Movatterモバイル変換


[0]ホーム

URL:


JPS60160173A - thin film transistor - Google Patents

thin film transistor

Info

Publication number
JPS60160173A
JPS60160173AJP59016763AJP1676384AJPS60160173AJP S60160173 AJPS60160173 AJP S60160173AJP 59016763 AJP59016763 AJP 59016763AJP 1676384 AJP1676384 AJP 1676384AJP S60160173 AJPS60160173 AJP S60160173A
Authority
JP
Japan
Prior art keywords
film
source
tpt
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59016763A
Other languages
Japanese (ja)
Inventor
Hirohisa Tanaka
田仲 広久
Yutaka Takato
裕 高藤
Mitsuhiro Mukaidono
充浩 向殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp CorpfiledCriticalSharp Corp
Priority to JP59016763ApriorityCriticalpatent/JPS60160173A/en
Priority to DE19853502911prioritypatent/DE3502911A1/en
Priority to GB08502348Aprioritypatent/GB2153589B/en
Publication of JPS60160173ApublicationCriticalpatent/JPS60160173A/en
Priority to GB08723748Aprioritypatent/GB2197985B/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】く技術分野〉本発明は薄膜トランジスタ(以下TPTと称す)に関す
るものであり、特にアモルファスシリコン(以下a−8
iと称す)又は少なくとも一部が微結晶化したシリコン
(以下単に微結晶シリコンと称す)を用いた場合に特性
が良好で高い信頼性を得ることができるTPTの構造に
関するものである。
[Detailed Description of the Invention] Technical Field> The present invention relates to thin film transistors (hereinafter referred to as TPT), and particularly relates to amorphous silicon (hereinafter referred to as a-8
The present invention relates to a TPT structure that has good characteristics and can achieve high reliability when using microcrystalline silicon (hereinafter simply referred to as microcrystalline silicon) or silicon that is at least partially microcrystalline.

〈従来技術〉まず、従来の一般的なTPTの構造及びその形成法につ
いて第1図とともに説明する。絶縁基板1上にゲート電
極2.ゲート絶縁膜3.半導体層4を順次堆積し、半導
体層4上にソース電極5及びドレイン電極6を形成し、
さらに保護膜7.光シールド8を順次堆積することによ
りTPTが作製される。絶縁基板1としては一般的にガ
ラス板。
<Prior Art> First, the structure of a conventional general TPT and its formation method will be explained with reference to FIG. A gate electrode 2 is formed on an insulating substrate 1. Gate insulating film 3. Sequentially depositing a semiconductor layer 4, forming a source electrode 5 and a drain electrode 6 on the semiconductor layer 4,
Furthermore, a protective film 7. A TPT is fabricated by sequentially depositing optical shields 8. The insulating substrate 1 is generally a glass plate.

セラミック板1石英板等が用いられる。また、ゲート電
極2はA t+ N 1.Cr + A u等の金属材
料。
Ceramic plate 1 A quartz plate or the like is used. Further, the gate electrode 2 has A t+ N 1. Metal materials such as Cr + Au.

ゲート絶縁膜3はS i O+ S 102 + Al
2O3+ Ta2es +Si3N< 等の酸化物又は
窒化物、半導体層4はCdS 、 CdSe 、 Te
 、 PbS 、 a−8i又は微結晶シリコン等で形
成される。ソース電極5及びドレイン+電極6としてはAt又はa−8iのn 膜等が用いられ
る。保護膜7は5t(h又はSi3N<等、光シールド
8はAt等の金属材料が用いられる。
The gate insulating film 3 is S i O + S 102 + Al
Oxide or nitride such as 2O3+ Ta2es +Si3N<, semiconductor layer 4 is CdS, CdSe, Te
, PbS, a-8i or microcrystalline silicon. As the source electrode 5 and the drain + electrode 6, an At or a-8i n film or the like is used. The protective film 7 is made of 5T (h or Si3N), and the optical shield 8 is made of a metal material such as At.

半導体層4としてa−84を用いた場合、ソース電極及
びドレイン電極材料としては、Atもしくはn十a−8
jと金属の積層膜を使用することが多い。これらを、ソ
ース及びドレイン電極材料としてa−8tのTPTを製
作すると次のような問題が発生する。
When a-84 is used as the semiconductor layer 4, At or n0a-8 is used as the source electrode and drain electrode material.
A laminated film of J and metal is often used. When a-8t TPT is manufactured using these as source and drain electrode materials, the following problems occur.

(1)ソース及びドレイン電極としてAtを用いた場合
、Atの付着強度、膜質の安定性の観点から、通常At
蒸着時に基板温度を高くするのであるが、この時a−8
i上にAtを蒸着するために、a−8i中にAtが拡散
し、ソース及びドレイン電極パターン化後もソース電極
とドレイン電極の間のa−8t中にAtが残留し、ソー
ス電極とドレイン電極との短絡ある妃はa−Si膜の変
質の原因となる。一方、低温でAtを蒸着すると付着力
、か弱く、膜質が不安定となる。
(1) When At is used as the source and drain electrodes, from the viewpoint of At adhesion strength and film quality stability, At
The substrate temperature is raised during vapor deposition, but at this time a-8
In order to deposit At on i, At diffuses into a-8i, and even after patterning the source and drain electrodes, At remains in a-8t between the source and drain electrodes. A short circuit with the electrode causes deterioration of the a-Si film. On the other hand, if At is deposited at a low temperature, the adhesion will be weak and the film quality will be unstable.

(2) ソース及びドレイン電極としてn十a−8i 
と金属の積層膜を用いると、TPTは第2図の様な構造
となる。ソース及びドレイン電極の金属膜としてはTi
等が用いられる。第2図の様な構造のTPTを形成する
際、n+a−8i lli 51をパターン化するため
に、n十a−8t膜51をa−8i半導体層に対して選
択的にエツチングする必要がある。ところが、n+a−
8i膜とa−8i半導体層はエッチャントである(HF
十HNOx)混合溶液あるいはCF 4 プラズマに対
して全く選択性がない。従って、a−8i半導体層上の
n+a−8tをエツチングするためには、時間制御によ
り選択エツチングしなければならない。
(2) n0a-8i as source and drain electrodes
If a laminated film of metal and metal is used, the TPT will have a structure as shown in FIG. Ti is used as the metal film for the source and drain electrodes.
etc. are used. When forming a TPT with a structure as shown in FIG. 2, it is necessary to selectively etch the n+a-8t film 51 with respect to the a-8i semiconductor layer in order to pattern the n+a-8i lli 51. . However, n+a-
The 8i film and the a-8i semiconductor layer are etchant (HF
There is no selectivity at all for mixed solutions (10HNOx) or CF 4 plasma. Therefore, in order to etch the n+a-8t layer on the a-8i semiconductor layer, selective etching must be performed by time control.

しかし、na−8i膜の膜厚、膜質又はエツチング速度
のばらつきのためa−8iTFT製作上の再現性が乏し
く、従ってTPT特性の安定性。
However, due to variations in the film thickness, film quality, or etching speed of the Na-8i film, the reproducibility in manufacturing the A-8i TFT is poor, and the stability of the TPT characteristics is therefore poor.

再現性に乏しいのが現状である。このようなことがらn
a−8i膜を選択的にエツチングする技術を確立するこ
とが特性の良好なTF’Tを作製するために必要である
At present, reproducibility is poor. Things like this
It is necessary to establish a technique for selectively etching the a-8i film in order to produce a TF'T with good characteristics.

(3)第1図及び第2図の様な構造のTPTでは、ゲー
ト電極とソース及びドレイン電極との間にかなり大きな
容量が存在し、TPTの特性が大きな影響を受ける。
(3) In a TPT having a structure as shown in FIGS. 1 and 2, a considerably large capacitance exists between the gate electrode and the source and drain electrodes, which greatly affects the characteristics of the TPT.

(4)第1図及び第2図の様なTPTをマトリックス型
液晶表示装置のアドレス用の素子として用いる場合、ゲ
ート電極と絵素電極との間の絶縁膜が薄いため、ゲート
電極と絵素電極が重ならないように、パターンの位置合
せやエツチングの精度を見込んで第3図に平面図で示す
如くゲート電極2と絵素電極100との間にギャップa
及びbを設ける必要がある。このために絵素電極100
の面積が小さくなり、開口率が低くなってしまう。
(4) When using a TPT as shown in Figures 1 and 2 as an addressing element in a matrix type liquid crystal display device, since the insulating film between the gate electrode and the picture element electrode is thin, To prevent the electrodes from overlapping, a gap a is created between the gate electrode 2 and the pixel electrode 100 as shown in the plan view in FIG.
and b need to be provided. For this purpose, the picture element electrode 100
The area becomes smaller, and the aperture ratio becomes lower.

上記問題点の(1)及び(2)を解決するため、第4図
に示す様なTPTの構造が提唱され、使用に供されてい
る。即ち、半導体膜パターン化後ソース及びドレイン電
極を形成する前にソース及びドレイン電極のギャップに
絶縁体膜を形成しパターン化する構造である。しかし、
このTPT構造に於いても上記問題点の(3)及び(4
)は解決されておらず、良好なTPT特性を得るために
は、ゲート電極上ソース及びドレイン電極間の浮遊容量
を小さくすることが必要である。さらに、マトリックス
型液晶表示装置のアドレス用の素子としてTPTを用い
た場合画像の明るさ及びコントラストを良くするために
開口率を大きくする必要がある。
In order to solve the above problems (1) and (2), a TPT structure as shown in FIG. 4 has been proposed and put into use. That is, after patterning the semiconductor film and before forming the source and drain electrodes, an insulating film is formed and patterned in the gap between the source and drain electrodes. but,
This TPT structure also has the above problems (3) and (4).
) has not been solved, and in order to obtain good TPT characteristics, it is necessary to reduce the stray capacitance between the source and drain electrodes on the gate electrode. Furthermore, when a TPT is used as an addressing element in a matrix type liquid crystal display device, it is necessary to increase the aperture ratio in order to improve the brightness and contrast of an image.

〈発明の目的〉本発明は上述の問題点に鑑み、半導体層とソース及びド
レイン電極の界面にソース及びドレイン電極引き出し孔
を有する絶縁体層を形成することにより、a−8t半導
体膜を汚染することなく、n+a−8t膜とa−8t半
導体膜との選択エツチングも容易で、さらにゲート電極
とソース及びドレイン電極間の浮遊容量も小さくなシ、
TPTの動作特性及び信頼性も良好となるTPTを提供
することを目的とするものである。
<Object of the Invention> In view of the above-mentioned problems, the present invention provides a method for preventing contamination of an A-8T semiconductor film by forming an insulator layer having source and drain electrode extraction holes at the interface between the semiconductor layer and the source and drain electrodes. selective etching between the n+a-8t film and the a-8t semiconductor film is easy, and the stray capacitance between the gate electrode and the source and drain electrodes is small.
It is an object of the present invention to provide a TPT that has good operating characteristics and reliability.

〈実施例〉第5図は本発明の一実施例を示すTPTの構成断面図で
ある。
<Embodiment> FIG. 5 is a sectional view of the structure of a TPT showing an embodiment of the present invention.

ガラス基板10上に蒸着法、スパッタリング等の薄膜生
成法でTa膜を層設した後、パターン化処理を介してT
a膜の不要部をエツチング除去し、ゲート電極20とす
る。次にゲート電極2oを陽極酸化してその表面部分に
Ta205のゲート絶縁膜30を形成する。この上にプ
ラズマCVD法により5iaN4膜31及びa−8t膜
4oを重畳して積層した後、パターン化し、二層、膜構
造を作製する。このa−8i膜4oがTPTの半導体層
となる。
After a Ta film is layered on the glass substrate 10 by a thin film forming method such as vapor deposition or sputtering, a T film is formed on the glass substrate 10 through a patterning process.
An unnecessary portion of the a film is removed by etching to form the gate electrode 20. Next, the gate electrode 2o is anodized to form a gate insulating film 30 of Ta205 on its surface. A 5iaN4 film 31 and an a-8t film 4o are superimposed and laminated thereon by the plasma CVD method, and then patterned to produce a two-layer film structure. This a-8i film 4o becomes a TPT semiconductor layer.

更に、プラズマCVD法により、5isNa膜9゜を堆
積してパターン化するとともにソース及びドレイン電極
引き出し孔を穿設する。次に、At膜をSi3N4膜9
0上に堆積し、ソース電極50及びドレイン電極60に
パターン化する。このAt膜は5iaN4膜90の引き
出し孔を介してa−8i膜40と接触することとなる。
Furthermore, a 5isNa film of 9° is deposited and patterned by plasma CVD, and holes for drawing out the source and drain electrodes are formed. Next, the At film is replaced with a Si3N4 film 9.
0 and patterned into a source electrode 50 and a drain electrode 60. This At film comes into contact with the a-8i film 40 through the extraction hole of the 5iaN4 film 90.

プラズマCVD法によりソース電極50.ドレイン電極
60及びSi3N4膜90上にSi3N4保護膜7oを
被覆する。最後に、Si3N4保護膜70上にAt膜を
堆積し、光シールド80にパターン化して、TPTとす
る。このTPTはa−8i半導体層40とソースドレイ
ン電極50.60間にSi3N4膜90(7)絶縁層が
介在し、この絶縁層はほぼ全域に形成されている。
Source electrode 50. is formed by plasma CVD method. A Si3N4 protective film 7o is coated on the drain electrode 60 and the Si3N4 film 90. Finally, an At film is deposited on the Si3N4 protective film 70 and patterned into a light shield 80 to form TPT. In this TPT, an insulating layer of Si3N4 film 90 (7) is interposed between the a-8i semiconductor layer 40 and the source/drain electrodes 50 and 60, and this insulating layer is formed over almost the entire area.

上記製造工程に於いて、ソース及びドレイン電極50.
60となるAt膜は5isNa膜に穿設されたソース及
びドレイン電極引き出し孔を介してのみa−8i膜40
に接しており、半導体層と不必要な接触がなく、ソース
電極とドレイン電極との間のa−8t半導体層がAtで
汚染されることがない。従ってAt膜を蒸着法で形成す
る際、基板温度を高くすることが可能で、a−8i半導
体層とソース及びドレイン電極との接触が良好となる。
In the above manufacturing process, the source and drain electrodes 50.
The At film 60 is connected to the a-8i film 40 only through the source and drain electrode extraction holes drilled in the 5isNa film.
There is no unnecessary contact with the semiconductor layer, and the a-8t semiconductor layer between the source electrode and the drain electrode is not contaminated with At. Therefore, when forming an At film by vapor deposition, it is possible to raise the substrate temperature, and good contact between the a-8i semiconductor layer and the source and drain electrodes is achieved.

更に、ゲート電極とソース及びドレイン電極間の浮遊容
量も絶縁膜が存在することから、小さくなる。
Furthermore, the stray capacitance between the gate electrode and the source and drain electrodes is also reduced due to the presence of the insulating film.

第6図は本発明の他の実施例を示すTPTの構造断面図
である。
FIG. 6 is a structural sectional view of a TPT showing another embodiment of the present invention.

ガラス基板10上にTa膜を形成し、パターン化してゲ
ート電極20とする。ゲート電極2oを陽極酸化してそ
の表面部分にTazOsのゲート絶縁膜30を形成する
A Ta film is formed on a glass substrate 10 and patterned to form a gate electrode 20. The gate electrode 2o is anodized to form a TazOs gate insulating film 30 on its surface.

プラズマCVD法により、Si3N4膜31及びa−8
i膜40を重畳して積層し、パターン化して二層膜とす
る。更に、プラズマCVD法により、5isN<膜90
を積層し、a−Si膜40に達する引き出し孔を穿設す
るとともにパターン化する。
By plasma CVD method, Si3N4 film 31 and a-8
The i-films 40 are stacked and patterned to form a two-layer film. Furthermore, by plasma CVD method, 5isN<film 90
are laminated, and an extraction hole reaching the a-Si film 40 is formed and patterned.

プラズマCVD法によりa−8iのn+膜、蒸着法によ
#)Ti膜を順次堆積し、ソース電極55.50及びド
レイン電極65.60にパターン化する。
An a-8i n+ film is deposited by plasma CVD and a Ti film is sequentially deposited by vapor deposition, and patterned into a source electrode 55.50 and a drain electrode 65.60.

更にプラズマCVD法により、Si3N4保護膜70を
積層し、最後にAt膜を堆積して光シールド80にパタ
ーン化する。
Furthermore, a Si3N4 protective film 70 is laminated by plasma CVD, and finally an At film is deposited and patterned into a light shield 80.

上記製造工程に於いて、a−8iのn 膜をエツチング
する際エツチングされるa−8iOn十膜の直下にはS
i3N4膜があるため、a−8iのn 膜の選択エツチ
ングが可能で、a−8i半導体膜の膜厚を薄くすること
が可能である。
In the above manufacturing process, when etching the a-8i n film, the S
Because of the i3N4 film, selective etching of the a-8i n film is possible, making it possible to reduce the thickness of the a-8i semiconductor film.

第7図は本発明の他の実施例を示すTPTの構造断面図
である。
FIG. 7 is a structural sectional view of a TPT showing another embodiment of the present invention.

製造工程は、光シールドのAt膜がないのを除き、第5
図に示すTPTの製造工程と同様である。
The manufacturing process is similar to the fifth one, except that there is no At film for the light shield.
The process is similar to the TPT manufacturing process shown in the figure.

本実施例では、ソース電極とドレイン電極の間隔を小さ
くシ、ソース及びドレイン電極を光シールドとして用、
い、光シールド形成工程を省略することが可能である。
In this example, the interval between the source and drain electrodes is made small, and the source and drain electrodes are used as optical shields.
However, it is possible to omit the optical shield forming step.

マ) IJソックス液晶表示装置のアドレス用素子とし
て本発明のTPTを用いた場合、ゲート電極と絵素電極
との間に厚い絶縁体膜が存在することとなるため、設計
上第3図に示したゲート電極と絵素電極とのギャップa
及びl〕をなくすことができ、絵素電極の面積が広くな
るとともに開口率が大きくなる。まだ、ゲート電極とソ
ース電極とのクロス部の電極間にも厚い絶縁体膜が存在
し、ゲート電極とソース電極間のクロス部の浮遊容量も
小さくすることができる。
M) When the TPT of the present invention is used as an addressing element in an IJ socks liquid crystal display device, a thick insulating film will exist between the gate electrode and the pixel electrode, so the design shown in FIG. Gap a between the gate electrode and the picture element electrode
and l] can be eliminated, the area of the picture element electrode becomes wider, and the aperture ratio becomes larger. Still, a thick insulating film exists between the electrodes at the cross section between the gate electrode and the source electrode, and the stray capacitance at the cross section between the gate electrode and the source electrode can also be reduced.

〈発明の効果〉以上詳説した如く、本発明によれば、TPTの半導体膜
が製造プロセス中にソース・ドレイン電極材料で汚染さ
れたり、オーバーエツチングされることがなく、更に不
要なゲート電極とソース及びドレイン電極間の浮遊容量
も小さく押えることが可能となる。従って動作特性が良
好で信頼性の高いTPTを得ることができる。また、光
シールド形成工程を省略することも可能であり、生産性
の高い製造技術が確立される。更に、マトリックス型液
晶表示装置のアドレス用素子としてTPTを用いた場合
も開口率を大きく設定することができる。
<Effects of the Invention> As explained in detail above, according to the present invention, the TPT semiconductor film is not contaminated with source/drain electrode materials or overetched during the manufacturing process, and furthermore, unnecessary gate electrodes and source Also, the stray capacitance between the drain electrodes can be kept small. Therefore, a TPT with good operating characteristics and high reliability can be obtained. Furthermore, it is also possible to omit the optical shield forming step, and a highly productive manufacturing technique is established. Furthermore, the aperture ratio can also be set large when TPT is used as an addressing element in a matrix type liquid crystal display device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来のTPTの構造を示す断面図で
ある。第3図は、従来のTPTをマトリックス型液晶表
示装置のアドレス用素子として用いた場合の平面図であ
る。第4図は従来の改良されたTPTの構造を示す断面
図である。第5図乃至第7図は各々本発明の1実施例を
説明するTPTの断面図である。1.10・・・絶縁基板 2.20・・・ゲート電極3
.30.31・・・ゲート絶縁膜 4I40・・・半導
体膜 5,50,51.55・・・ソース電極 6゜6
0.61.65・・・ドレイン電極 7,70・・・保
護J1g8.80・・・光シールド 9.90・・・絶
縁体膜 100・・・絵素電極代理人 弁理士 福 士 愛 彦(他2名)第1図第2図第5図1 2 4 3第4図第3図第6図第7図
FIGS. 1 and 2 are cross-sectional views showing the structure of a conventional TPT. FIG. 3 is a plan view when a conventional TPT is used as an addressing element of a matrix type liquid crystal display device. FIG. 4 is a sectional view showing the structure of a conventional improved TPT. FIGS. 5 to 7 are cross-sectional views of TPT, each illustrating one embodiment of the present invention. 1.10... Insulating substrate 2.20... Gate electrode 3
.. 30.31...Gate insulating film 4I40...Semiconductor film 5,50,51.55...Source electrode 6゜6
0.61.65...Drain electrode 7,70...Protection J1g8.80...Light shield 9.90...Insulator film 100...Pixel electrode agent Patent attorney Aihiko Fukushi ( 2 others) Figure 1 Figure 2 Figure 5 1 2 4 3 Figure 4 Figure 3 Figure 6 Figure 7

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1、基板上に形成された半導体層に堆積されるソース・
ドレイン電極と前記半導体層間に絶縁層を介在さ、せ、
該絶縁層の穿設孔を介して前記ソース電極とドレイン電
極が独立に前記半導体層と接触していることを特徴とす
る薄膜トランジスタ
1. A source layer deposited on a semiconductor layer formed on a substrate.
interposing an insulating layer between the drain electrode and the semiconductor layer,
A thin film transistor characterized in that the source electrode and the drain electrode are independently in contact with the semiconductor layer through a hole in the insulating layer.
JP59016763A1984-01-301984-01-30 thin film transistorPendingJPS60160173A (en)

Priority Applications (4)

Application NumberPriority DateFiling DateTitle
JP59016763AJPS60160173A (en)1984-01-301984-01-30 thin film transistor
DE19853502911DE3502911A1 (en)1984-01-301985-01-29 THIN FILM TRANSISTOR
GB08502348AGB2153589B (en)1984-01-301985-01-30Thin film transistor
GB08723748AGB2197985B (en)1984-01-301987-10-09Liquid crystal display

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP59016763AJPS60160173A (en)1984-01-301984-01-30 thin film transistor

Publications (1)

Publication NumberPublication Date
JPS60160173Atrue JPS60160173A (en)1985-08-21

Family

ID=11925260

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP59016763APendingJPS60160173A (en)1984-01-301984-01-30 thin film transistor

Country Status (3)

CountryLink
JP (1)JPS60160173A (en)
DE (1)DE3502911A1 (en)
GB (2)GB2153589B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0283981A (en)*1988-09-211990-03-26Fuji Xerox Co LtdThin film transistor
JPH0348463A (en)*1989-03-011991-03-01Mitsubishi Electric Corp thin film transistor
US6480577B1 (en)1999-04-072002-11-12Sharp Kabushiki KaishaActive matrix substrate, method of manufacturing same, and flat-panel image sensor
US6784949B1 (en)1999-03-112004-08-31Sharp Kabushiki KaishaActive matrix substrate, method of manufacturing the same, and image sensor incorporating the same
JP2013008990A (en)*2009-07-312013-01-10Semiconductor Energy Lab Co LtdSemiconductor device
JP2013021344A (en)*2009-07-312013-01-31Semiconductor Energy Lab Co LtdMethod for manufacturing semiconductor device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2593327B1 (en)*1986-01-231988-10-28Commissariat Energie Atomique METHOD FOR MANUFACTURING A THIN FILM TRANSISTOR USING TWO OR THREE LEVELS OF MASKING
JPH0766253B2 (en)*1986-06-201995-07-19松下電器産業株式会社 Matrix type image display device
FR2605442B1 (en)*1986-10-171988-12-09Thomson Csf ELECTROOPTIC VISUALIZATION SCREEN WITH CONTROL TRANSISTORS AND METHOD FOR PRODUCING THE SAME
JPS63166236A (en)*1986-12-261988-07-09Toshiba Corp electronic equipment
JPH01173650A (en)*1987-12-261989-07-10Seikosha Co Ltd Manufacturing method of amorphous silicon thin film transistor
WO1989009494A1 (en)*1988-03-311989-10-05Solarex CorporationGate dielectric for a thin film field effect transistor
FR2631743A1 (en)*1988-05-231989-11-24Gen Electric STRUCTURE WITH NON-COPLANAR ELECTRODES FOR LIQUID CRYSTAL MATRIX DISPLAY WITH AMORPHOUS SILICON THIN FILM TRANSISTORS AND MANUFACTURING METHOD
EP0445535B1 (en)1990-02-061995-02-01Sel Semiconductor Energy Laboratory Co., Ltd.Method of forming an oxide film
DE69125886T2 (en)*1990-05-291997-11-20Semiconductor Energy Lab Thin film transistors
EP0535979A3 (en)*1991-10-021993-07-21Sharp Kabushiki KaishaA thin film transistor and a method for producing the same
JP3369055B2 (en)*1996-09-062003-01-20シャープ株式会社 Thin film semiconductor device and method of manufacturing the same
US5814530A (en)*1996-09-271998-09-29Xerox CorporationProducing a sensor with doped microcrystalline silicon channel leads
US5959312A (en)*1996-09-271999-09-28Xerox CorporationSensor with doped microcrystalline silicon channel leads with bubble formation protection means
WO2011013502A1 (en)2009-07-312011-02-03Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
KR101799252B1 (en)2009-07-312017-11-17가부시키가이샤 한도오따이 에네루기 켄큐쇼Semiconductor device and method for manufacturing the same
KR102097932B1 (en)2009-07-312020-04-06가부시키가이샤 한도오따이 에네루기 켄큐쇼Semiconductor device and manufacturing method thereof
KR101073543B1 (en)*2009-09-042011-10-17삼성모바일디스플레이주식회사Organic light emitting diode display
US9166055B2 (en)2011-06-172015-10-20Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US8952377B2 (en)2011-07-082015-02-10Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US9214474B2 (en)2011-07-082015-12-15Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing semiconductor device
KR20230004930A (en)2012-04-132023-01-06가부시키가이샤 한도오따이 에네루기 켄큐쇼Semiconductor device
US10304859B2 (en)2013-04-122019-05-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an oxide film on an oxide semiconductor film

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5679472A (en)*1979-12-041981-06-30Toshiba CorpPreparing method of mos-type semiconductor device
JPS5721867A (en)*1980-06-021982-02-04Xerox CorpPlanar thin film transistor array and method of producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3840695A (en)*1972-10-101974-10-08Westinghouse Electric CorpLiquid crystal image display panel with integrated addressing circuitry
GB2064866A (en)*1979-11-301981-06-17Gen Electric Co LtdField effect semiconductor device
JPS58147069A (en)*1982-02-251983-09-01Sharp Corp thin film transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5679472A (en)*1979-12-041981-06-30Toshiba CorpPreparing method of mos-type semiconductor device
JPS5721867A (en)*1980-06-021982-02-04Xerox CorpPlanar thin film transistor array and method of producing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0283981A (en)*1988-09-211990-03-26Fuji Xerox Co LtdThin film transistor
JPH0348463A (en)*1989-03-011991-03-01Mitsubishi Electric Corp thin film transistor
US6784949B1 (en)1999-03-112004-08-31Sharp Kabushiki KaishaActive matrix substrate, method of manufacturing the same, and image sensor incorporating the same
US7250991B2 (en)1999-03-112007-07-31Sharp Kabushiki KaishaActive matrix substrate, method of manufacturing the same, and image sensor incorporating the same
US6480577B1 (en)1999-04-072002-11-12Sharp Kabushiki KaishaActive matrix substrate, method of manufacturing same, and flat-panel image sensor
US6665374B2 (en)1999-04-072003-12-16Sharp Kabushiki KaishaActive matrix substrate, method of manufacturing same, and flat-panel image sensor
JP2013008990A (en)*2009-07-312013-01-10Semiconductor Energy Lab Co LtdSemiconductor device
JP2013021344A (en)*2009-07-312013-01-31Semiconductor Energy Lab Co LtdMethod for manufacturing semiconductor device
US9024313B2 (en)2009-07-312015-05-05Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US9362416B2 (en)2009-07-312016-06-07Semiconductor Energy Laboratory Co., Ltd.Semiconductor wearable device
US9741779B2 (en)2009-07-312017-08-22Semiconductor Energy Laboratory Co., Ltd.Oxide semiconductor device

Also Published As

Publication numberPublication date
GB8723748D0 (en)1987-11-11
GB2197985B (en)1988-10-12
GB8502348D0 (en)1985-02-27
GB2153589B (en)1988-10-12
DE3502911A1 (en)1985-08-01
GB2153589A (en)1985-08-21
GB2197985A (en)1988-06-02

Similar Documents

PublicationPublication DateTitle
JPS60160173A (en) thin film transistor
JP3238020B2 (en) Method for manufacturing active matrix display device
JPS60103676A (en) Method for manufacturing thin film transistor array
JP3053848B2 (en) Active matrix substrate
JPS6270817A (en) Structure and manufacturing method for thin film field effect transistor matrix addressed type liquid crystal display device
JPH08236775A (en) Thin film transistor and manufacturing method thereof
JP3084981B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0580650B2 (en)
US5068699A (en)Thin film transistor for a plate display
JP2730129B2 (en) Thin film transistor
JPH02177563A (en)Thin film transistor and manufacture thereof
JPH0587029B2 (en)
JPS6042868A (en) Manufacturing method of amorphous silicon thin film field effect transistor
JPS61188967A (en) thin film transistor
JPS61145582A (en) display device
JP2881868B2 (en) Method for manufacturing thin film transistor liquid crystal display
JP2003043522A (en)Reflection type liquid crystal display device
JPH0444251B2 (en)
JPH06132536A (en) Thin film transistor
JP2808742B2 (en) TFT panel and method of manufacturing the same
JPH02137826A (en) Transmissive active matrix liquid crystal display device
JPH08321621A (en) Thin film transistor
JPS62288882A (en)Manufacture of thin film transistor
KR20020028014A (en)Method for fabricating tft-lcd
JPS62288883A (en)Manufacture of thin film transistor

[8]ページ先頭

©2009-2025 Movatter.jp