【発明の詳細な説明】本発明は、2光線干渉計等の干渉計によつて得られる干
渉縞の可視度を測定する可視度測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a visibility measuring device that measures the visibility of interference fringes obtained by an interferometer such as a two-beam interferometer.
干渉縞の可視度Vは干渉縞の明部及び暗部の光強度をそ
れぞれ11、12とするとV=(11−12)/(11
+12)・・・1で与えられる。The visibility V of the interference fringe is V = (11-12)/(11
+12)...Given by 1.
完全に可干渉な光では12■0となつてV=1であるが
一般には光を完全に単色にすることは不可能であるから
、干渉計の光路差が増大するにつれて異なつたスペクト
ル成分が混在してくる。そのため可視度は0≦V<1の
値をとる。従来干渉縞の可視度の測定は、干渉縞を光電
変換器で走査し、その出力を記録計に記録するか、又は
干渉縞を写真撮影した後ミクロデンシトメータで測定し
干渉縞の強度分布を得た後その包路線によつて可視度を
得ていたが、このような測定は信頼性が低くまた煩雑で
あつた。In the case of perfectly coherent light, V=1, which is 12×0, but in general it is impossible to make light completely monochromatic, so as the optical path difference of the interferometer increases, different spectral components It's going to be mixed. Therefore, the visibility takes a value of 0≦V<1. Conventionally, the visibility of interference fringes is measured by scanning the interference fringes with a photoelectric converter and recording the output on a recorder, or by photographing the interference fringes and measuring them with a microdensitometer to determine the intensity distribution of the interference fringes. Visibility was then determined by measuring the envelope line, but such measurements were unreliable and complicated.
本発明は、上述の欠点を解消したレーザ光のごとき擬単
色光源の可視度および可視度曲線を自動的に測定するこ
とができる装置であつて、干渉縞の走査速度を制御して
干渉縞の明暗に対応する光電変換器の出力信号周波数を
一定ならしめることにより、測定精度、信頼性の向上を
はかつたものである。The present invention is an apparatus that can automatically measure the visibility and visibility curve of a quasi-monochromatic light source such as a laser beam, which eliminates the above-mentioned drawbacks, and which controls the scanning speed of the interference fringes to improve the visibility of the interference fringes. By making the output signal frequency of the photoelectric converter constant for brightness and darkness, measurement accuracy and reliability are improved.
以下図を用いて本発明実施例を詳述する。第1図におい
て1は光源であり、これより発せられた光線2はビーム
スプリッタ3によつて振巾・分割され、透過光線4と反
射光線7とにわけられる。透過光線4は光路補償板5を
通り固定反射鏡6によつて反射された後同じ光路を辿つ
てビームスプリッタ3で反射された光線10となる。一
方反射光7は可動台9に設置された可動反射鏡8で・反
射され再び同一光路を辿つた後ビームスプリッタ3を透
過して光線10となりここで干渉を生じる。干渉縞の強
度分布はレンズ11によつて拡大され、回転軸13を中
心軸としてモータ等(図示せず)により回転する回転反
射鏡12によつてその方向が変えられ、スリツト14後
方に設置された光電変換器15によつて電気信号に変換
され、干渉縞の明暗に対応した電気信号が出力される。
この信号を第2図aに示す。この出力波形は微分回路1
6によつて微分され、その出力信号は第2図bに示され
るように信号a波形の極大値、極小値に対応した零点を
有する。この出力信号はパルス発生器17を駆動する。
パルス発生回路17は交流波形の電圧がOになつたとき
にパルスを発生するパルス発生回路でその出力信号は第
2図cに示すパルス列となり、この信号がカウンタ18
に入力される。カウンタ18はパルス列cを奇数番目の
パルス列と偶数番目のパルス列に分離して出力し、それ
ぞれ後続のサンプリング回路23,25に入力する回路
であつて、それぞれの信号をD,eで示す。一方光電変
換器15の出力は分離されて遅延回路22を通つた後サ
ンプリング回路23,25に入力され、サンプリングパ
ルスD,eが、Z光電変換器15の出力信号aのそれぞ
れ極大値及び極小値の位置に合致するように調整される
。その結果サンプリング回路23,25の出力信号は第
2図F,gに示すごとく信号aの極大値及び極小値に等
しいパルス列となり、これらがそれぞれ積分回路24,
26に入力され、その出力は信号は、F,gに破線で示
す波形となるが、これらは信号aのそれぞれ極大値及び
極小値を結んで得られる包路線と同じである。サンプリ
ング回路23,25の出力信号F,gは、それぞれ積分
回路24,.26を経て、和電圧発生回路27および差
電圧発生回路28に入力され、それぞれ両信号F,gの
和、差が算出される。これらの和、差電圧発生回路27
,28の出力は、割算回路29に入力され、両信号の比
がとられる。この割算回路29の出力.は、1式に示さ
れた可視度を表わしている。31はX−Yレコーダであ
つて割算回路29の出力をたて軸に、可動台9の移動量
を掃引回路30によつて横軸掃引電圧とすることによつ
て反射鏡3の種々の位置における可視度が記録され、可
視度曲線が得られる。Embodiments of the present invention will be described in detail below using the figures. In FIG. 1, reference numeral 1 denotes a light source, and a beam 2 emitted from the light source is amplified and split by a beam splitter 3, and is divided into a transmitted beam 4 and a reflected beam 7. The transmitted light ray 4 passes through an optical path compensation plate 5 and is reflected by a fixed reflecting mirror 6, and then follows the same optical path to become a light ray 10 reflected by a beam splitter 3. On the other hand, the reflected light 7 is reflected by a movable reflecting mirror 8 installed on a movable table 9, follows the same optical path again, and then passes through the beam splitter 3 to become a light beam 10, where interference occurs. The intensity distribution of the interference fringes is magnified by a lens 11, and its direction is changed by a rotating reflector 12, which is rotated by a motor or the like (not shown) about a rotating shaft 13, and is installed behind the slit 14. The photoelectric converter 15 converts the light into an electrical signal, and outputs an electrical signal corresponding to the brightness and darkness of the interference fringes.
This signal is shown in Figure 2a. This output waveform is the differential circuit 1
6, and its output signal has zero points corresponding to the maximum and minimum values of the signal a waveform, as shown in FIG. 2b. This output signal drives a pulse generator 17.
The pulse generating circuit 17 is a pulse generating circuit that generates a pulse when the voltage of the AC waveform reaches O, and its output signal is a pulse train shown in FIG.
is input. The counter 18 is a circuit that separates the pulse train c into an odd-numbered pulse train and an even-numbered pulse train, and outputs the separated pulse trains, and inputs them to the subsequent sampling circuits 23 and 25, respectively, and the respective signals are indicated by D and e. On the other hand, the output of the photoelectric converter 15 is separated and passed through a delay circuit 22 and then inputted to sampling circuits 23 and 25, and the sampling pulses D and e correspond to the maximum value and minimum value, respectively, of the output signal a of the Z photoelectric converter 15. is adjusted to match the position of As a result, the output signals of the sampling circuits 23 and 25 become pulse trains equal to the maximum and minimum values of the signal a, as shown in FIG.
26, and its output signal has a waveform shown by broken lines in F and g, which are the same as the envelope lines obtained by connecting the maximum and minimum values of signal a, respectively. The output signals F, g of the sampling circuits 23, 25 are sent to the integrating circuits 24, . 26, the signal is input to a sum voltage generation circuit 27 and a difference voltage generation circuit 28, and the sum and difference of both signals F and g are calculated, respectively. These sum and difference voltage generation circuit 27
, 28 are input to a divider circuit 29, and the ratio of both signals is taken. The output of this division circuit 29. represents the visibility shown in Equation 1. Reference numeral 31 denotes an X-Y recorder, which uses the output of the divider circuit 29 as the vertical axis and converts the amount of movement of the movable base 9 into a horizontal axis sweep voltage using the sweep circuit 30, thereby recording various values of the reflecting mirror 3. The visibility at the location is recorded and a visibility curve is obtained.
19は一定周波数のパルスを発生する基準パルス発生回
路、20は、この基準パルス発生回路19からの出力パ
ルスと、パルス発生回路17の出力パルスと2入力とす
る差周波数検出回路で、両パルスの周波数差に比例した
電圧信号を出力する。19 is a reference pulse generation circuit that generates pulses of a constant frequency; 20 is a difference frequency detection circuit that has two inputs: the output pulse from this reference pulse generation circuit 19 and the output pulse from the pulse generation circuit 17; Outputs a voltage signal proportional to the frequency difference.
21は制御回路で、前記検出回路20の出力信号を受け
て、回転反射鏡12の回転速度を調整する。A control circuit 21 receives the output signal of the detection circuit 20 and adjusts the rotation speed of the rotary reflecting mirror 12.
かかる回転反射鏡12は、回転軸13に取りつけられた
モータ(図示せず)によつて回転し、制御回路21の制
御電圧は、このモータの回転数を制御するものである。The rotating reflecting mirror 12 is rotated by a motor (not shown) attached to a rotating shaft 13, and the control voltage of the control circuit 21 controls the rotation speed of this motor.
かくして第2図cに示す信号のパルス周波数を基準周波
数として、常に一定の周波数で測定を行なうことができ
る。制御回路21の出力はまた可動台9の駆動モータの
制御にも用いられており、反射鏡12の回転数に比例し
て反射鏡8の移動速度をかえている。これによつてX−
Yレコーダ31の可視度曲線の可視度と光路程差の関係
が補償される。ところで、サンプリングパルスと干渉縞
の極大値、極小値の位置合せは、光電変換器出力を遅延
回路を介してサンプリング回路に入力することによつて
行なう方法も考えられる。In this way, measurements can always be made at a constant frequency using the pulse frequency of the signal shown in FIG. 2c as the reference frequency. The output of the control circuit 21 is also used to control the drive motor of the movable table 9, and changes the moving speed of the reflecting mirror 8 in proportion to the rotation speed of the reflecting mirror 12. This results in X-
The relationship between the visibility of the visibility curve of the Y recorder 31 and the optical path difference is compensated. By the way, a method of aligning the maximum value and minimum value of the sampling pulse and the interference fringe may be performed by inputting the output of the photoelectric converter to the sampling circuit via a delay circuit.
しかしながら干渉縞の本数は、ビームスプリツタ3反射
鏡6,8の僅かな傾角の変化や、光路程差の変化によつ
て大きく変化し、1桁以上異なる場合も生じるから、前
記方法で遅延回路を用いて合致させる際に測度精度を低
下させるおそれがある。これに対し、本発明は干渉縞を
走査する回転反射鏡の回転数を基準パルスに一致するよ
う制御するものであるから前述の遅延回路を用いた装置
に比し、測定精度を向上させることができる。また従来
の測定法においては可視度の低下とともにバツクグラウ
ンドの光が増加し測定の精度が低下したが、本発明の測
定装置では、可視度の低下とともにサンプリング数を増
加するため逆に精度があがるのである。分光学等の分野
において光源の性質を知るには、可視度の低い部分での
可視度曲線の形状が極めて重要であるが、本発明はかか
る分野に使用しても極めて有益である。However, the number of interference fringes changes greatly due to slight changes in the inclination angle of the beam splitter 3 reflecting mirrors 6 and 8 and changes in the difference in optical path length, and may differ by more than one order of magnitude. There is a risk that the measurement accuracy will decrease when matching is performed using . In contrast, the present invention controls the rotational speed of the rotating reflector that scans the interference fringes so that it matches the reference pulse, so it is possible to improve measurement accuracy compared to the device using the delay circuit described above. can. In addition, in conventional measurement methods, background light increases as visibility decreases, resulting in a decrease in measurement accuracy, but with the measurement device of the present invention, the number of samples increases as visibility decreases, so accuracy increases. It is. In the field of spectroscopy and the like, the shape of the visibility curve in the low-visibility area is extremely important to know the properties of a light source, and the present invention is also extremely useful in such fields.
第1図は本発明実施例可視度測定装置のプロツク図、第
2図は同実施例各点における信号波形図である。 ゛1・・・光源、3・・
・ビームスプリツタ、12・・・回転反射鏡、16・・
・微分回路、17・・・パルス発生回路、18・・・カ
ウンタ、19・・・基準パルス発生回路、20・・・差
周波数検出回路、21・・・制御回路、23,25・・
・サンプリング回路、24,26・・・積分回路、27
・・・和電圧発生回路、28・・・差電圧発生回路、2
9・・・割算回路、31・・・X−Yレコーダ、30・
・・掃引回路。FIG. 1 is a block diagram of a visibility measuring device according to an embodiment of the present invention, and FIG. 2 is a signal waveform diagram at various points in the same embodiment.゛1...Light source, 3...
・Beam splitter, 12...Rotating reflector, 16...
- Differentiation circuit, 17... Pulse generation circuit, 18... Counter, 19... Reference pulse generation circuit, 20... Difference frequency detection circuit, 21... Control circuit, 23, 25...
・Sampling circuit, 24, 26... Integrating circuit, 27
. . . Sum voltage generation circuit, 28 . . . Difference voltage generation circuit, 2
9... Division circuit, 31... X-Y recorder, 30.
...Sweep circuit.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12696377AJPS5942819B2 (en) | 1977-10-19 | 1977-10-19 | Interferometer visibility measuring device |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12696377AJPS5942819B2 (en) | 1977-10-19 | 1977-10-19 | Interferometer visibility measuring device |
Publication Number | Publication Date |
---|---|
JPS5459166A JPS5459166A (en) | 1979-05-12 |
JPS5942819B2true JPS5942819B2 (en) | 1984-10-17 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12696377AExpiredJPS5942819B2 (en) | 1977-10-19 | 1977-10-19 | Interferometer visibility measuring device |
Country | Link |
---|---|
JP (1) | JPS5942819B2 (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10966874B2 (en) | 2016-12-20 | 2021-04-06 | The Procter & Gamble Company | Absorbent article(s) chassis comprising beamed elastics |
US11147718B2 (en) | 2017-09-01 | 2021-10-19 | The Procter & Gamble Company | Beamed elastomeric laminate structure, fit, and texture |
US11547613B2 (en) | 2017-12-05 | 2023-01-10 | The Procter & Gamble Company | Stretch laminate with beamed elastics and formed nonwoven layer |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8525650D0 (en)* | 1985-10-17 | 1985-11-20 | Pilkington Brothers Plc | Interferometer |
AT512044B1 (en)* | 2012-01-17 | 2013-05-15 | Femtolasers Produktions Gmbh | DEVICE AND METHOD FOR THE OPTICAL CHECKING OF A SAMPLE |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10966874B2 (en) | 2016-12-20 | 2021-04-06 | The Procter & Gamble Company | Absorbent article(s) chassis comprising beamed elastics |
US10966873B2 (en) | 2016-12-20 | 2021-04-06 | The Procter & Gamble Company | Methods and apparatuses for making elastomeric laminates with elastic strands unwound from spools on surface unwinders |
US10973699B2 (en) | 2016-12-20 | 2021-04-13 | The Procter & Gamble Company | Methods and apparatuses for making elastomeric laminates with elastic strands unwound from beams |
US10987253B2 (en) | 2016-12-20 | 2021-04-27 | The Procter & Gamble Company | Beamed elastic laminate properties |
US11000421B2 (en) | 2016-12-20 | 2021-05-11 | The Procter & Gamble Company | Length-to-waist silhouette(s) of absorbent article(s) comprising beamed elastics |
US11000426B2 (en) | 2016-12-20 | 2021-05-11 | The Procter & Gamble Company | Disposable absorbent articles having cuffs of improved stretch laminate structure |
US11000420B2 (en) | 2016-12-20 | 2021-05-11 | The Procter & Gamble Company | Laminate(s) comprising beamed elastics and absorbent article(s) comprising said laminate(s) |
US11318052B2 (en) | 2016-12-20 | 2022-05-03 | The Procter & Gamble Company | Methods and apparatuses for making elastomeric laminates with elastic strands unwound from beams |
US11344453B2 (en) | 2016-12-20 | 2022-05-31 | The Procter & Gamble Company | Methods and apparatuses for making elastomeric laminates with elastic strands unwound from spools on surface unwinders |
US11147718B2 (en) | 2017-09-01 | 2021-10-19 | The Procter & Gamble Company | Beamed elastomeric laminate structure, fit, and texture |
US11547613B2 (en) | 2017-12-05 | 2023-01-10 | The Procter & Gamble Company | Stretch laminate with beamed elastics and formed nonwoven layer |
Publication number | Publication date |
---|---|
JPS5459166A (en) | 1979-05-12 |
Publication | Publication Date | Title |
---|---|---|
US3891321A (en) | Optical method and apparatus for measuring the relative displacement of a diffraction grid | |
US4160598A (en) | Apparatus for the determination of focused spot size and structure | |
US3238839A (en) | Optical thickness gauge | |
US3286582A (en) | Interference technique and apparatus for spectrum analysis | |
JPH08320260A (en) | Interferometer device with adjustable optical path length difference | |
JPS5942819B2 (en) | Interferometer visibility measuring device | |
US3561876A (en) | Detecting and measuring apparatus using polarization interferometry | |
US3632215A (en) | Apparatus for determining the position coordinates of a point relative to a reference point | |
US3740152A (en) | Device for detecting the boundary between different brightness regions of an object | |
JPH06186337A (en) | Laser distance measuring equipment | |
JP3236941B2 (en) | Distance measurement method for lightwave distance meter | |
JP2557377B2 (en) | Depth measuring device | |
JPS61501340A (en) | Mirror scan speed control device | |
Hossack | An Oscilloscopic Microphotometer for use with Astronomical Spectrograms | |
JPH07190886A (en) | Inspection apparatus of optical fiber | |
EP0235941B1 (en) | Surface measurement | |
SU894364A1 (en) | Device for dial graduation | |
JPS60500734A (en) | Mirror scanning speed control device | |
USRE27947E (en) | Interference technique and apparatus for spectrum analysis | |
JPS61269037A (en) | System for measuring dispersing characteristics of optical fiber | |
Åslund et al. | Iris—A Two Axis Comparator and Microdensitometer using Two Different Scanning Modes | |
JP2903220B2 (en) | Distance measurement method for lightwave distance meter | |
JPH05133712A (en) | Surface position measuring device | |
SU731376A1 (en) | Device for measuring rotational speed parameters | |
JPS6344166B2 (en) |