【発明の詳細な説明】(産業上の利用分野)本発明は昇温時に爆裂しにくい耐火性ライニングを形成
することができる不定形耐火物に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a monolithic refractory that can form a refractory lining that does not easily explode when the temperature rises.
(従来技術)耐火性ライニングを形成する不定形耐火物はその形態や
使用法によりキャスタブル耐火物、吹付耐人物、プラス
チック耐火物、ラミング耐火物、モ)Vタル等に分類さ
れるが、これらは通常シリカ、アルミナ、ムライト、マ
グネシア等よりなる耐人物骨材と耐火物微粉、結合材な
とてよって構成されている。これらの不定形耐火物はア
ルミナセメント、リン酸アルミニウム等のリン酸塩、水
ガラス等の珪酸塩のような水の働きにより分散または溶
解して耐火物材料の硬化や固化奮起す結合材を使用して
いる。このため水は不定形耐火物に流動性を与えて施工
性を増し、均一で緻密な耐火性ライニング全形成するの
に役立つとともに不定形耐火物の硬化や同化を促進する
のに不可欠のものであるが、窯炉等に不定形耐火物を用
いて施工された耐火性ライニングが窯炉の稼動に伴ない
加熱、昇温されると、耐火性ライニング中にある付着水
や結晶水が蒸発し、この水の蒸気圧が耐火性ライニング
の強度を越えると耐火性ライニングは内部破壊または表
面剥離などいわゆる爆裂を起し、特にアルミナセメント
等を結合材として用いた耐火性ライニングにあっては、
加熱、昇温きれると100°C付近で付着水が蒸発した
のち300〜500°C何近で結晶水が蒸発するためこ
の蒸発した水が急激に膨張して爆裂が起り易い。そこで
、耐人物材料中にアルミニウム微粉を添加して水と反応
させて水素ガスを発生させることにより耐火性ライニン
グ中に気孔を形成したり、おが粉宿の可燃性微粉を添加
してこれを焼失させることによって多数の気孔を形成さ
せることも行なわれているが、いずれの場合も微粉を添
加することによって不定形耐火物の混練時に不定形耐火
物量に対する添加水量が増加するので、耐火性ライニン
グの爆裂性を著しく低下させることができないうえに多
数の気孔により耐火性ライニングの強g(−Th 著し
く低下させる等の欠点があった。(Prior art) Monolithic refractories forming refractory linings are classified into castable refractories, sprayed refractories, plastic refractories, ramming refractories, V-barrels, etc., depending on their form and usage. It is usually composed of a resistant aggregate made of silica, alumina, mullite, magnesia, etc., refractory fine powder, and a binder. These monolithic refractories use binders such as alumina cement, phosphates such as aluminum phosphate, and silicates such as water glass that disperse or dissolve under the action of water and cause the refractory material to harden and solidify. are doing. For this reason, water provides fluidity to monolithic refractories, increases workability, helps form a uniform and dense refractory lining, and is essential for promoting hardening and assimilation of monolithic refractories. However, when a refractory lining constructed using monolithic refractories in a kiln, etc. is heated and the temperature rises as the kiln operates, the adhering water and crystallized water in the refractory lining evaporates. If the vapor pressure of this water exceeds the strength of the refractory lining, the refractory lining will undergo so-called explosions such as internal destruction or surface peeling, especially in the case of refractory linings that use alumina cement or the like as a binder.
When the heating is completed, the adhering water evaporates at around 100°C, and then the crystallized water evaporates around 300-500°C, so this evaporated water expands rapidly and tends to cause an explosion. Therefore, we created pores in the refractory lining by adding fine aluminum powder to the material and reacting with water to generate hydrogen gas, and by adding combustible fine powder from sawdust. Forming a large number of pores by burning out is also practiced, but in either case, adding fine powder increases the amount of water added to the amount of monolithic refractory when kneading the monolithic refractory. In addition, the strength of the refractory lining, g(-Th), was significantly lowered due to the large number of pores.
(発明の目的)本発明は前記のような欠点を除いて強度を著しく低下忌
せることなく加熱昇温時に爆裂しにくい耐火性ライニン
グを形成することができる不定形耐火物を目的として完
成されたものである。(Purpose of the Invention) The present invention was completed with the aim of creating a monolithic refractory that can form a refractory lining that is resistant to explosion when heated, without significantly reducing its strength, except for the above-mentioned drawbacks. It is something.
(発明の構成)本発明は耐火物拐料中に0.0 /〜2重量%の翁′機
質繊維の細片を分散させたことを特徴とするものである
。(Structure of the Invention) The present invention is characterized in that 0.0/~2% by weight of fine pieces of Okinawa's organic fibers are dispersed in the refractory material.
本発明において主材となる耐火物材料とはアルミナ、ン
リカ、ムライl−、マグネシア等よりなる耐火物骨材と
耐火物微粉にアルミナセメント、す7 酸−y /レミ
ニウム、水ガラス等の結合材全加配した周知の不定形耐
火物と同様のものである。また、この耐火物材料中に分
散される有機質繊維は絹、羊毛得の動物性天然繊維や麻
、綿等の植物性天然緒;維またはビスコースなどの再生
繊維、アセテートなどの半合成繊維、ポリエステIV系
、ポリウレタン系、ポリオレフィン系、ポリアク1))
V系等の合成繊維等に限定されるものではないか、合成
繊維は一般に吸水性が低いうえに引張強度が高く、軟化
溶融焼失温度か低く、しかも、団塊状r(なりtJ、Q
L L=・のでよシ好ましく、特に線状に伸びた形状で
表面に凹凸やしわが少なくて吸水性の低いものがよl/
)ので、ポリアミド系、ホリエステ/I/糸、ポリウレ
タン系、ポリオレフィン系、ホリ塩化ヒニール糸、ポリ
塩化ビニリチン糸、ポリフロツフワツポリアクリル系、
ポリビニールアルコール系等の合成繊維が好ましい。次
に、耐人物材料中に分散させる有機質繊維の量を限定し
たりは、有機質m離散が増加すると耐火性ライニング中
の細長い気孔同志が連通した連通孔が充分に形成場れて
爆裂性を改善し、軽量化石れて断熱性が向上する反面、
不定形耐火物の混練時の水比が増加して分度低下をは、
少くともこの程度添加しないと必要最小限の連通孔が形
成されず、爆裂性が改善されないからである。なお、有
機質繊維の長さや直径は細片状であれば特に限定されな
いが、長さに5〜乙Q mWの程度とするのが好ましい
。これは5m1未満であっては連通孔が形成され難く、
乙Q mnr以下では不定形耐火物に水を添加して混練
する際に有機質繊維同志がからみ合って団塊状になり易
く、耐火物材料中に均等に分散されず、その結果強度低
下や爆裂を起すおそれもあるがらである。さらに、有機
質繊維の細片直径も耐火性ライニングの加熱昇温に伴つ
で発生ずるガスや水蒸気を排出するための連通孔の直径
は数十〜数百ミクロンあれば良く、必要以上に大きな連
通孔が形成はれると耐火性ライニングの強ルが低下する
おそれもあるから/朋以下とするのが好ましい。さらに
、不定形耐火物を構成する骨材や微粉、結合相、水など
よりなる耐火物材料中に有機質繊維の細片を均待に分散
させるには、線状に伸びた単繊維全水溶性接着剤を使用
したり加熱したジすることによって部分的に接合して束
状もしくは帯状にしたり1llff状フイルムに所要間
隔で刻み目葡入れたりして形成した繊維束を用いると混
練中に団塊状にならす、耐火物拐料中の骨インとの摩擦
によジはぐれてよく分散させることができ、特に、ポリ
プロピレン、ポリエチレンなどよジなるフィルムを製造
したのちこれを引張して延伸させると、引張力向に繊維
状の割れができて網目状に連続したいわゆるスプリット
繊維が形成されるので、このような繊維束を用いると繊
維束の製作が簡単でるり、かつ耐火物材料中に繊維束が
分散したのち骨材との摩擦により細片がほぐれて略均等
に分散させることができる。The main refractory materials used in the present invention are refractory aggregates made of alumina, phosphoric acid, murai l-, magnesia, etc., refractory fine powder, and binders such as alumina cement, sulfuric acid/reminium, water glass, etc. It is similar to the well-known monolithic refractory that is fully refractory. The organic fibers dispersed in this refractory material include animal natural fibers such as silk and wool; vegetable natural fibers such as linen and cotton; recycled fibers such as fiber or viscose; and semi-synthetic fibers such as acetate. Polyester IV type, polyurethane type, polyolefin type, polyac 1))
Synthetic fibers generally have low water absorption, high tensile strength, low softening melting and burnout temperatures, and nodule-like r (tJ, Q
L L=・It is preferable to have a linear shape with few unevenness or wrinkles on the surface and low water absorption.
), polyamide-based, Holieste/I/thread, polyurethane-based, polyolefin-based, polyhinyl chloride thread, polyvinylitine chloride thread, polyfloated polyacrylic thread,
Synthetic fibers such as polyvinyl alcohol-based fibers are preferred. Next, by limiting the amount of organic fibers dispersed in the fireproof lining material, as the amount of organic fibers increases, the elongated pores in the fireproof lining will form sufficient areas to communicate with each other, improving the explosiveness. However, while lightweight fossil fuels improve insulation properties,
When mixing monolithic refractories, the water ratio increases and the degree decreases.
This is because unless it is added to at least this amount, the necessary minimum number of communicating holes will not be formed and the explosive property will not be improved. Note that the length and diameter of the organic fibers are not particularly limited as long as they are in the form of strips, but it is preferable that the length is about 5 to Q mW. If it is less than 5 m1, it is difficult to form a communicating hole,
Q: Below mnr, when water is added to the monolithic refractory and kneaded, the organic fibers tend to become entangled and form nodules, and are not evenly dispersed in the refractory material, resulting in a decrease in strength and explosion. Although there is a risk that it may occur. Furthermore, the diameter of the organic fiber strips and the diameter of the communicating holes for discharging the gas and water vapor generated as the refractory lining heats up will only need to be several tens to hundreds of microns; If pores are formed, the strength of the refractory lining may be lowered, so it is preferable to set the strength to less than 1. Furthermore, in order to evenly disperse organic fiber fragments in the refractory material consisting of aggregate, fine powder, binder phase, water, etc. that constitute the monolithic refractory, it is necessary to When using fiber bundles formed by partially joining them into bundles or strips by using an adhesive or by heating them, or by making notches at the required intervals in a 1llff-shaped film, they can be formed into nodules during kneading. It can be easily dispersed due to the friction with the bone fibers in the refractory material, and in particular, when a film made of thick materials such as polypropylene or polyethylene is produced and then stretched, the tensile force increases. Fiber-like cracks are formed in the direction of the fibers, forming so-called split fibers that are continuous in a mesh pattern, so using such fiber bundles makes it easy to manufacture fiber bundles, and the fiber bundles are dispersed in the refractory material. Thereafter, the fine pieces are loosened by friction with the aggregate and can be dispersed approximately evenly.
さらにまた、有機質繊維の細片は耐火性ライニングが加
熱された際にその温度で収縮、炭化、熔融または燃焼す
ることによって耐火性ライニング中に細長い連通孔を形
成するためのものであるから、100〜300 ’C程
度でその目的が達成されるうえに吸水性の少ない合成繊
維が特に好ましい。Furthermore, since the organic fiber strips are used to form elongated communicating holes in the refractory lining by shrinking, carbonizing, melting, or burning at the temperature when the refractory lining is heated, Synthetic fibers are particularly preferred because they achieve their purpose at temperatures of ~300'C and have low water absorption.
なお、有機質繊維は耐火物材料の製造時に混合しておく
ことが分散性の点で好ましいが、使用時に混合分散させ
てもよく、いずれにしても耐火物材料中に有機質繊維が
分散されればよい。Although it is preferable to mix the organic fibers during the production of the refractory material in terms of dispersibility, they may also be mixed and dispersed during use; in any case, if the organic fibers are dispersed in the refractory material, good.
このように構成ちれた不定形耐火物は在来の不定形耐火
物と同様にして耐火性ライニングを施工した場合、耐火
物材料中に分散される有機質繊維の細片が耐火性ライニ
ングの加熱昇温にょυ収縮、炭化、熔融または燃焼を起
して該細片に相当する部分に微細な細長い気孔が形成さ
れ、これらの気孔か相互に連結されて連通孔を形成する
こととなるので、加熱昇温に伴って耐火性ライニング゛
から発生するガスや水蒸気はこれらの連通孔を通って迅
速に系外へ排出されることとなり、爆裂性は大幅に改善
されるから結晶水や付着水の多い耐火怖ライニングを急
速加熱昇温する際にも安全な運転ができることとなる。When a refractory lining is applied to a monolithic refractory constructed in this way in the same way as conventional monolithic refractories, the organic fiber particles dispersed in the refractory material heat up the refractory lining. As the temperature rises, contraction, carbonization, melting, or combustion occurs, and fine elongated pores are formed in the portion corresponding to the strips, and these pores are interconnected to form communicating pores. Gas and water vapor generated from the refractory lining as the temperature rises are quickly discharged out of the system through these communication holes, and the explosiveness is greatly improved, so crystal water and adhering water are removed. This allows safe operation even when rapidly heating up many fire-resistant linings.
なお、耐火性ライニング中に形成される微細な細長い気
孔は従来のおか粉痔によって形成される気孔に比較して
微細かつ細長い気孔であるから強度を低下畑せるおそれ
もないのである。Furthermore, since the fine and elongated pores formed in the refractory lining are finer and more elongated than the pores formed by conventional rice powder hemorrhoids, there is no risk of the strength being reduced.
(実施例)主な組成かアルミナ70%(重量%以下同じ)、シリカ
30%で粒度がtメツシュ以下の骨材≦Q%と、同一組
成で粒度200メツシユの微粉15%と、アルミナセメ
ント25%とからなる耐火物材料にホリプロビレンのス
プリット繊維(エキスバンドメタル状フィルムで繊維束
径4’ myx1線径10μ、長さ25mm)を05%
を分散させた不定形耐火物に水を添加してリボンタイプ
ミキサーにより7分混練して水分/3%のキャスクプル
耐火物を得た。このキャスクプル耐火物をマツフル炉に
条件を変えて施工したt柚の耐火性ライニングを各種条
件で加熱昇温し、このときの爆裂状態を調査して表中に
屋/〜届tとして記載した。これに対し前記A/〜A’
Aに使用した耐火物材料と同一の耐火物月料に有機質繊
維を加えることなく水のみを加え混練して得たギヤスク
ブル耐火物全前記と同じ条件下で加熱昇温し、このとき
の爆裂状態を調査して表中にJ’16. / /〜A
/ ’lとして記載したまた、主な組成かアルミナ乙5
%、シリカ35%で粒馬がtメツシュ以下の骨相70%
と、同一組成で粒度200メツシユの微粉70%と、ア
ルミナセメント、20%とからなる耐火物材料に線径1
5μ、長さtO關のポリエステ/L/繊維07重h1%
を水と共に徐々に添加しなからモルクルミキサーにより
s分混練して水分//%のキャスタブノ′耐人物ケ得た
。このキャスクブ/l/耐火物を前記j6/〜ih t
の場合と同様の条件で施工し、加熱昇温したときの爆裂
状態を調査して表中にA5〜Jl’aδとして記載した
0これに対しこのj65〜7a gの場合と同一の組成
を有する耐火物EE判に有機質繊維を加えることなく水
のみを加え混練して得たキャスクプル耐火物を前記と同
じ条件下で加熱昇温し、このときの爆裂状態k tM査
して表中にj675〜A6/8として記載した。(Example) The main composition is 70% alumina (same weight %), 30% silica, aggregate ≦Q% with a particle size of t mesh or less, 15% fine powder with the same composition but a particle size of 200 mesh, and 25% alumina cement. Split fibers of holipropylene (expanded metal film, fiber bundle diameter 4'myx1 wire diameter 10μ, length 25mm) are added to a refractory material consisting of 0.5%
Water was added to the monolithic refractory in which was dispersed and kneaded for 7 minutes using a ribbon type mixer to obtain a cask pull refractory with a water content of 3%. The refractory lining of T-Yuzu, which was constructed using this cask-pull refractory in a Matsufuru furnace under different conditions, was heated and raised in temperature under various conditions, and the explosion state at this time was investigated and recorded as ya/~dachi in the table. On the other hand, the above A/~A'
All of the gear scable refractories obtained by adding and kneading the same refractory material as the refractory material used in A without adding organic fibers and kneading them were heated under the same conditions as above, and the explosion state at this time was We investigated J'16. in the table. / /~A
Also, the main composition listed as /'l is alumina Otsu 5
%, 35% silica and 70% bone structure with grain size less than T mesh
A wire diameter of 1 was added to a refractory material consisting of 70% fine powder with the same composition and particle size of 200 mesh, and 20% alumina cement.
5μ, length tO polyester/L/fiber 07 weight h1%
The mixture was gradually added together with water and kneaded for several minutes using a molcle mixer to obtain a cast resin with a water content of 1/2%. This cask/l/refractory is
Construction was carried out under the same conditions as in the case of 0, and the explosion state when heated and heated was investigated, and the composition was listed as A5~Jl'aδ in the table. In contrast, this j65~7a has the same composition as the case of g. Cask-pull refractories obtained by adding and kneading only water without adding organic fibers to EE refractories were heated and heated under the same conditions as above, and the explosion state k tM at this time was investigated. It was described as A6/8.
上表から明らかなように、実施例のものはいずれも爆裂
がなく、しかも、強度的にも比較例と殆んど変ることが
なく本発明の有効性が確認できた(発明の効果)本発ル」は前記説明から明らかなように、耐火物材料中
に有機質繊維の細片を分散させたので、施工後の耐火性
ライニングが加熱されるとこの耐火性ライニングのうち
有機質繊維の細片が加熱によシ収縮するか燃焼等により
消失し、耐火性ライニング中に細長い気孔よりなる連通
孔が形成されることとなり、この連通孔によって耐火性
ライニングの加熱時に生ずるガスや水蒸気を外部に排出
できるので、加熱昇温時における耐火性ライニングの爆
裂全なくすことができ、また、連通孔が無数の細長い気
孔よりなることによって強度の低下もなくなり、優れた
耐火性ライニングを施工できる不定形耐火物として業界
の発展に寄与するところ極めて大なものでめる。As is clear from the table above, none of the examples exploded, and there was almost no difference in strength from the comparative examples, confirming the effectiveness of the present invention (effects of the invention). As is clear from the above explanation, "Hatsuru" is made by dispersing small pieces of organic fibers in the refractory material, so when the refractory lining is heated after construction, the small pieces of organic fibers in the refractory lining are dispersed. shrinks due to heating or disappears due to combustion, etc., and communication holes consisting of long and narrow pores are formed in the refractory lining. Through these communication holes, gas and water vapor generated when the refractory lining is heated are discharged to the outside. This makes it possible to completely eliminate explosions in the refractory lining during heating and temperature rise, and since the communicating pores are made up of countless long and narrow pores, there is no decrease in strength, making it possible to construct an excellent refractory lining. This is an extremely significant contribution to the development of the industry.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58062496AJPS59190276A (en) | 1983-04-08 | 1983-04-08 | Formless refractories |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP58062496AJPS59190276A (en) | 1983-04-08 | 1983-04-08 | Formless refractories |
| Publication Number | Publication Date |
|---|---|
| JPS59190276Atrue JPS59190276A (en) | 1984-10-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP58062496APendingJPS59190276A (en) | 1983-04-08 | 1983-04-08 | Formless refractories |
| Country | Link |
|---|---|
| JP (1) | JPS59190276A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02225379A (en)* | 1989-02-23 | 1990-09-07 | Harima Ceramic Co Ltd | Castable refractory for lining molten steel ladles |
| US5252525A (en)* | 1991-03-28 | 1993-10-12 | Virginia Tech Intellectual Properties, Inc. | Compositions for forming high temperature ceramic particulate filters |
| EP0579774A4 (en)* | 1991-03-28 | 1994-04-13 | Center For Innovative Technology | |
| US5783510A (en)* | 1995-07-04 | 1998-07-21 | Asahi Glass Company Ltd. | Monolithic refractory composition wall |
| WO2008006053A2 (en) | 2006-07-06 | 2008-01-10 | Vesuvius Crucible Company | Cement-free refractory |
| JP2012091987A (en)* | 2010-10-29 | 2012-05-17 | Kuraray Co Ltd | Fiber suitable for improving explosion resistance of amorphous refractory, and amorphous refractory obtained by adding it |
| US8618006B2 (en) | 2006-07-06 | 2013-12-31 | Vesuvius Crucible Company | Cement-free refractory |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5650172A (en)* | 1979-09-28 | 1981-05-07 | Harima Refractories Co Ltd | Formless refractories |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5650172A (en)* | 1979-09-28 | 1981-05-07 | Harima Refractories Co Ltd | Formless refractories |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02225379A (en)* | 1989-02-23 | 1990-09-07 | Harima Ceramic Co Ltd | Castable refractory for lining molten steel ladles |
| US5252525A (en)* | 1991-03-28 | 1993-10-12 | Virginia Tech Intellectual Properties, Inc. | Compositions for forming high temperature ceramic particulate filters |
| EP0579774A4 (en)* | 1991-03-28 | 1994-04-13 | Center For Innovative Technology | |
| US5783510A (en)* | 1995-07-04 | 1998-07-21 | Asahi Glass Company Ltd. | Monolithic refractory composition wall |
| US6117373A (en)* | 1995-07-04 | 2000-09-12 | Asashi Glass Company Ltd. | Process for forming a furnace wall |
| WO2008006053A2 (en) | 2006-07-06 | 2008-01-10 | Vesuvius Crucible Company | Cement-free refractory |
| US8618006B2 (en) | 2006-07-06 | 2013-12-31 | Vesuvius Crucible Company | Cement-free refractory |
| JP2012091987A (en)* | 2010-10-29 | 2012-05-17 | Kuraray Co Ltd | Fiber suitable for improving explosion resistance of amorphous refractory, and amorphous refractory obtained by adding it |
| Publication | Publication Date | Title |
|---|---|---|
| US4506025A (en) | Silica castables | |
| DE69530956T2 (en) | Non-toxic, pumpable, fireproof and insulating mass | |
| US2431327A (en) | Refractory and method of making same | |
| US4440865A (en) | Refractory compositions and method | |
| DE3805110A1 (en) | LIGHTWEIGHT, HEAT-RESISTANT MATERIAL AND METHOD FOR THE PRODUCTION THEREOF | |
| US4432799A (en) | Refractory compositions and method | |
| WO2011104008A2 (en) | Heat-insulating refractory high-temperature resistant molded article | |
| JPS59190276A (en) | Formless refractories | |
| US3547664A (en) | Refractory ramming mix | |
| JPH0233663B2 (en) | ||
| JPH0236547B2 (en) | ||
| US3269850A (en) | Alumina refractories | |
| JPH0422865B2 (en) | ||
| US4514531A (en) | Monolithic refractories comprising a hydrocolloid | |
| US2865772A (en) | Lightweight insulating firebrick and method of manufacture | |
| US2434451A (en) | Refractories | |
| US2598102A (en) | Heat insulating material | |
| JP3118035B2 (en) | Mullite needle crystals and mullite porous bodies | |
| RU10171U1 (en) | FIREPROOF PRODUCT | |
| JPH05117047A (en) | High-temperature spaying heat insulating material | |
| US3864136A (en) | Direct bonded refractory brick having improved hot strength and its method of manufacture | |
| JPS61256984A (en) | Amorphous refractory materials and easily reticulated fibers therefor | |
| JPS6216847A (en) | Heat insulating material for molten iron | |
| JP2614800B2 (en) | Inorganic fiber refractory brick | |
| SU1742262A1 (en) | Refractory mortar |