抗変化と抵抗体3,5の
両端電極4゜6より取り出す。抵抗体7はダイヤフラム
1の歪を受けない部分に形成された感温センサ部で、感
歪抵抗体3,5の温度を近似的に感知し、その電気抵抗
変化を抵抗体7の両端電極8より取り出す。Embodiment FIG. 1 shows a sectional view of the main parts of an embodiment of the strain cell according to the present invention. In Figure 1, 1 is a metal diaphragm made of stainless steel, 2 is an electrical insulating layer made of resin, ceramic, glass, etc., and 3, 5.7 is a strain-sensitive semiconductor such as germanium or the like formed on the insulating layer. Shows a resistor. The strain-sensitive resistors 3 and 5 are strain sensor sections that receive strain generated in the diaphragm 1, and electrical resistance changes due to strain are extracted from electrodes 4.6 at both ends of the resistors 3 and 5. The resistor 7 is a temperature-sensitive sensor portion formed in a portion of the diaphragm 1 that is not subjected to strain, and approximately senses the temperature of the strain-sensitive resistors 3 and 5, and detects the change in electrical resistance at the electrodes 8 at both ends of the resistor 7. Take it out.
抵抗体3.5.7は同一ダイヤフラム上に同一半導体材
料で形成されており、小型化が容易である。The resistors 3.5.7 are formed of the same semiconductor material on the same diaphragm and can be easily miniaturized.
第2図は第1図におけるブリッジ回路接続例を示したも
ので、’21.22は感歪半導体抵抗、23.24は金
属抵抗、25は該感歪半導体抵抗と同一材料からなる感
温抵抗体、43は定電流電源部をそれぞれ示している。Figure 2 shows an example of the bridge circuit connection in Figure 1, where 21.22 is a strain-sensitive semiconductor resistor, 23.24 is a metal resistor, and 25 is a temperature-sensitive resistor made of the same material as the strain-sensitive semiconductor resistor. Reference numerals 43 and 43 respectively indicate constant current power supply sections.
尚、第2図において、ブリッジ電圧出力零点の温度補償
用の金属抵抗接続部分は図より省略しているが、b、d
間のブリッジ出力電圧の零点温度補償は充分とれている
ものとする。又点線部20は歪センサとして一体化され
、同一周囲温度で使用される部分を示している。In Fig. 2, the metal resistor connection part for temperature compensation at the bridge voltage output zero point is omitted from the figure, but b, d
 It is assumed that the zero point temperature compensation of the bridge output voltage between the two is sufficient. The dotted line portion 20 indicates a portion that is integrated as a strain sensor and is used at the same ambient temperature.
第3図は第2図におけるブリッジ出力電圧■1とダイヤ
フラムに印加される圧力Pとの関係を周囲温度Tをパラ
メーターとして示したものである。FIG. 3 shows the relationship between the bridge output voltage 1 in FIG. 2 and the pressure P applied to the diaphragm, using the ambient temperature T as a parameter.
図においてToは20°Cを示す。第4図は第2図にお
ける抵抗25の両端C1e間電圧■2と温度Tと関係を
示したものである。第3図に示した如くブリッジ出力電
圧の周囲温度による零点変動は充分低く抑えられている
。又圧力Pに対するブリッジ出力電圧VIは、α、β 
を定数としてVr 二a (1−β(T−To))Pで表わされる。In the figure, To indicates 20°C. FIG. 4 shows the relationship between the voltage (2) between both ends C1e of the resistor 25 and the temperature T in FIG. As shown in FIG. 3, the zero point fluctuation of the bridge output voltage due to the ambient temperature is suppressed to a sufficiently low level. Also, the bridge output voltage VI with respect to the pressure P is α, β
 It is expressed as Vr 2a (1-β(T-To))P, where is a constant.
又第4図より電圧V1はVo、γを定数として■2;V
oe″Tで表わされる。従って、電圧V、 、 V、を
計θ11すれば、P二V、/α(1−β(T−To))
よりダイヤフラムに印加される圧力を算出できる。電圧
V+ +Vt (7) M1測・圧力Pの算出にはマイ
クロコンピュータ−などが使用できる。又必要に応じ各
温度における、電圧V、 V、値をマイクロコンピュタ
−に記憶しておく、方法によっても算出が可能である。Also, from Fig. 4, the voltage V1 is expressed as ■2; V with Vo and γ as constants.
 It is expressed as oe''T. Therefore, if the voltages V, , V, are totaled by θ11, then P2V, /α(1-β(T-To))
 Therefore, the pressure applied to the diaphragm can be calculated. Voltage V+ +Vt (7) A microcomputer or the like can be used to measure M1 and calculate pressure P. Calculation can also be performed by storing the voltages V, V, and values at each temperature in a microcomputer, if necessary.
第5図は第1図におけるブリツノ回路接続の他の実施例
を示す。図において31.32は感歪半導体抵抗、33
.34.3Gは金属抵抗、35、は感温抵抗体、又45
は定電圧電源部をそれぞれ示している。(第2図と同様
、ブリッジ電圧出力零点の温度補償用の金属抵抗接続部
分は省略しているが、b、d間のブリッジ出力電圧の零
点温度補償は、充分とれているものとする)尚点線部3
0は、歪センサとして一体化され、同一周囲温度で使用
される部分を示している。第5図の場合にもブリソノ出
力電圧す、d間電圧V1と、感温抵抗体35の両端eC
′間電圧電圧との関係も第3図、第4図と同様の特性を
をしている。FIG. 5 shows another embodiment of the Britno circuit connection in FIG. In the figure, 31.32 is a strain-sensitive semiconductor resistor, and 33
 .. 34.3G is a metal resistor, 35 is a temperature sensitive resistor, and 45
 Each indicates a constant voltage power supply section. (Similar to Figure 2, the metal resistor connection part for temperature compensation at the bridge voltage output zero point is omitted, but it is assumed that the zero point temperature compensation for the bridge output voltage between b and d is sufficient.) Dotted line part 3
 0 indicates a part that is integrated as a strain sensor and used at the same ambient temperature. In the case of FIG.
 The relationship between the voltage and the voltage between 1 and 2 has the same characteristics as in FIGS. 3 and 4.
従って電圧V、 、 V、を計測して、圧力Pの値を算
出できる。尚、必要により、第2図25、第3図35の
感温抵抗体の抵抗温度特性を直線化するため第6図、第
7図の如く、感温抵抗体25.35の両端にそれぞれ金
属抵抗26.27、及び38.39を直・並列に加える
ことも可能である。Therefore, by measuring the voltages V, , V, the value of the pressure P can be calculated. If necessary, in order to linearize the resistance-temperature characteristics of the temperature-sensitive resistors 25 and 35 in FIGS. It is also possible to add resistors 26.27 and 38.39 in series and parallel.
尚本実施例ではダイヤフラムが金属の場合を示したが、
ダイヤフラムにシリコン単結晶など半導体を用いた場合
にも同様に優れた効果が得られる。Although this example shows the case where the diaphragm is made of metal,
 Similar excellent effects can be obtained when a semiconductor such as silicon single crystal is used for the diaphragm.
又本発明実施例において、感温抵抗体部に印加する電源
は感歪抵抗体部用電源と共通としたが、それぞれ別電源
で駆動してよいことはもちろんである。Further, in the embodiment of the present invention, the power source applied to the temperature sensitive resistor section is the same as the power source for the strain sensitive resistor section, but it goes without saying that each may be driven by a separate power source.
発明の効果上述の如く、本発明は、感歪半導体抵抗がダイヤフラム
上にブリッジ回路接続され、ブリソノ出力電圧零点が温
度補償された歪センサにおいてダイヤフラム上の歪を受
けない部分に感歪抵抗体と同一材料からなる抵抗を形成
し、これを感温抵抗体として具備せしめた歪センサで該
感温抵抗体は、ブリッジ回路と直列接続して、定電流電
源に接続するか又は金属抵抗との直列回路をブリソノ回
路と並列接続したものを、定電圧電源に接続してなるこ
とを特徴とするもので、ブリッジ出力電圧の零点変動を
最小限に保ったま\で感度の温度補償を容易とする小型
の歪センサを提供するものである。Effects of the Invention As described above, the present invention provides a strain sensor in which a strain-sensitive semiconductor resistor is connected to a diaphragm in a bridge circuit, and the Brisono output voltage zero point is temperature compensated. A strain sensor in which a resistor made of the same material is used as a temperature-sensitive resistor. It is characterized by a circuit connected in parallel with a Brisono circuit and connected to a constant voltage power supply.It is a compact design that facilitates temperature compensation of sensitivity while keeping the zero point fluctuation of the bridge output voltage to a minimum. The present invention provides a strain sensor.
尚本発明による歪センサは、フンビューターを用いた計
測・制御/ステム系に使用する時、特に何効であり、そ
の特徴を発揮する。The strain sensor according to the present invention is particularly effective and exhibits its characteristics when used in a measurement/control/stem system using a Funbuter.
第1図は本発明の歪センサの実施例で要部の断面図を示
す。第2図は第1図に於けるブリ、ジ回路接続例を示す
。第3図は第2図に於けるブリッジ出力電圧VIとダイ
ヤフラムに印加される圧力Pとの関係を周囲温度Tをパ
ラメーターとして示したもので縦軸は出力電圧を、横軸
は圧力を示す。第4図は、第2図に於ける感m抵抗体間の電圧V、の温
度特性を示し、縦軸は電圧を、横軸は温度を示す。第5図、第6図及び第7図は本発明の歪センサの他の実
施例のブリッジ回路接続例をそれぞれ示ある。第9図及
び第1O図は従来の歪センサのブリツノ回路接続例を示
す。21、22.31.32・・・・・・・・・・・・・・
・・感歪半導体抵抗25、35・・・・・・・・・・・
・・・・・・・・・・・・・・・・・感温抵抗体41、
42.43.44.45.4G・・・・定電圧電源部才
2図20(L−=−=、−一 −−J牙3 I→バカ(P)侍 4開第5I¥l 牙 G 恥0」′廿 ■1司GL−−一−−−一−−−〜−一」/+8唱牙OI 品休 )0関l’7FIG. 1 shows a sectional view of the main parts of an embodiment of the strain sensor of the present invention. FIG. 2 shows an example of the bridge circuit connection in FIG. 1. FIG. 3 shows the relationship between the bridge output voltage VI and the pressure P applied to the diaphragm in FIG. 2 using the ambient temperature T as a parameter, where the vertical axis shows the output voltage and the horizontal axis shows the pressure. FIG. 4 shows the temperature characteristics of the voltage V between the m-sensitive resistors in FIG. 2, where the vertical axis shows the voltage and the horizontal axis shows the temperature. 5, 6 and 7 respectively show examples of bridge circuit connections of other embodiments of the strain sensor of the present invention. FIG. 9 and FIG. 1O show examples of Blitzno circuit connections of conventional strain sensors. 21, 22.31.32・・・・・・・・・・・・・・・
...Strain-sensitive semiconductor resistors 25, 35...
・・・・・・・・・・・・・・・・・・Temperature-sensitive resistor 41,
 42.43.44.45.4G... Constant voltage power supply part 2 Figure 20 (L-=-=, -1 --J Fang 3 I → Baka (P) Samurai 4 open 5th I ¥l Fang G Shame 0 "' 廿 ■1 Tsuji G L--1---1---~-1" /+8 Shouga OI Shinkyu )0 Seki l'7
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP11573084AJPS60259922A (en) | 1984-06-05 | 1984-06-05 | strain sensor | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP11573084AJPS60259922A (en) | 1984-06-05 | 1984-06-05 | strain sensor | 
| Publication Number | Publication Date | 
|---|---|
| JPS60259922Atrue JPS60259922A (en) | 1985-12-23 | 
| JPH0546488B2 JPH0546488B2 (en) | 1993-07-14 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP11573084AGrantedJPS60259922A (en) | 1984-06-05 | 1984-06-05 | strain sensor | 
| Country | Link | 
|---|---|
| JP (1) | JPS60259922A (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE102009041865A1 (en) | 2009-02-27 | 2010-09-09 | Mitsubishi Electric Corp. | Semiconductor pressure sensor and manufacturing method therefor | 
| JP2010236992A (en)* | 2009-03-31 | 2010-10-21 | Denso Corp | Sensor device | 
| JP2016161457A (en)* | 2015-03-03 | 2016-09-05 | 株式会社デンソー | Sensor drive device | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPH0728679U (en)* | 1993-11-11 | 1995-05-30 | セーラー万年筆株式会社 | Knock type writing instrument | 
| ES2428693T3 (en) | 2003-02-12 | 2013-11-08 | The Procter & Gamble Company | Absorbent core for an absorbent article | 
| EP1913914B2 (en) | 2003-02-12 | 2014-08-06 | The Procter and Gamble Company | Absorbent core for an absorbent article | 
| GB2454301B (en) | 2007-06-18 | 2012-03-28 | Procter & Gamble | Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material | 
| DE112008000010B4 (en) | 2007-06-18 | 2013-08-22 | The Procter & Gamble Company | Disposable absorbent article having a substantially continuously dispersed particulate polymeric absorbent material and method of making the same | 
| EP2285326A1 (en) | 2008-04-29 | 2011-02-23 | The Procter & Gamble Company | Process for making an absorbent core with strain resistant core cover | 
| EP2329803B1 (en) | 2009-12-02 | 2019-06-19 | The Procter & Gamble Company | Apparatus and method for transferring particulate material | 
| ES2459724T3 (en) | 2011-06-10 | 2014-05-12 | The Procter & Gamble Company | Method and apparatus for making absorbent structures with absorbent material | 
| DE202012013608U1 (en) | 2011-06-10 | 2018-04-30 | The Procter & Gamble Company | Absorption structure for absorbent article | 
| EP2532329B1 (en) | 2011-06-10 | 2018-09-19 | The Procter and Gamble Company | Method and apparatus for making absorbent structures with absorbent material | 
| PL3284449T3 (en) | 2011-06-10 | 2020-03-31 | The Procter & Gamble Company | Disposable diapers | 
| CA2838432C (en) | 2011-06-10 | 2018-02-27 | The Procter & Gamble Company | Absorbent structure for absorbent articles | 
| JP5940655B2 (en) | 2011-06-10 | 2016-06-29 | ザ プロクター アンド ギャンブル カンパニー | Absorbent core for disposable absorbent articles | 
| EP2532332B2 (en) | 2011-06-10 | 2017-10-04 | The Procter and Gamble Company | Disposable diaper having reduced attachment between absorbent core and backsheet | 
| MX348890B (en) | 2012-11-13 | 2017-07-03 | Procter & Gamble | Absorbent articles with channels and signals. | 
| US9216116B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels | 
| EP2740450A1 (en) | 2012-12-10 | 2014-06-11 | The Procter & Gamble Company | Absorbent core with high superabsorbent material content | 
| US8979815B2 (en) | 2012-12-10 | 2015-03-17 | The Procter & Gamble Company | Absorbent articles with channels | 
| US10639215B2 (en) | 2012-12-10 | 2020-05-05 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets | 
| PL2740452T3 (en) | 2012-12-10 | 2022-01-31 | The Procter & Gamble Company | Absorbent article with high absorbent material content | 
| US9216118B2 (en) | 2012-12-10 | 2015-12-22 | The Procter & Gamble Company | Absorbent articles with channels and/or pockets | 
| PL2740449T3 (en) | 2012-12-10 | 2019-07-31 | The Procter & Gamble Company | Absorbent article with high absorbent material content | 
| DE202014011107U1 (en) | 2013-06-14 | 2017-12-15 | The Procter & Gamble Company | When wet, channels forming absorbent article and absorbent core | 
| US9987176B2 (en) | 2013-08-27 | 2018-06-05 | The Procter & Gamble Company | Absorbent articles with channels | 
| US9789011B2 (en) | 2013-08-27 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles with channels | 
| JP6169800B2 (en) | 2013-09-16 | 2017-07-26 | ザ プロクター アンド ギャンブル カンパニー | Absorbent articles with channels and labels | 
| US11207220B2 (en) | 2013-09-16 | 2021-12-28 | The Procter & Gamble Company | Absorbent articles with channels and signals | 
| EP2851048B1 (en) | 2013-09-19 | 2018-09-05 | The Procter and Gamble Company | Absorbent cores having material free areas | 
| US9789009B2 (en) | 2013-12-19 | 2017-10-17 | The Procter & Gamble Company | Absorbent articles having channel-forming areas and wetness indicator | 
| EP2886092B1 (en) | 2013-12-19 | 2016-09-14 | The Procter and Gamble Company | Absorbent cores having channel-forming areas and c-wrap seals | 
| EP2905001B1 (en) | 2014-02-11 | 2017-01-04 | The Procter and Gamble Company | Method and apparatus for making an absorbent structure comprising channels | 
| EP2949300B1 (en) | 2014-05-27 | 2017-08-02 | The Procter and Gamble Company | Absorbent core with absorbent material pattern | 
| EP3270857B1 (en) | 2015-03-16 | 2019-12-04 | The Procter and Gamble Company | Absorbent articles with improved strength | 
| US10736795B2 (en) | 2015-05-12 | 2020-08-11 | The Procter & Gamble Company | Absorbent article with improved core-to-backsheet adhesive | 
| JP6743057B2 (en) | 2015-05-29 | 2020-08-19 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | Absorbent article having channels and wetness indicators | 
| EP3167859B1 (en) | 2015-11-16 | 2020-05-06 | The Procter and Gamble Company | Absorbent cores having material free areas | 
| EP3238676B1 (en) | 2016-04-29 | 2019-01-02 | The Procter and Gamble Company | Absorbent core with profiled distribution of absorbent material | 
| EP3238678B1 (en) | 2016-04-29 | 2019-02-27 | The Procter and Gamble Company | Absorbent core with transversal folding lines | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS49119675A (en)* | 1973-03-15 | 1974-11-15 | ||
| JPS5245377A (en)* | 1975-10-08 | 1977-04-09 | Hitachi Ltd | Silicon mechanical-electrical converter | 
| JPS56145327A (en)* | 1980-04-15 | 1981-11-12 | Fuji Electric Co Ltd | Pressure transducer | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS49119675A (en)* | 1973-03-15 | 1974-11-15 | ||
| JPS5245377A (en)* | 1975-10-08 | 1977-04-09 | Hitachi Ltd | Silicon mechanical-electrical converter | 
| JPS56145327A (en)* | 1980-04-15 | 1981-11-12 | Fuji Electric Co Ltd | Pressure transducer | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE102009041865A1 (en) | 2009-02-27 | 2010-09-09 | Mitsubishi Electric Corp. | Semiconductor pressure sensor and manufacturing method therefor | 
| US8327712B2 (en) | 2009-02-27 | 2012-12-11 | Mitsubishi Electric Corporation | Semiconductor pressure sensor having symmetrical structure, and manufacturing method thereof | 
| JP2010236992A (en)* | 2009-03-31 | 2010-10-21 | Denso Corp | Sensor device | 
| JP2016161457A (en)* | 2015-03-03 | 2016-09-05 | 株式会社デンソー | Sensor drive device | 
| Publication number | Publication date | 
|---|---|
| JPH0546488B2 (en) | 1993-07-14 | 
| Publication | Publication Date | Title | 
|---|---|---|
| JPS60259922A (en) | strain sensor | |
| US4320664A (en) | Thermally compensated silicon pressure sensor | |
| US3967188A (en) | Temperature compensation circuit for sensor of physical variables such as temperature and pressure | |
| US11598686B2 (en) | Temperature compensation of strain gauge output | |
| US4638664A (en) | Quartz barometer | |
| US6107861A (en) | Circuit for self compensation of silicon strain gauge pressure transmitters | |
| JPH03172719A (en) | Level sensor | |
| JPS6222272B2 (en) | ||
| JPH0455542B2 (en) | ||
| JPS6197543A (en) | Compensation circuit for semiconductor pressure sensor | |
| JP3410562B2 (en) | Temperature / wind speed measurement device | |
| RU2024830C1 (en) | Unit for measuring pressure | |
| JP2642460B2 (en) | Heat dissipation type level sensor | |
| JPH044980Y2 (en) | ||
| RU2037145C1 (en) | Strain gauge for measuring pressure | |
| JPH0313537B2 (en) | ||
| JPS60216213A (en) | Measuring device using resistance bridge | |
| SU1029011A1 (en) | Device for measuring medium parameters | |
| JP2636404B2 (en) | Semiconductor differential pressure measuring device | |
| SU1472773A1 (en) | Pressure transducer | |
| SU1737291A1 (en) | Pressure sensor | |
| JPS5920658Y2 (en) | Detection circuit for thermal conduction type vacuum gauge | |
| JPS60171416A (en) | Resistance type converter | |
| JPS60152912A (en) | Temperature compensating circuit | |
| JPS6032142B2 (en) | Local iron loss measuring device |