【発明の詳細な説明】この発明は、サンドイッチ構造体で作られるマイクロス
トリップアレーアンテナに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microstrip array antenna made of a sandwich structure.
従来この種のアンテナにおける人工衛星搭載用展開型マ
イクロストリップアレーアンテナとして第1図〜第4図
に示すものがあった。2. Description of the Related Art Conventionally, there have been antennas of this type shown in FIGS. 1 to 4 as deployable microstrip array antennas for mounting on artificial satellites.
第1図は人工衛星搭載用展開型マイクロストリップアレ
ーアンテナの概略図、第2図はアンテナパネルの断面図
、第6図は第2図の構成材料の実際例を示した図、第4
図は軌道上での展開後のアンテナの熱変形後の状態を示
した図である。Figure 1 is a schematic diagram of a deployable microstrip array antenna for use on a satellite, Figure 2 is a cross-sectional view of the antenna panel, Figure 6 is a diagram showing an actual example of the constituent materials shown in Figure 2, and Figure 4 is a diagram showing an actual example of the constituent materials shown in Figure 2.
The figure shows the state of the antenna after it has been thermally deformed after being deployed in orbit.
第1図〜第4図において、1けアンテナパネル、2は展
開ヒンジ、3は衛星、4は放射、素子、5は基板、6は
誘電体コア、7は地導体、8はコア、9は表皮材であり
、上記放射素子4、基板5、誘電体コア6および地導体
7によシ第1のサンドイッチパネルを構成し、また地導
体7、コア8および表皮材9によシ第2のサンドイッチ
パネルを構成している。In Figures 1 to 4, 1 antenna panel, 2 a deployment hinge, 3 a satellite, 4 a radiation element, 5 a substrate, 6 a dielectric core, 7 a ground conductor, 8 a core, and 9 a The radiating element 4, the substrate 5, the dielectric core 6, and the ground conductor 7 constitute a first sandwich panel, and the ground conductor 7, the core 8, and the skin material 9 constitute a second sandwich panel. It forms a sandwich panel.
次に動作について説明する。Next, the operation will be explained.
第1図は、衛星3に取付けられかつ展開ヒンジ2によっ
て互いに連結された複数のアンテナバネルIの展開後の
状態を示している。FIG. 1 shows a plurality of antenna panels I attached to a satellite 3 and connected to each other by deployment hinges 2 in a deployed state.
第2図は、アンテナパネル1の断面図であシ、マイクロ
ストリップアレーアンテナの実際例を示している。FIG. 2 is a sectional view of the antenna panel 1, showing an actual example of a microstrip array antenna.
図中、アンテナパネルIは、誘電体から成る基板5の一
方の面に金、銀、銅などと同様に電気伝導度が高く、軽
量で剛性の高い地導体7を有し、その間を軽量で低誘電
率を有する材料から成る誘電体コア6で埋めて構成した
第1のサンドイッチパネルAと、アンテナパネルl全体
の剛性をあげるため、軽量なコア8と、軽量で剛性の高
い表皮材9とを組み合わせた第2のサンドイッチパネル
Bとにより、二重サンドインチ構造を構成している。In the figure, the antenna panel I has a ground conductor 7 on one side of a substrate 5 made of a dielectric material, which has high electrical conductivity like gold, silver, copper, etc., and is lightweight and highly rigid. The first sandwich panel A is composed of a dielectric core 6 made of a material having a low dielectric constant, a lightweight core 8 and a lightweight and highly rigid skin material 9 to increase the rigidity of the entire antenna panel. and the second sandwich panel B in combination constitutes a double sandwich structure.
第3図に従来のマイクロストリップアレーアンテナの構
成材料の実際例を示す。FIG. 3 shows an actual example of the constituent materials of a conventional microstrip array antenna.
第6図において、第2図の放射素子4に銅箔、基板5に
ガラス繊維強化プラスチツク材、誘電体コア6にナイロ
ン繊維強化ハニカムコア、地導体7にカーボン繊維強化
プラスチツク材、コア8にアルミハニカムコア、表皮材
9にカーボン繊維強化プラスチツク材をそれぞれ用いて
いる。In FIG. 6, the radiating element 4 in FIG. 2 is made of copper foil, the substrate 5 is made of glass fiber reinforced plastic material, the dielectric core 6 is made of nylon fiber reinforced honeycomb core, the ground conductor 7 is made of carbon fiber reinforced plastic material, and the core 8 is made of aluminum. Carbon fiber reinforced plastic material is used for the honeycomb core and the skin material 9, respectively.
ところで、複合材は接合材断面の中立面から両側の平均
熱膨張係数が同じであれば、温度差が生じても面外の変
形は小さいが、面側の平均熱膨張係数の違いが太きけれ
ば大きいほどバイメタルと同様に面外の変形が大きくな
る。By the way, in a composite material, if the average coefficient of thermal expansion on both sides from the neutral plane of the cross section of the bonded material is the same, the out-of-plane deformation will be small even if a temperature difference occurs, but the difference in the average coefficient of thermal expansion on the plane side will be large. The larger the difference, the greater the out-of-plane deformation, similar to bimetals.
ガラス繊維の熱膨張係数は、カーボン繊維の熱膨張係数
より大きいので従来のアンテナパネルは、温度差によシ
バイメタルと同様に面外の変形が大きく生じていた。Since the coefficient of thermal expansion of glass fiber is larger than that of carbon fiber, conventional antenna panels suffer from large out-of-plane deformations due to temperature differences, similar to the case with semi-metal.
アンテナパネル全体は、電気性能の要求条件から平坦に
す不必要がある。The entire antenna panel does not need to be flat due to electrical performance requirements.
しかし、従来のマイクロストリップアレーアンテナは、
以上のように構成されているので、各層の熱膨張係数が
違うため、人工衛星打上げ前の地上と・人工衛星打上げ
後0宇宙空間とに温度差力” ・1あシ、第4図に示す
ようにアンテナパネルの熱変形が生じた。However, the conventional microstrip array antenna
With the above structure, each layer has a different coefficient of thermal expansion, so there is a temperature difference between the ground before the satellite is launched and the outer space after the satellite is launched. This caused thermal deformation of the antenna panel.
ところが、アンテナ電気性能上の要求から、熱変形を小
さく平坦にしなければならず、各層の熱膨張係数を同じ
くするだめの構成材料の検討及び変更するととが必要で
、また、補強ビーム材等による熱変形を小さくするため
剛性強化等の構造上の検討及び変更をする必要があり、
重量増加を寸ねくなどの欠点があった。However, due to the requirements for antenna electrical performance, it is necessary to minimize thermal deformation and make it flat, and it is necessary to consider and change the constituent materials to make each layer have the same coefficient of thermal expansion. In order to reduce thermal deformation, it is necessary to consider and change the structure, such as strengthening the rigidity.
There were drawbacks such as a slight increase in weight.
この発明は、このような欠点を解消するためになされた
もので、精度が高く、かつ軽量な人工衛星搭載用展開型
マイクロストリップアレーアンテナを提供するものであ
る。The present invention has been made to eliminate these drawbacks, and provides a highly accurate and lightweight deployable microstrip array antenna for use on an artificial satellite.
以下、この発明の一実施例について説明する。An embodiment of the present invention will be described below.
第5図において、基本的な構成及び構造は、第6図と同
様であるが、この発明の実施例では第1のサンドインチ
パネルを構成しているガラス繊維強化プラスチツク材の
基板5と、ナイロン繊維強化ハニカムコアで形成された
誘電体コア6の断面を切断し、第6図に示すように放射
素子4を設けた基板5と誘電体コア6の第1のサンドイ
ンチパネルAを8分割にしている。In FIG. 5, the basic configuration and structure are the same as those in FIG. The cross section of the dielectric core 6 formed of a fiber-reinforced honeycomb core was cut, and the first sandwich panel A of the dielectric core 6 and the substrate 5 provided with the radiating element 4 was divided into eight parts as shown in FIG. ing.
以上のように、この発明によれば、第1のサンドインチ
パネルAを構成するガラス繊維強化プラスチツク材の基
板5と、ナイロン繊維強化・・ニカムコアで形成した誘
電体コア6の断面を切断し、温度差によシバイメタルと
同様に面外変形しようとする蒔、上記第1のサンドイン
チパネルAの切断部で面外変形をおこさせる力を開放し
、面外変形量を、J・さくした二重サンドインチ構造で
あるから、宇宙空間での熱変形を減少させパネル全体を
平坦にできる利点がある。As described above, according to the present invention, the cross section of the substrate 5 made of glass fiber reinforced plastic material constituting the first sandwich panel A and the dielectric core 6 formed of nylon fiber reinforced Nicum core is cut, The force that causes out-of-plane deformation at the cut portion of the first sandwich panel A was released, and the amount of out-of-plane deformation was reduced by J. The double sandwich structure has the advantage of reducing thermal deformation in space and making the entire panel flat.
第1図〜第4図は、従来における人工衛星搭載用展開型
ストリップアレーアンテナを説明するための図、第5図
及び第6図は、この発明のマイクロストリップアレーア
ンテナの特徴を説明するだめの図である。図中、1はアンテナパネル、2は展開ヒンジ、3は衛星
、4は放射素子、5は基板、6は誘電体コア、7は地導
体、8はコア、9は表皮材をそれぞれ示す。 J1 to 4 are diagrams for explaining a conventional deployable strip array antenna for use onboard an artificial satellite, and FIGS. 5 and 6 are diagrams for explaining the features of the microstrip array antenna of the present invention. It is a diagram. In the figure, 1 is an antenna panel, 2 is a deployment hinge, 3 is a satellite, 4 is a radiating element, 5 is a substrate, 6 is a dielectric core, 7 is a ground conductor, 8 is a core, and 9 is a skin material. J
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11707383AJPS6010806A (en) | 1983-06-30 | 1983-06-30 | Microstrip array antenna |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11707383AJPS6010806A (en) | 1983-06-30 | 1983-06-30 | Microstrip array antenna |
| Publication Number | Publication Date |
|---|---|
| JPS6010806Atrue JPS6010806A (en) | 1985-01-21 |
| JPH0123961B2 JPH0123961B2 (en) | 1989-05-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11707383AGrantedJPS6010806A (en) | 1983-06-30 | 1983-06-30 | Microstrip array antenna |
| Country | Link |
|---|---|
| JP (1) | JPS6010806A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4987425A (en)* | 1987-11-13 | 1991-01-22 | Dornier System Gmbh | Antenna support structure |
| FR2672438A1 (en)* | 1991-02-01 | 1992-08-07 | Alcatel Espace | NETWORK ANTENNA, IN PARTICULAR FOR SPATIAL APPLICATION. |
| US5293171A (en)* | 1993-04-09 | 1994-03-08 | Cherrette Alan R | Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power |
| US5325103A (en)* | 1992-11-05 | 1994-06-28 | Raytheon Company | Lightweight patch radiator antenna |
| US5434580A (en)* | 1988-12-08 | 1995-07-18 | Alcatel Espace | Multifrequency array with composite radiators |
| EP0905816A3 (en)* | 1997-09-30 | 2000-01-05 | Mitsubishi Denki Kabushiki Kaisha | Light-weight flat antenna device tolerant of temperature variation |
| WO2005117202A1 (en)* | 2004-05-28 | 2005-12-08 | Telefonaktiebolaget Lm Ericsson (Publ) | An antenna panel, a mounting arrangement and an arrangement for compensating an array of several antenna panels |
| US8164527B2 (en) | 2011-03-03 | 2012-04-24 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
| US8854275B2 (en) | 2011-03-03 | 2014-10-07 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
| US9055667B2 (en) | 2011-06-29 | 2015-06-09 | Tangitek, Llc | Noise dampening energy efficient tape and gasket material |
| WO2015160397A3 (en)* | 2014-04-17 | 2015-12-03 | The Boeing Company | Modular antenna assembly |
| US10262775B2 (en) | 2011-07-11 | 2019-04-16 | Tangitek, Llc | Energy efficient noise dampening cables |
| CN110757909A (en)* | 2019-09-26 | 2020-02-07 | 南京航空航天大学 | Novel carbon-fibre composite telescope antenna panel structure |
| US11426950B2 (en) | 2015-07-21 | 2022-08-30 | Tangitek, Llc | Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4987425A (en)* | 1987-11-13 | 1991-01-22 | Dornier System Gmbh | Antenna support structure |
| US5434580A (en)* | 1988-12-08 | 1995-07-18 | Alcatel Espace | Multifrequency array with composite radiators |
| FR2672438A1 (en)* | 1991-02-01 | 1992-08-07 | Alcatel Espace | NETWORK ANTENNA, IN PARTICULAR FOR SPATIAL APPLICATION. |
| US5325103A (en)* | 1992-11-05 | 1994-06-28 | Raytheon Company | Lightweight patch radiator antenna |
| US5293171A (en)* | 1993-04-09 | 1994-03-08 | Cherrette Alan R | Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power |
| EP0905816A3 (en)* | 1997-09-30 | 2000-01-05 | Mitsubishi Denki Kabushiki Kaisha | Light-weight flat antenna device tolerant of temperature variation |
| WO2005117202A1 (en)* | 2004-05-28 | 2005-12-08 | Telefonaktiebolaget Lm Ericsson (Publ) | An antenna panel, a mounting arrangement and an arrangement for compensating an array of several antenna panels |
| WO2005117209A1 (en)* | 2004-05-28 | 2005-12-08 | Telefonaktiebolaget Lm Ericsson (Publ) | An antenna arrangement |
| US8164527B2 (en) | 2011-03-03 | 2012-04-24 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
| US8854275B2 (en) | 2011-03-03 | 2014-10-07 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
| US9782948B2 (en) | 2011-03-03 | 2017-10-10 | Tangitek, Llc | Antenna apparatus and method for reducing background noise and increasing reception sensitivity |
| US9055667B2 (en) | 2011-06-29 | 2015-06-09 | Tangitek, Llc | Noise dampening energy efficient tape and gasket material |
| US10262775B2 (en) | 2011-07-11 | 2019-04-16 | Tangitek, Llc | Energy efficient noise dampening cables |
| WO2015160397A3 (en)* | 2014-04-17 | 2015-12-03 | The Boeing Company | Modular antenna assembly |
| US10658758B2 (en) | 2014-04-17 | 2020-05-19 | The Boeing Company | Modular antenna assembly |
| US11426950B2 (en) | 2015-07-21 | 2022-08-30 | Tangitek, Llc | Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials |
| CN110757909A (en)* | 2019-09-26 | 2020-02-07 | 南京航空航天大学 | Novel carbon-fibre composite telescope antenna panel structure |
| Publication number | Publication date |
|---|---|
| JPH0123961B2 (en) | 1989-05-09 |
| Publication | Publication Date | Title |
|---|---|---|
| JPS6010806A (en) | Microstrip array antenna | |
| US4816836A (en) | Conformal antenna and method | |
| US5273815A (en) | Thermal control and electrostatic discharge laminate | |
| US3381371A (en) | Method of constructing lightweight antenna | |
| EP0948085A2 (en) | Composite isogrid structures for parabolic surfaces | |
| CA1226669A (en) | Spacecraft-borne electromagnetic radiation reflector structure | |
| US5786792A (en) | Antenna array panel structure | |
| US4394529A (en) | Solar cell array with lightweight support structure | |
| US7109942B2 (en) | Structurally integrated phased array antenna aperture design and fabrication method | |
| CN106848558B (en) | Solar sailboard conformal antenna of spacecraft | |
| JP2794372B2 (en) | Self-retaining convex cover for spacecraft | |
| US20090184881A1 (en) | Structural feed aperture for space based phased array antennas | |
| US3150030A (en) | Laminated plastic structure | |
| JPS61116405A (en) | Structure for dichroic antenna | |
| US6421022B1 (en) | Dual band hybrid solid/dichroic antenna reflector | |
| EP2232626B1 (en) | Methods and apparatus for multilayer millimeter-wave window | |
| US5405107A (en) | Radar transmitting structures | |
| US2641561A (en) | Sandwich-type radome panel | |
| US6008448A (en) | Solar panel array with stepped taper | |
| JPS58184805A (en) | Microstrip array antenna | |
| US5198828A (en) | Microwave radar antenna and method of manufacture | |
| You et al. | Design and fabrication of composite smart structures with high electric and mechanical performances for future mobile communication | |
| JPH0138968Y2 (en) | ||
| US4700195A (en) | Waveguide fed composite horn antenna | |
| JP6775230B2 (en) | Panel structure |