Movatterモバイル変換


[0]ホーム

URL:


JPS59187324A - Optical device - Google Patents

Optical device

Info

Publication number
JPS59187324A
JPS59187324AJP58060826AJP6082683AJPS59187324AJP S59187324 AJPS59187324 AJP S59187324AJP 58060826 AJP58060826 AJP 58060826AJP 6082683 AJP6082683 AJP 6082683AJP S59187324 AJPS59187324 AJP S59187324A
Authority
JP
Japan
Prior art keywords
light
optical
liquid crystal
voltage
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58060826A
Other languages
Japanese (ja)
Other versions
JPH0585886B2 (en
Inventor
Masato Isogai
正人 磯貝
Shintaro Hattori
服部 紳太郎
Kishiro Iwasaki
岩崎 紀四郎
Akio Kobi
向尾 昭夫
Takao Umeda
梅田 高雄
Keiji Nagae
慶治 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi LtdfiledCriticalHitachi Ltd
Priority to JP58060826ApriorityCriticalpatent/JPS59187324A/en
Priority to EP84103810Aprioritypatent/EP0123181B1/en
Priority to KR1019840001808Aprioritypatent/KR890005338B1/en
Priority to US06/597,746prioritypatent/US4634226A/en
Priority to DE8484103810Tprioritypatent/DE3484827D1/en
Publication of JPS59187324ApublicationCriticalpatent/JPS59187324A/en
Publication of JPH0585886B2publicationCriticalpatent/JPH0585886B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

PURPOSE:To obtain high contrast by driving an optical element which has a special optical function material sandwiched between a couple of substrates on AC basis. CONSTITUTION:The optical function material 6 is inverted in the intensity of transmitted light from the optical element 10 by the inversion of the polarity of an external applied field. The optical function material 6 having said characteristics uses electrochromic material and ferroelectric liquid crystal. A pulse voltage which determines the intensity of light emitted from the optical element 10 is applied to the optical function material 6 at a specific period, and a voltage signal having the polarity opposite to that of the pulse voltage is applied to the optical function material 6 so that the means voltage value within the specific period is zero. Thus, the high contrast is obtained by AC driving although the optical function material 6 is inverted in the intensity of the light from the optical element 10 by the inversion of the polarity of the external applied field.

Description

Translated fromJapanese

【発明の詳細な説明】〔発明の利用分野〕本発明は光学装置に係り、特に表示装置や光スィッチと
して好適で応答性に優れた光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical device, and particularly to an optical device that is suitable for use as a display device or an optical switch and has excellent responsiveness.

〔発明の背景〕[Background of the invention]

応答性に優れた光学装置として強誘電性液晶素子のよう
な光機能材を用いた装置が近年注目されている。しかし
このような光学装置を交流駆動させるような報告?″i
まだ無い。その理由はこの種の光機能材に特有の透過光
(または反射光)強度変化にあり、光機能材に印加する
外場の極性の反転に伴って光学素子から出る光の強度も
強弱逆転するからでちる。そこで交流駆動(より正確に
表現すれば直流成分を零にする交流駆動)を行えば電圧
印加時の透過光(反射光)強度は、正極側で強く(また
は弱く)なシ、負極側ではその逆に弱く(′!、たけ強
く)なって、結局平均化されてしまう。
In recent years, devices using optical functional materials such as ferroelectric liquid crystal elements have attracted attention as optical devices with excellent responsiveness. However, is there any report on driving such an optical device with AC? ″i
Not yet. The reason for this is the intensity change of transmitted light (or reflected light) that is unique to this type of optical functional material, and as the polarity of the external field applied to the optical functional material is reversed, the intensity of the light emitted from the optical element is also reversed. Karadechiru. Therefore, if we perform AC drive (more accurately, AC drive that reduces the DC component to zero), the intensity of transmitted light (reflected light) when voltage is applied will be stronger (or weaker) on the positive electrode side, and less strong on the negative electrode side. On the contrary, it becomes weaker ('!, much stronger) and eventually averages out.

つまり電圧印加時の透過光(反射光)強度と電圧無印加
時の透過光(反射光)強度(正極側と負極側の中間なの
で中間の光強度である)とがほとんど区別できなくなっ
てしまう。
In other words, the intensity of transmitted light (reflected light) when a voltage is applied and the intensity of transmitted light (reflected light) when no voltage is applied (the light intensity is intermediate because it is between the positive electrode side and the negative electrode side) becomes almost indistinguishable.

例えば特開昭56−107216 号公報は強誘電性液
晶を用いた光学装置を開示しているが、このような強誘
電性液晶素子を直流で駆動することは望ましくない。と
いうのは、直流駆動によって液晶層中にイオンが流れて
電気化学的反応が生じることにより液晶が変質し、また
理由は明らかではないが液晶分子を配列させる配向制御
膜が損傷するからである。
For example, Japanese Patent Application Laid-Open No. 56-107216 discloses an optical device using ferroelectric liquid crystal, but it is not desirable to drive such a ferroelectric liquid crystal element with direct current. This is because direct current driving causes ions to flow into the liquid crystal layer and cause an electrochemical reaction, which alters the quality of the liquid crystal and, for reasons that are not clear, damages the alignment control film that aligns the liquid crystal molecules.

以上の理由によりこのように光学素子からの放射光の強
度が印加する外場の極性の反転に伴って非対称に変化す
るような特性を有する光機能材を用いた実用的な光学装
置が望まれていた。
For the reasons mentioned above, it is desirable to have a practical optical device using an optical functional material that has the property that the intensity of emitted light from an optical element changes asymmetrically as the polarity of the applied external field is reversed. was.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光学素子から出る光の強度(放射光強
度)が光機能材に印加する外場の極性の反転に伴って強
弱逆転する特性を有するにもかかわらず、交流駆動によ
って高コントラストの得られる光学装置を提供するにあ
る。
The purpose of the present invention is to achieve high contrast by alternating current driving, despite the fact that the intensity of light emitted from an optical element (radiated light intensity) is reversed as the polarity of the external field applied to the optical functional material is reversed. The objective is to provide an optical device that can be obtained.

〔発明の概要〕[Summary of the invention]

本発明の特徴は対向面に電極を有する一対の基板間に特
殊な光機能材を挾持してなる光学素子を交流駆動させる
点にある。
A feature of the present invention is that an optical element formed by sandwiching a special optical functional material between a pair of substrates having electrodes on opposing surfaces is driven with alternating current.

(光学素子の基本構造)本発明の光学素子は対向面に電極を有する一対の基板間
に特殊な光機能材を挾持した構造である。
(Basic Structure of Optical Element) The optical element of the present invention has a structure in which a special optical functional material is sandwiched between a pair of substrates having electrodes on opposing surfaces.

光機能材は電極基板間に直接的に挾持されなくとも、例
えば下地膜、絶縁膜、r配向制御膜、プロトン供与体層
等によって間接的に挾持してかまわない。基板の少なく
とも一方は望ましくは透明であるが、光を透過し潜る程
度のものであれば特に限定されない。本発明は反射型で
あっても透過型であっても差し支えない。光学素子は後
記実施例の如く複層式構造(りまシミ極基板が3層以上
重層された構造)であっても良い。また基板周辺のシー
ル機構は基板同士を直接的に接合しても、或いは有機系
接着剤やガラスフリット等の接着剤によって間接的に接
合しても良い。基板自体の材質はガラス、プラスチック
等適宜選択可能である。更に基板自体に偏光板機能を持
たせたム基板に偏光子を付設したりすることも本発明の
適用範囲である。
The optical functional material does not have to be directly sandwiched between the electrode substrates, but may be indirectly sandwiched, for example, by a base film, an insulating film, an r-orientation control film, a proton donor layer, or the like. At least one of the substrates is preferably transparent, but is not particularly limited as long as it can transmit light. The present invention may be of a reflective type or a transmission type. The optical element may have a multilayer structure (a structure in which three or more layers of Rima stain electrode substrates are stacked) as in the embodiments described later. Further, the sealing mechanism around the substrates may be used to directly bond the substrates to each other, or may be indirectly bonded using an adhesive such as an organic adhesive or a glass frit. The material of the substrate itself can be appropriately selected from glass, plastic, etc. Furthermore, it is also within the scope of the present invention to attach a polarizer to a substrate in which the substrate itself has a polarizing plate function.

(本発明における光機能材)本発明における光機能材は従来のネマチック型液晶とは
全く異質のものである。すなわちこの光機能材は、印加
する外場の極性の反転に伴って光学素子から出る透過光
(反射光)強度の強弱が逆転してしまう特性を有する。
(Optical functional material in the present invention) The optical functional material in the present invention is completely different from conventional nematic liquid crystals. That is, this optical functional material has a property that the strength of the transmitted light (reflected light) emitted from the optical element is reversed as the polarity of the applied external field is reversed.

このような特性を有する光機能材としてエレクトロクロ
ミック材や強誘電性液晶が挙げられる。強誘電性液晶は
俗にカイラルスメクチック液晶と呼ばれ、液晶分野にお
いて最も新しい材料である゛。光機能材はそれ単独でな
くとも、例えば多色性色素や光学活性物質等を含有させ
ることも本発明適用の範囲である。
Examples of optical functional materials having such characteristics include electrochromic materials and ferroelectric liquid crystals. Ferroelectric liquid crystal is commonly called chiral smectic liquid crystal, and is the newest material in the liquid crystal field. The optical functional material does not have to be used alone, but it is also within the scope of the present invention to include, for example, a pleochroic dye or an optically active substance.

(交流駆動と第1手段)本発明における第1手段とけ交流を素子に印加する手段
に他ならない。但しこの”交流”は次のように定義され
る。すなわち、光学素子から出る光の強度を定めるパル
ス電圧を所定周期で光機能材に印加すると共に、この所
定周期内の電圧平均値が零となるように(つまシ直流成
分が零となるように)前記のパルス電圧とは逆極性の電
圧信号を光機能材に印加するような、2種の電圧(つま
り前記のパルス電圧と電圧信号)の交番磁流である。換
言すればこの電圧信号は、前記のパルス電圧とは逆極性
でかつ絶対値が等しい直流成分を有する電圧信号である
(AC Driving and First Means) The first means in the present invention is nothing but means for applying alternating current to the element. However, this "interchange" is defined as follows. That is, a pulse voltage that determines the intensity of light emitted from the optical element is applied to the optical functional material at a predetermined period, and the voltage is applied so that the average value of the voltage within this predetermined period becomes zero (so that the DC component becomes zero). ) This is an alternating magnetic current of two types of voltages (that is, the pulse voltage and the voltage signal) that apply a voltage signal with a polarity opposite to that of the pulse voltage to the optical functional material. In other words, this voltage signal is a voltage signal having a DC component having a polarity opposite to that of the pulse voltage and having the same absolute value.

例えばこの電圧信号は、パルス電圧(仮に第1のパルス
電圧と呼ぶ)とけパルス幅及び波高値の絶対値が等しく
かつ逆極性である第2のパルス電圧である(以下、本発
明の第1方式と呼ぶ)。また例えばこの電圧信号(或い
は第2のパルス電圧)は第1のパルス電圧に比べて波高
値が充分に高く(または充分に低く)、パルス幅(電圧
印加時間)はその逆で充分に短く(または長い)(以下
、本発明の第2方式と呼ぶ)。更に例えば上記電圧信号
の波高1直は強誘電性液晶のしきい直電圧よりも小さい
For example, this voltage signal is a pulse voltage (temporarily referred to as a first pulse voltage) and a second pulse voltage whose pulse width and peak value are equal in absolute value and have opposite polarities (hereinafter referred to as the first method of the present invention). ). For example, this voltage signal (or the second pulse voltage) has a sufficiently high (or sufficiently low) peak value compared to the first pulse voltage, and vice versa, the pulse width (voltage application time) is sufficiently short ( or long) (hereinafter referred to as the second method of the present invention). Furthermore, for example, the wave height of the voltage signal is smaller than the threshold voltage of the ferroelectric liquid crystal.

(光強度の切り替えと第2手段)本発明の第1方式、第2方式等単なる交流駆動ではコン
トラストが得られないので(その理由は第1方式につい
て前記〔発明の背景〕の項で述べた通シ。)明暗状態(
階調された中間状態も含む)を決める光強度を切シ替え
る手段を具備せしめることが重要であシ、第2手段はそ
の機能を有する。
(Switching of Light Intensity and Second Means) Contrast cannot be obtained by mere AC driving such as the first method and the second method of the present invention (the reason for this is as described in the above [Background of the Invention] section regarding the first method). ) light and dark state (
It is important to provide a means for switching the light intensity that determines the light intensity (including gradated intermediate states), and the second means has this function.

例えば第2手段は光学素子を通過する光の通路上に配置
されて光を断続させる機能を有するチョッパである。こ
の光の断続とパルス電圧の印加とを同期させることは有
、効である。光強度の切り替えとけ明暗二状態の切シ替
えに限定されず、いわゆる階調表示をも含む。例えばチ
ョッパは、第1のパルス電圧の印加と光の通過とを同期
させて透過光(反射光)を明状態とし、一方策1のパル
ス電圧の印加と光路遮断とを同期させて透過光(反射光
)を暗状態として明暗両状態の切り替え機能を有する態
様がある。まだ例えばチョッパは、第1のパルス電圧の
印加時機と光の通過時機とを一部重複させて同期させる
ことにより光学素子から出る透過光(反射光)の階調機
能を有する態様もある。チョッパはこれらのような機能
を有すれば足り゛)るφ)仏、例えば多色性強誘電性液
晶素子であっても良いし、透光部を有する回転体であっ
ても良い。このようなチョッパは特に本発明の第1方式
に有効である。なお、チョッパ位置は素子の光源側とは
限定されない。
For example, the second means is a chopper that is placed on the path of light passing through the optical element and has the function of cutting off the light. It is effective to synchronize the intermittent light and the application of the pulse voltage. The present invention is not limited to switching the light intensity or switching between bright and dark states, but also includes so-called gradation display. For example, a chopper synchronizes the application of the first pulse voltage and the passage of light to bring the transmitted light (reflected light) into a bright state. There is an embodiment that has a function of switching between light and dark states by setting the reflected light (reflected light) to a dark state. For example, a chopper may have a gradation function for transmitted light (reflected light) emitted from an optical element by partially overlapping and synchronizing the first pulse voltage application timing and the light passage timing. It is sufficient for the chopper to have these functions; for example, it may be a polychromatic ferroelectric liquid crystal element, or it may be a rotating body having a light-transmitting part. Such a chopper is particularly effective in the first method of the present invention. Note that the chopper position is not limited to the light source side of the element.

一方、本発明の第2方式においてはチョッパは必ずしも
必要ではなく、第2手段としては例えばパルス電圧の極
性を反転させる手段や、或いは偏光板の偏光軸方向を切
り替える手段が有効である。
On the other hand, in the second method of the present invention, the chopper is not necessarily necessary, and as the second means, for example, means for reversing the polarity of the pulse voltage, or means for switching the direction of the polarization axis of the polarizing plate is effective.

また更にはパルス電圧の波高値を替えて階調表示可能と
することもできる。
Furthermore, it is also possible to display gradations by changing the peak value of the pulse voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例とその図面に従って説明する。以
下の各実施例で用いる光機能材は第1表に示す強誘電性
液晶から選ばれたものである。
Hereinafter, the present invention will be explained according to examples and drawings thereof. The optical functional materials used in each of the following examples are selected from the ferroelectric liquid crystals shown in Table 1.

第  1  表(nは整数)これ等の強誘電性液晶分子の印加電界に対する状態を第
1図に示す。
Table 1 (n is an integer) The states of these ferroelectric liquid crystal molecules with respect to the applied electric field are shown in FIG.

第1図(b)に示す様に1電界Eを印加しない場合、強
誘電性液晶分子1け、螺旋軸2に対してθ(例えば、D
OBAMBCでは、20〜25度である)の角度を有し
て螺旋状に配向する。
As shown in FIG. 1(b), when one electric field E is not applied, one ferroelectric liquid crystal molecule is θ (for example, D
In OBAMBC, it is oriented in a spiral with an angle of 20 to 25 degrees).

このように配向した強誘電性液晶分子1にしきい値醒界
VC以上の゛電界Vを印加すると、第1図(a)に示す
様に、強誘電性液晶分子1け、電界Vの方向と垂直な平
面上に螺旋@2に対してθの角度を有して配向する。ま
た、第1図(a)の電界Vの極性を反転させると、第1
図(C)に示す様に、強誘電性液晶分子1は電界Vの方
向と垂直な平面上に螺旋軸2に対してθの角度を有して
配向する。
When an electric field V greater than the threshold voltage VC is applied to the ferroelectric liquid crystal molecules 1 oriented in this way, one ferroelectric liquid crystal molecule moves in the direction of the electric field V as shown in FIG. It is oriented at an angle θ to the spiral @2 on a perpendicular plane. Moreover, if the polarity of the electric field V in FIG. 1(a) is reversed, the first
As shown in Figure (C), the ferroelectric liquid crystal molecules 1 are aligned on a plane perpendicular to the direction of the electric field V at an angle of θ with respect to the helical axis 2.

この現象は非常に高速であることが特徴で、充分な大き
さの電界を印加すればμSオーダのパルス幅を持つ電圧
パルスに応答することが知られており、画素数が多くな
る大型ディスプレイ、光シャッタ、偏光器等への適用が
期待されるが、従来1、印加電圧と光透過状態との関係
が明らかにされず、強誘電性液晶を具体的にどのような
電圧を印加して駆動すれば良いか明らかにされていなか
った。
This phenomenon is characterized by its extremely high speed, and is known to respond to voltage pulses with a pulse width on the μS order if a sufficiently large electric field is applied. It is expected to be applied to optical shutters, polarizers, etc., but in the past, the relationship between applied voltage and light transmission state was not clarified, and it was unclear what kind of voltage was applied to drive the ferroelectric liquid crystal. It was not made clear what should be done.

第2図に示す様に、ガラス、プラスチック等の一対の基
板30対向面に厚さ500〜100O人の−I n2o
a 、 8 n02、及びこれらの混合物等から成る表
示電極4を設け、更に厚さ100〜100OAの有機樹
脂(例えばポリイミドインインドロキナゾリンジオン膜
)、5i02等の配向制御1漠5を必要に応じて設け、
基板3のギャップ(約10μm)間に、強誘電性液晶層
6を73〜93Cで挾持する。本実施例において強誘電
性液晶はρ−デシロキシベンジ」ノデンーp′−アミノ
ー2−メチルプチルシ/ナメート(通称DOBAMBC
)である。伺、7は強誘電性液晶層10を封入するため
の封止剤であり、8は交流′電源である。このとき、強
誘電性液晶分子の螺旋軸2が、各基板3に略平行になる
ように配向制御膜5を形成する。更に、各基板3の各表
示電極4が設けられていない面に偏光板91.92を隣
接させる。こうして液晶素子lOが形成される。
As shown in FIG. 2, -I n2o with a thickness of 500 to 100 μm is coated on opposing surfaces of a pair of substrates 30 such as glass or plastic.
A display electrode 4 made of a, 8n02, a mixture thereof, etc. is provided, and an organic resin (for example, a polyimideindolindoquinazolinedione film) having a thickness of 100 to 100 OA, an orientation control material 5 of 5i02, etc. is provided as necessary. established,
The ferroelectric liquid crystal layer 6 is sandwiched between the substrates 3 with a gap (approximately 10 μm) between 73 and 93C. In this example, the ferroelectric liquid crystal is ρ-decyloxybendi'noden-p'-amino-2-methylbutylcy/namate (commonly known as DOBAMBC).
). 7 is a sealant for sealing the ferroelectric liquid crystal layer 10, and 8 is an AC power source. At this time, the alignment control film 5 is formed so that the helical axis 2 of the ferroelectric liquid crystal molecules is approximately parallel to each substrate 3. Further, polarizing plates 91 and 92 are placed adjacent to the surface of each substrate 3 where each display electrode 4 is not provided. In this way, liquid crystal element IO is formed.

このとき、第3図に示す様に偏向板91の偏光軸方向9
11と偏向板92の偏向軸方向921とを略直交させ、
さらに一方の偏光板の偏光軸方向を、強誘電性液晶のし
きい値鑞界IVc1以上の電界を印加したときの強誘電
性液晶分子1の配向方向と略一致させる。第3図では、
偏光板91の偏光軸方向911を、紙面の手前から紙面
を貫く方向に電界を印加したときの螺旋軸2の方向と一
致させている。伺、以後、この方向の電界を負の符号を
つけて−Vと表わし、更に、第2図に示す構造の液晶菓
子を例にとって説明するが、本発明はこれに限定される
ものではない。例えば、第2図に於いて、偏光板92の
代わりに反射板を基板3に隣接させ、強誘電性液晶層6
に二色性色素を混入したものを使用した場合にも適用で
きる。この場合、螺旋軸2に対する強誘電性液晶分子1
の角度θは45度が最適となる。
At this time, as shown in FIG.
11 and the deflection axis direction 921 of the deflection plate 92 are made substantially orthogonal,
Further, the direction of the polarization axis of one of the polarizing plates is made to substantially match the orientation direction of the ferroelectric liquid crystal molecules 1 when an electric field equal to or higher than the threshold field IVc1 of the ferroelectric liquid crystal is applied. In Figure 3,
The polarization axis direction 911 of the polarizing plate 91 is made to match the direction of the helical axis 2 when an electric field is applied from the front of the page to the direction penetrating the page. Hereinafter, the electric field in this direction will be expressed as -V with a negative sign, and further explanation will be given using a liquid crystal confectionery having the structure shown in FIG. 2 as an example, but the present invention is not limited thereto. For example, in FIG. 2, a reflective plate is placed adjacent to the substrate 3 instead of the polarizing plate 92, and the ferroelectric liquid crystal layer 6
It can also be applied when using a mixture of dichroic dyes. In this case, the ferroelectric liquid crystal molecule 1 with respect to the helical axis 2
The optimum angle θ is 45 degrees.

第3図(a)は−■の電界を印加した場合を示しており
、このとき紙面手前から入射した光(自然光)は、上側
偏光板91により偏光軸方向911に偏光され、強誘電
性液晶分子1の長軸方向にのみ振動成分をもつ直線偏光
となり、長軸方向の屈折率n7に従って直線偏光のまま
強誘電性液晶層6を通過する。
FIG. 3(a) shows the case where an electric field of -■ is applied, and at this time, light (natural light) incident from the front of the paper is polarized in the polarization axis direction 911 by the upper polarizing plate 91, and the ferroelectric liquid crystal The light becomes linearly polarized light having a vibrational component only in the long axis direction of the molecule 1, and passes through the ferroelectric liquid crystal layer 6 as linearly polarized light according to the refractive index n7 in the long axis direction.

その後、下側偏光板92に入射するが、この偏光板92
の偏光軸方向921と偏光板131の偏光軸方向31は
垂直であるから、光は遮断され、表示素子では暗く見え
る。
After that, it enters the lower polarizing plate 92, but this polarizing plate 92
Since the polarization axis direction 921 of the polarizing plate 131 is perpendicular to the polarization axis direction 31 of the polarizing plate 131, the light is blocked and the image appears dark on the display element.

なお、第3図(b)は+Vを印加した場合を示しておシ
、このとき強誘電性液晶分子1の長軸は、上下の偏光板
91.92の偏光軸方向911,921のどちらとも一
致しない方向を向いている。この場合、上側偏光板91
によシ直線偏光となった光のうち、強誘電性液晶分子1
の長軸方向の成分は、長軸方向の屈折率n/、短軸方向
の成分は短軸方向の屈折率n□に従って強誘電性液晶層
6を透過するので、強誘電性液晶層6を出た光は、だ円
偏光となる。従って、下側偏光板92を透過する光成分
を有するため、表示素子では明るく見える。
Note that FIG. 3(b) shows the case where +V is applied, and in this case, the long axis of the ferroelectric liquid crystal molecule 1 is not aligned with either of the polarization axis directions 911 and 921 of the upper and lower polarizing plates 91 and 92. facing in a direction that does not match. In this case, the upper polarizing plate 91
Among the linearly polarized light, ferroelectric liquid crystal molecules 1
The component in the major axis direction is transmitted through the ferroelectric liquid crystal layer 6 according to the refractive index n/ in the major axis direction, and the component in the minor axis direction is transmitted through the ferroelectric liquid crystal layer 6 according to the refractive index n□ in the minor axis direction. The emitted light becomes elliptical polarized light. Therefore, since it has a light component that passes through the lower polarizing plate 92, it appears bright on the display element.

このようにして、−4−v、−vの印加により明暗4の
切換えができ、表示素子、光シャッタ、偏光素子として
機能し得る。なお電界が印加されない場合は、両者のほ
ぼ中間の明るさになっている。
In this way, by applying -4-v and -v, it is possible to switch between bright and dark 4, and it can function as a display element, a light shutter, and a polarizing element. Note that when no electric field is applied, the brightness is approximately intermediate between the two.

また本現象をここでは、強誘電性液晶の電気光学効果と
呼ぶことにする。
Further, this phenomenon will be referred to herein as the electro-optic effect of ferroelectric liquid crystal.

この電気光学効果を詳しく調べた結果、第4図に示すよ
うな特性を持つことが明らかになった。
As a result of a detailed investigation of this electro-optic effect, it was revealed that it has the characteristics shown in Figure 4.

すなわち、強誘電性液晶に加わる印加電圧VLCを零か
ら上昇させると光強度(透過型素子なら透過光強度、反
射型素子なら反射光強度。以下同じ。)■は増加して行
き、しきい値電圧+VCを越えると光強度■は一定[直
になる。同様にして印加電圧V’LCを負の方向に増加
すると、光強度工は減少し、しきい1直電圧−Vcを越
えると飽和する。印加電圧がXの場合は光強度はIxと
なシ、印加電圧がYの場合は光強度がIrとなる。交流
印加でけ印加電圧はXとYとの間を往復することになる
から素子から出る光強度はIxとIyとが平均化されて
Izとなる。IzFi印加電圧が零の場合の光強度と等
しい。従って何の手段も講じなければ耐圧印加時と電圧
無印加時とでは光強度(明るさ)が区別できずコントラ
ストがとれない。
That is, when the applied voltage VLC applied to the ferroelectric liquid crystal is increased from zero, the light intensity (transmitted light intensity for a transmissive element, reflected light intensity for a reflective element; the same applies hereinafter) increases, and the threshold value increases. When the voltage exceeds +VC, the light intensity becomes constant. Similarly, when the applied voltage V'LC is increased in the negative direction, the light intensity decreases and becomes saturated when the threshold 1 direct voltage -Vc is exceeded. When the applied voltage is X, the light intensity is Ix, and when the applied voltage is Y, the light intensity is Ir. Since alternating current is applied, the applied voltage goes back and forth between X and Y, so the light intensity output from the element is Iz, which is the average of Ix and Iy. IzFi is equal to the light intensity when the applied voltage is zero. Therefore, if no measures are taken, the light intensity (brightness) cannot be distinguished between when a breakdown voltage is applied and when no voltage is applied, and no contrast can be obtained.

次に、パルス電圧Vpに対する応答を調べるため、第5
図(a)に示すようなしきい値電圧Vcより大きな波高
値を持つ正の電圧パルスVPを強誘電性液晶に印加した
ところ、同図に示した通り、パルス電圧vp印加にした
がい急激に光強度工が増加し、立上り時間11が短いが
、パルス電圧vp印加後の復帰時間t2け図示したよう
に長いことがわかった。
Next, in order to examine the response to the pulse voltage Vp, the fifth
When a positive voltage pulse VP having a peak value larger than the threshold voltage Vc as shown in Figure (a) is applied to a ferroelectric liquid crystal, as shown in the figure, the light intensity suddenly increases as the pulse voltage VP is applied. Although the rise time 11 is short, the recovery time t2 after application of the pulse voltage vp is longer as shown in the figure.

例えば本発明等が波高咳がしきい1直電圧(5〜1’0
V)jり大きいパルス電圧VP(パルス幅to=500
μs)を強誘電性液晶に印加したところ、tl=120
μS+jz=8msであることを確認した。
For example, the present invention etc. can be applied to the threshold of 1 direct voltage (5 to 1'0
V) j larger pulse voltage VP (pulse width to = 500
μs) was applied to the ferroelectric liquid crystal, tl=120
It was confirmed that μS+jz=8ms.

また負のパルス電圧−Vpに対する応答も第5図(b)
に示したように、パルス電圧印加による応答に比べ電圧
除去時の応答は遅く、復帰時間が長いことがわかった。
The response to the negative pulse voltage -Vp is also shown in Figure 5(b).
As shown in Figure 2, it was found that the response when the voltage was removed was slower and the recovery time was longer than the response when the pulsed voltage was applied.

また、第6図に示すようなパルス電圧列を印加するとき
、同図(,0のような正のパルス電圧列、同図(b)の
ような負のパルス電圧列により、平均的な明るさに大き
な差異が生じ、明暗の三直の光透過。
In addition, when applying a pulse voltage train as shown in Figure 6, the average brightness is There is a big difference in the bright and dark light transmission.

状態の設定が可能である。It is possible to set the state.

このような、方法によシ良好な表示を得るには、表示の
チラッキ(フリッカ)をなくするため強誘電性液晶に印
加するパルス電圧のくシ返し周期を少なくとも30m5
以下にしなければならない。
In order to obtain a good display using this method, the repetition period of the pulse voltage applied to the ferroelectric liquid crystal should be at least 30 m5 in order to eliminate flicker in the display.
Must be as follows.

しかしながら、このような駆動方法では、表示部7>j
明るい表示時間と暗い表示時間が等しくないかぎシ、強
誘電性液晶に印加される電圧vt、cに直流成分が存在
する。
However, in such a driving method, the display section 7>j
When the bright display time and the dark display time are not equal, a DC component exists in the voltages vt and c applied to the ferroelectric liquid crystal.

極端な例では、常に明るい表示状態のセグメントでは常
に正の直流成分が印加され、常に暗い表示状態のセグメ
ントは常に負の直流成分が印加されていることになる。
In an extreme example, a positive DC component is always applied to a segment in a bright display state, and a negative DC component is always applied to a segment in a dark display state.

液晶素、子では、駆動中に直流成分が印加されると電気
化学反応によシ素子の劣化が促進され寿命低下をきたす
ことがよく知られており、第6図に示した方法は劣化の
点で重大な欠点を持っている。
It is well known that when a DC component is applied to a liquid crystal device while driving, the deterioration of the device is accelerated due to an electrochemical reaction, resulting in a shortened life span. It has some serious drawbacks.

第7図は本発明の第1の実施例を示す駆動波形であり、
第6図に示したパルス電圧Vp直前に、逆極性、同じパ
ルス幅、波高値を持つパルス電圧−vpを印加する。
FIG. 7 is a drive waveform showing the first embodiment of the present invention,
Immediately before the pulse voltage Vp shown in FIG. 6, a pulse voltage -vp having the opposite polarity, same pulse width, and peak value is applied.

第7図(a)は、入射光が透過する状態すなわち表示素
子では明るい表示をする場合の強誘電性液晶に印加する
電圧VLCと、第2図に示す液晶素子の光透過状態(光
強度■)との関係を示す図であり、第7図(b)は、入
射光が遮断される状態すなわち表示素子では暗い表示を
する場合の印加電圧vLcと光強度工との関係を示す図
である。
Figure 7(a) shows the voltage VLC applied to the ferroelectric liquid crystal when the incident light is transmitted, that is, when the display element produces a bright display, and the light transmission state of the liquid crystal element shown in Figure 2 (light intensity ), and FIG. 7(b) is a diagram showing the relationship between the applied voltage vLc and the light intensity when the incident light is blocked, that is, when the display element displays a dark display. .

第7図(a)に於いて、時刻t。で波高値−Vp(5v
〜20v)、パルス幅T! (500μs〜100μs
)の負のパルス電圧が印加されると、一旦暗くなるが、
時刻1tで波高値Vp、パルス幅T、の正のパルス電圧
が印加されると、急激に明るくなシ、時刻t2で印加電
圧が零になると、明るさが徐々に低下する。との動作を
7リツカが生じないような所定周期T(1ms〜30m
5)で繰シ返すことにより、平均的な明るさを十分大き
くすることができる。
In FIG. 7(a), time t. The peak value -Vp (5v
~20v), pulse width T! (500μs~100μs
) when a negative pulse voltage is applied, it becomes dark once, but
When a positive pulse voltage of peak value Vp and pulse width T is applied at time 1t, the brightness suddenly becomes bright, and when the applied voltage becomes zero at time t2, the brightness gradually decreases. A predetermined period T (1 ms to 30 m
By repeating step 5), the average brightness can be made sufficiently large.

このとき、光透過状態を定めるパルス電圧Vpとは、逆
極性でかつ絶対値が等しいパルス電圧を所定周期内Tに
強誘電性液晶に印加するので、強誘電性液晶に印加され
る電圧の平均値は零となり直流成分が全く存在せず、前
述の電気化学反応に起因する強誘電性液晶の劣化は生じ
ない。
At this time, the pulse voltage Vp that determines the light transmission state is a pulse voltage with opposite polarity and equal absolute value that is applied to the ferroelectric liquid crystal within a predetermined period T, so the average voltage applied to the ferroelectric liquid crystal is The value becomes zero, there is no DC component at all, and the ferroelectric liquid crystal does not deteriorate due to the electrochemical reaction described above.

さらに、本実施例に於いては、光透過状態を定めるパル
ス成圧vPを印加する直前に、パルス幅及び波高値の絶
対値が等しくかつ逆極性のパルス電圧−vpを印加する
ので、第7図(b)に示す様にパルス電圧の極性を反転
させるだけで、入射光が遮断される状態が得られる。
Furthermore, in this embodiment, immediately before applying the pulse voltage vP that determines the light transmission state, a pulse voltage -vp having equal absolute values of pulse width and peak value and opposite polarity is applied. As shown in Figure (b), simply by reversing the polarity of the pulse voltage, a state in which the incident light is blocked can be obtained.

第8図は第7図に示す様な駆動波形を実現する具体的な
回路の一例である。
FIG. 8 is an example of a specific circuit that realizes the drive waveform shown in FIG. 7.

第8図に於いて、11は排他的オアゲート、12はイン
バータ、13.14はアンドゲート、Q+ 、Q2.Q
’s 、Q4はスイッチング用トランジスタ、R,1,
R,2,R3け抵抗、1.5,16゜17は入力端子、
18は出力端子であシ、A、B。
In FIG. 8, 11 is an exclusive OR gate, 12 is an inverter, 13.14 is an AND gate, Q+, Q2 . Q
's, Q4 is a switching transistor, R,1,
R, 2, R3 resistors, 1.5, 16゜17 are input terminals,
18 is the output terminal A, B.

Cは観察用にパルスを測定する箇所である。1゜は出力
端子に接続される液晶素子である。
C is a point where pulses are measured for observation. 1° is a liquid crystal element connected to the output terminal.

第8図の回路の各信号のタイミングは、第2表に示す通
りであシ、それぞれの信号波形を第9図に示す。
The timing of each signal in the circuit of FIG. 8 is as shown in Table 2, and the waveform of each signal is shown in FIG.

〔15〕は入力端子15がら入るパルス幅を定める信号
、、[16〕は入力端子16から入るパルス電圧を出す
タイミングを定める信号、〔17〕は入力端子17がら
入り出カ区圧〔18〕の位相を定める信号で、〔17〕
を制御することによって、光透過状態っまシ明暗の切り
替えを定めることができる。第9図の〔工8〕がαに至
るまでは明状態、αを過ぎると暗状態となる。
[15] is a signal that determines the pulse width input from the input terminal 15, [16] is a signal that determines the timing of outputting the pulse voltage input from the input terminal 16, [17] is the input/output voltage from the input terminal 17 [18] A signal that determines the phase of [17]
By controlling the light transmitting state, it is possible to determine whether the light transmission state is bright or dark. [Step 8] in FIG. 9 is in a bright state until it reaches α, and when it passes α, it is in a dark state.

第   2   表第10図は本発明の第2の実施例を示す駆動波形であシ
、第10図(a)が明るい表示をする場合、第10図(
b)が暗い表示をする場合をそれぞれ示す。
10 of Table 2 shows the driving waveforms showing the second embodiment of the present invention. When FIG. 10(a) displays a bright display,
b) shows the case where the display is dark.

第7図の第1の実施例と異なることは、強誘電性液晶に
印加される電圧の直流成分を零にするために新たに設け
た逆方向パルス電圧のパルス高VPIをしきい値畦圧V
cより小さくシ、その分だけパルス幅を広げたものであ
る。このとき、式(1)に示す様に直流成分を零にする
ためには正パルスと負パルスの直流成分S+ 、82 
とは、互いに極性が反対で絶対r直を等しくする。
The difference from the first embodiment shown in FIG. 7 is that the pulse height VPI of the reverse direction pulse voltage is newly provided to zero the DC component of the voltage applied to the ferroelectric liquid crystal. V
The pulse width is smaller than c, and the pulse width is widened by that amount. At this time, as shown in equation (1), in order to make the DC component zero, the DC component S+ of the positive pulse and the negative pulse is 82
and have opposite polarities and equal absolute r directivity.

S+ −”  82         ・・・・・・・
・・(1)本実施例に於いても、強誘電性液晶に印加さ
れる電圧の平均筐は零となり、直流成分が全く存在しな
いので、強誘電性液晶の劣化が生じなく、かつ所望の光
透過状態を高速で得ることができる。
S+-” 82 ・・・・・・・・・
(1) In this example as well, the average voltage applied to the ferroelectric liquid crystal is zero, and there is no DC component at all, so the ferroelectric liquid crystal does not deteriorate and the desired result is achieved. A light transmitting state can be obtained at high speed.

さらに、本実施例に於いては、直流成分を零にするため
のパルス電圧の波高値が、強誘電性液晶のしきい呟電圧
Vcより小さいので、第1の実施例に比して、コントラ
スト比が大きくなる。
Furthermore, in this embodiment, since the peak value of the pulse voltage for reducing the DC component to zero is smaller than the threshold voltage Vc of the ferroelectric liquid crystal, the contrast is lower than in the first embodiment. The ratio becomes larger.

第11図は本発明の第3の実施例を示す駆動波形であわ
、第11図(a)が明るい表示をする場合、第11図(
b)が暗い表示をする場合をそれぞれ示す。
FIG. 11 shows driving waveforms showing the third embodiment of the present invention.
b) shows the case where the display is dark.

第11図に於いても、液晶素子の光透過状態を定めるパ
ルス成圧の直流成分S、と、他の電圧信号の直流成分(
82+SR+84  )との関係は、式(2)に示す様
に、互いに極性が反対で、絶対唾は等しくなっている。
In FIG. 11, the DC component S of the pulse pressure forming that determines the light transmission state of the liquid crystal element, and the DC component (
82+SR+84), as shown in equation (2), the polarities are opposite to each other and the absolute salivary values are equal.

8r=  (S2+83+84)   ・・・・・・・
・・(2)第12図は本発明の第4の実施例を示す駆動
波形であり、第12図(a)が明るい表示をする場合、
第12図(b)が暗い表示をする場合をそれぞれ示す。
8r= (S2+83+84) ・・・・・
...(2) FIG. 12 is a drive waveform showing the fourth embodiment of the present invention, and when FIG. 12(a) displays a bright display,
FIG. 12(b) shows the case of dark display.

第12図に於いても、液晶素子の光透過状態を定めるパ
ルス電圧の直流成分S+ と、他の電圧信号の直流成分
(S2+83+84+85+86)との関係は、式(3
)に示す櫟に、互いに極性が反対で、絶対値は等しくな
っている。
Also in FIG. 12, the relationship between the DC component S+ of the pulse voltage that determines the light transmission state of the liquid crystal element and the DC component (S2+83+84+85+86) of the other voltage signal is expressed by equation (3).
), the polarities are opposite to each other and the absolute values are equal.

Sl=  (S2+83+84+85+86 )   
・・・・・・・・・(3)第13図は本発明の第5の実
施例を示す駆動波形であシ、第13図(a)が明るい表
示をする場合、第13図(b)が暗い表示をする場合を
それぞれ示す。
Sl= (S2+83+84+85+86)
(3) Fig. 13 shows the driving waveform of the fifth embodiment of the present invention. When Fig. 13(a) displays a bright display, Fig. 13(b) ) shows the cases where the display is dark.

第13図に於いても、液晶素子の光透過状態を定めるパ
ルス電圧の直流成分S1と、他の電圧信号の直流成分S
2との関係は、式(1)に示す様に、互いに極性が反対
で、絶対値は等しくなっている。
Also in FIG. 13, the DC component S1 of the pulse voltage that determines the light transmission state of the liquid crystal element and the DC component S of the other voltage signal are shown.
2, as shown in equation (1), the polarities are opposite to each other and the absolute values are equal.

本実施例に於いても、前述の実施例と同様な効果が得ら
れ、さらに、光透過状態を定めるパルス直圧が印加され
る期間tDが、直流成分を零にするためのパルス電圧が
印加される期間tcより充分長いので、コントラスト比
が犬きくなる。
In this embodiment, the same effect as in the above-mentioned embodiment is obtained, and furthermore, the period tD during which the pulsed direct voltage that determines the light transmission state is applied is changed to the period tD during which the pulsed voltage is applied to make the direct current component zero. Since the period tc is sufficiently longer than the period tc, the contrast ratio becomes sharper.

以上述べた本発明の第1〜弔5の実施例に於いては、第
3図に示す様に、偏光板91の偏光軸方向911を、電
界−Vを印加したときの強誘電性液晶分子の螺旋軸2の
方向と一致させたが、電界Vを印加したときの強誘電性
液晶分子の螺旋軸2の方向と一致させても良く、この場
合、第1−第5の実施例に於いて、明るい表示と暗い表
示が逆′に彦る。
In the first to fifth embodiments of the present invention described above, as shown in FIG. Although the direction of the helical axis 2 of the ferroelectric liquid crystal molecules is made to coincide with the direction of the helical axis 2 of the ferroelectric liquid crystal molecules when the electric field V is applied, it is also possible to make the direction of the helical axis 2 of the ferroelectric liquid crystal molecules coincide with the direction of the helical axis 2 of the ferroelectric liquid crystal molecules. The bright and dark displays are reversed.

更に、第1〜第5の実施例に於いては、液晶素子の光透
過状態を定めるパルス醒圧が印加される直前及び直後に
、直流成分を零にする電圧信号を印加したが、これに限
定されず、光透過状態を定めるパルス電圧が印加される
周期内であれば、いつでも良い。
Furthermore, in the first to fifth embodiments, a voltage signal that makes the DC component zero was applied immediately before and after the pulse awakening pressure that determines the light transmission state of the liquid crystal element was applied. It is not limited, and may be applied at any time within the period in which the pulse voltage that determines the light transmission state is applied.

第14図は本発明の第1方式の代表的な実施例(第6図
の実施例)を示す。
FIG. 14 shows a typical embodiment (the embodiment shown in FIG. 6) of the first method of the present invention.

液晶素子10の構成は第2図の通りである。配向制御膜
5はポリイミド−イン−インドロキナゾリンジオン膜で
6D、電極4け酸化インジウム透明電極である。また基
板3けガラス製であシ、配向制御膜5を形成後一定方向
にラビングしである。
The structure of the liquid crystal element 10 is shown in FIG. The alignment control film 5 is a 6D polyimide-in-indoroquinazolinedione film, and the electrode 4 is a transparent indium oxide electrode. Further, the substrate 3 is made of glass, and after the alignment control film 5 is formed, it is rubbed in a certain direction.

そして2枚の基板3がラビング方向を反平行方向とする
ように直径6μmのガラスファイバーをスペーサとする
封止剤7を介して、岨み合わせられている。強誘電性液
晶材料はDOBANBCであり、液晶素子中に真空封入
されている。封入後、一旦等方性液体温度まで加熱後液
晶相になるまで徐冷しくlr/−mの速度で冷却)、一
様に配列した素子を得た。この液晶素子10に偏光板9
1.92を貼りつける。本実施例では偏光板としてポラ
ロイドHN−38を用いた。
The two substrates 3 are fitted together with a sealing agent 7 having a glass fiber spacer having a diameter of 6 μm so that the rubbing direction is antiparallel. The ferroelectric liquid crystal material is DOBANBC, which is vacuum sealed in the liquid crystal element. After encapsulation, the mixture was heated to an isotropic liquid temperature and then slowly cooled at a rate of lr/-m until it became a liquid crystal phase, yielding uniformly arranged elements. This liquid crystal element 10 has a polarizing plate 9
Paste 1.92. In this example, Polaroid HN-38 was used as a polarizing plate.

液晶の螺旋軸を基板面に平行なある優先方位に揃える手
段としては強磁場中で等方性液体の状態から液晶相に相
転移するまで徐冷する方法、機械的な剪断を与える方法
も可能であるが、実用的ではない。有機或いは無機の薄
膜を形成し、一定な方向に布等で、ラビングする方法は
実用的であシ、ネマチック液晶を一様に配列する手段と
して広く用いられている。但し、強誘電性を示す液晶化
合物の場合、一般にネマチック液晶の場合より一様配列
が得られに<<、ネマチック液晶の場合に有効な全ての
膜が適用できるわけではない。しかし、現時点でもポリ
イミド系の有機族に一様配向が得られるものが見つかっ
ている。ラビングによる場合には2枚の基板のラビング
方向が反平行方向となるようにする。
As a means of aligning the helical axis of the liquid crystal to a certain preferential orientation parallel to the substrate surface, it is also possible to slowly cool the liquid crystal in a strong magnetic field until it undergoes a phase transition from an isotropic liquid state to a liquid crystal phase, or to apply mechanical shearing. However, it is not practical. A method of forming an organic or inorganic thin film and rubbing it in a certain direction with a cloth or the like is practical and widely used as a means of uniformly arranging nematic liquid crystals. However, in the case of a liquid crystal compound exhibiting ferroelectricity, a more uniform alignment is generally obtained than in the case of a nematic liquid crystal, so not all films that are effective in the case of a nematic liquid crystal can be applied. However, at present, polyimide-based organic groups that can achieve uniform orientation have been found. In the case of rubbing, the rubbing directions of the two substrates should be antiparallel.

液晶素子10と光源19との間にはチョッパ20を設け
る。本実施例においてはチョッパ20として透光部21
を等間隔に8ケ有する回転円板を用いた。透光部21の
直径と透光部21間隔とは等距離である。チョッパ20
の駆動はパルスモータ22によシ行う。23はパルスモ
ータ22の駆動装置であシ24はパルス発振器である。
A chopper 20 is provided between the liquid crystal element 10 and the light source 19. In this embodiment, the light-transmitting part 21 is used as the chopper 20.
A rotating disk having 8 equally spaced disks was used. The diameter of the transparent portion 21 and the interval between the transparent portions 21 are equidistant. chopper 20
is driven by a pulse motor 22. 23 is a drive device for the pulse motor 22, and 24 is a pulse oscillator.

パルス発振器24から発振されたクロックパルスCRけ
駆動装置23と7リツプ70ツブ回路25に入る。26
は制御装置であり、クロックパルスCPsを発振し、フ
リップフロップ回路25から出るクロックパルスCP2
と制御装置26から出るクロックパルスCP sとは排
他的オアゲート11に入る。排他的オアゲート11から
出たクロックパルスCP4け液晶素子用層、動装置27
に入り、クロックパルスCP5として液晶素子10に至
る。
A clock pulse generated from a pulse oscillator 24 enters a CR drive device 23 and a 7-lip 70-tub circuit 25. 26
is a control device which oscillates clock pulses CPs and outputs clock pulses CP2 from the flip-flop circuit 25.
and the clock pulse CP_s coming from the control device 26 enter the exclusive-OR gate 11. Clock pulse CP4 output from exclusive OR gate 11, liquid crystal element layer, dynamic device 27
and reaches the liquid crystal element 10 as a clock pulse CP5.

CPI、C20、CPsの関係は第15図の通りであり
、図中(a)はCPI を、(b)はチョッパを通過す
る光を、(C)はC20を夫々示す。また(d)はCP
sによるon(光透過)状態を、(e)はCF2による
off(光遮蔽)状態を示す。更にCP2〜cP5と透
過光との関係を次表第3表に示す。このようにしてチョ
ッパ20け光源19からの光を折続させて液晶素子10
に入射させる。
The relationship between CPI, C20, and CPs is as shown in FIG. 15, where (a) shows CPI, (b) shows light passing through the chopper, and (C) shows C20. Also, (d) is CP
(e) shows the on (light transmission) state due to s, and the off (light shielding) state due to CF2. Furthermore, the relationship between CP2 to cP5 and transmitted light is shown in Table 3 below. In this way, the chopper 20 folds the light from the light source 19 and displays the liquid crystal element 10.
Inject it into the

(a)のような交流矩形波を印加した時、この液晶素子
10に入射した強度一定の光は第16図(b)のように
変調される。一方策14図におけるチョッパ20は一定
の強度の光を第17図のように断続させる1動きを持っ
ている。ここで、第14図のようにチョッパ20と液晶
素子10を配置し、光源19から一定の強度1oの光が
チョッパ20、液晶素子10を透過してどのように変調
されるかを第18図に示す。(1)はON状態つまり透
過状態を示し、(2)はOFF’状態つまりS蔽状態を
示す。また(a)はチョッパを透過した光の強度を示し
、(b)は液晶素子に印加する電圧波形を示し、(C)
は最終的に得られる光の強度工を示す。
When an alternating current rectangular wave as shown in FIG. 16(a) is applied, the light having a constant intensity incident on the liquid crystal element 10 is modulated as shown in FIG. 16(b). On the other hand, the chopper 20 in FIG. 14 has one movement of intermittent light of a constant intensity as shown in FIG. 17. Here, the chopper 20 and the liquid crystal element 10 are arranged as shown in FIG. 14, and FIG. Shown below. (1) indicates an ON state, that is, a transmission state, and (2) indicates an OFF' state, that is, an S-shielding state. Also, (a) shows the intensity of light transmitted through the chopper, (b) shows the voltage waveform applied to the liquid crystal element, and (C) shows the voltage waveform applied to the liquid crystal element.
indicates the final light intensity.

((1)に示したように、ちょうど光がチョッパ8を通
過する時に正の電界(ここでは液晶素子を透過する光量
が大きくなる方を正に取ることにした)を、遮蔽した時
に負の電界を印加するようにすると、最終的に透過する
光強度Iは(C)左図のようになる。これとは逆に(2
)に示したように電界の符号を反転させると最終的な光
強度■は(C)右図のようになる。両者を比較すると明
らかに明暗のコントラストがついておシ、光スィッチと
しての機能を有していることが判る。すなわち、第14
図の構成にすることによって第18図(b)に示したよ
うな交流により強誘電性を有する液晶を用いた液晶素子
10を駆動し、光をスイッチすることができるようにな
った。
(As shown in (1), when the light passes through the chopper 8, the positive electric field (here, the positive electric field is taken to be the one that increases the amount of light that passes through the liquid crystal element), but when the light is blocked, the negative electric field When an electric field is applied, the final transmitted light intensity I becomes as shown in the left figure (C).On the contrary, (2
) When the sign of the electric field is reversed as shown in (C), the final light intensity ■ becomes as shown in the right figure (C). Comparing the two, it can be seen that there is a clear contrast between light and dark, and that they function as a light switch. That is, the fourteenth
By adopting the configuration shown in the figure, it has become possible to drive the liquid crystal element 10 using a ferroelectric liquid crystal using alternating current as shown in FIG. 18(b) and switch light.

上記液晶が強誘電性を示す75Cで透過する光の波形を
観測した。観測した特性曲線を第19図に示した。この
時のon、offのコントラストとして4.8:1が得
られた。
The waveform of light transmitted through the liquid crystal at 75C, which exhibits ferroelectricity, was observed. The observed characteristic curve is shown in FIG. At this time, an on/off contrast of 4.8:1 was obtained.

第20図は本発明の第7の実施例であり、前記第6の実
施例と異なる点は(1)液晶層中に二色性色素を含有せ
しめた点、(2)偏光板を素子の片側のみに設けた点の
2点にある。二色性色素は1,4−ジアミノ−2−([
)−m−ブチルフェノキシカルボニル)アントラキノン
であり、液晶(BOBANBCIには3wt%混合させ
た。偏光板の偏差軸はラビング方向から約20°ずらし
た。他の構成、製法は第6の実施例に準する。
FIG. 20 shows a seventh embodiment of the present invention, which differs from the sixth embodiment in that (1) a dichroic dye is contained in the liquid crystal layer, (2) a polarizing plate is used as an element. There are two points provided only on one side. Dichroic dyes are 1,4-diamino-2-([
)-m-butylphenoxycarbonyl) anthraquinone, and was mixed at 3 wt% in the liquid crystal (BOBANBCI).The deviation axis of the polarizing plate was shifted by about 20 degrees from the rubbing direction.Other configurations and manufacturing methods are described in the sixth example. comply.

第6の実施例に準じて75tTでの透過光測定を行った
ところ、第21図に示した透過光の波形を得た。この場
合のコントラスト比は26:1であ二色性を持たせる為
には通常上記のような化合物に少量の(数%程度)二色
性色素を添加する手法を用いる。二色性色素は液晶ディ
スプレイ用として数多くの物質が合成されている。アゾ
系、アゾメチン系、アントラキノン系、キノフタレイン
系等の二色性色素が有シ、一種あるいは二種以上混合し
て用いる。
When the transmitted light was measured at 75 tT according to the sixth embodiment, the waveform of the transmitted light shown in FIG. 21 was obtained. The contrast ratio in this case is 26:1, and in order to impart dichroism, a method is usually used in which a small amount (about several percent) of dichroic dye is added to the above-mentioned compound. Many dichroic dyes have been synthesized for use in liquid crystal displays. Dichroic dyes such as azo, azomethine, anthraquinone, and quinophthalein can be used singly or in combination.

第22図は本発明の第8の実施例を示す。本実施例では
第2図或いは第20図の液晶素子10を2つ作成し、ラ
ビング方向が平行になるように重ね合わせた。本実施例
はプリンタ用の光スィッチとして有効ならしめるように
クロックパルスCP2を用いて明暗状態を切り替えるよ
うにしている。
FIG. 22 shows an eighth embodiment of the invention. In this example, two liquid crystal elements 10 shown in FIG. 2 or 20 were produced and stacked one on top of the other so that the rubbing directions were parallel to each other. In this embodiment, a clock pulse CP2 is used to switch between bright and dark states so as to make it effective as an optical switch for a printer.

28は制御用の信号発生器であり、29は電子スイッチ
である。一方、電子スイッチ29には入力側に2つの端
子a、bが設けられており、いずれもパルス発信器24
と接続されている。パルス発信器24はクロックパルス
CP、を発生する。クロックパルスCP !け直接端子
aに入るようになっているが、端子すには反転回路のイ
ンバータ25を介して入るようになっている。従って反
転回路のインバータ25を経て端子すに入るクロックパ
ルスはCPIでちる。CPt とCF2 との関係は第
23図の通りである。第23図において(a)はCPI
  を、(b)はCPI を示す。
28 is a control signal generator, and 29 is an electronic switch. On the other hand, the electronic switch 29 is provided with two terminals a and b on the input side, both of which are connected to the pulse generator 24.
is connected to. A pulse generator 24 generates a clock pulse CP. Clock pulse CP! It is designed to directly enter terminal a, but it is designed to enter terminal A via an inverter 25 of an inverting circuit. Therefore, the clock pulse entering the terminal via the inverter 25 of the inverting circuit is equal to CPI. The relationship between CPt and CF2 is shown in FIG. In Figure 23, (a) is CPI
, (b) shows CPI.

2つの液晶素子10を、堅勤させ、ON状態、OF’F
状態それぞれの透過した光の波形を第6の実施例と同じ
条件で測定した結果を第23図に示す。ON状態とOF
’F状態はCF2により電子スイッチ29の接続を切り
替えることにより実現される。第4表はスイッチの切り
替えによる透過光状態をまとめたものである。
The two liquid crystal elements 10 are kept in the ON state and OFF'F.
FIG. 23 shows the results of measuring the waveform of the transmitted light in each state under the same conditions as in the sixth embodiment. ON state and OF
The 'F state is realized by switching the connection of the electronic switch 29 using CF2. Table 4 summarizes the state of transmitted light depending on the switching of the switch.

電子スイッチ29がaに接続している場合には2つの液
晶素子10に電界CP、が印加され、この時透過した光
の波形は第24固在図(ON状態)のようになる。一方
、スイッチ29の接続がbの場合には一方の液晶素子1
0には上界CP、が、もう一方の液晶素子10には電界
CP、が印加され、この時には第24固有図(OF’F
状態)のような透過光となる。第24図は電界CPI 
として100Hz、15Vの交流矩形波を用いた時の透
過光を示したもので、この時コントラスト比2.5:1
が得られた。伺、2つの液晶素子10を使用する場合に
は、原理から判るように4枚の偏光板は必ずしも必要で
なく、3枚で十分である。
When the electronic switch 29 is connected to a, an electric field CP is applied to the two liquid crystal elements 10, and the waveform of the transmitted light at this time becomes as shown in the 24th solid diagram (ON state). On the other hand, if the connection of the switch 29 is b, one of the liquid crystal elements 1
0, an upper field CP is applied to the other liquid crystal element 10, and an electric field CP is applied to the other liquid crystal element 10. At this time, the 24th eigenfigure (OF'F
state). Figure 24 shows electric field CPI
This shows the transmitted light when using a 100Hz, 15V AC square wave, and the contrast ratio is 2.5:1.
was gotten. However, when two liquid crystal elements 10 are used, as can be seen from the principle, four polarizing plates are not necessarily necessary, and three are sufficient.

本実施例のように液晶素子を二重にした構造によれば液
晶素子自体が非常例薄いものであるから円板を回転させ
るタイプのチョッパを用いる場合に比べて小型かつ薄型
の光スィッチが得られる。
According to the structure in which the liquid crystal element is doubled as in this embodiment, the liquid crystal element itself is extremely thin, so a smaller and thinner optical switch can be obtained compared to the case where a chopper of the type that rotates a disk is used. It will be done.

伺、光スィッチの場合は表示素子に比べ、特に7リツカ
(チラッキ)の防止を考慮する必要性は少ない。
In the case of optical switches, compared to display elements, there is less need to particularly consider preventing flickering.

第25図は第6〜8の実施例を階調表示に利用した応用
例(第9の実施例)の説明図である。図中(1)〜(V
)は夫々チョッパ駆動のパターンを示しており、(1)
はチョッパの透光のタイミングと正電荷Voのタイミン
グとを一致させた場合を、Mけチョッパの透光のタイミ
ングと負電荷−Voのタイミングとを一致させた場合を
示す。そして(11)〜(V)け1と■の中間に段階的
に位置して夫々チョッパの透光のタイミングと正電荷V
。のタイミングとを一部重複させた場合を示す、(a)
け印加電圧を示し、(+))は透光のタイミングを示し
、(b)中、実線部が光路遮断を、断線部が透光時機を
示す。また各(C)はチョッパを出た光の強度を示す。
FIG. 25 is an explanatory diagram of an application example (ninth embodiment) in which the sixth to eighth embodiments are used for gradation display. In the figure (1) to (V
) respectively indicate chopper drive patterns, (1)
1 shows a case where the timing of the light transmission of the chopper and the timing of the positive charge Vo are made to match, and a case where the timing of the light transmission of the M-type chopper and the timing of the negative charge -Vo are made to match. Then, (11) to (V) are located stepwise between ke 1 and
. (a) shows a case where the timing of
(+) indicates the timing of light transmission; in (b), the solid line portion indicates the optical path interruption, and the disconnected portion indicates the timing of light transmission. Further, each (C) indicates the intensity of light exiting the chopper.

図から明らかなようにパターンが(1)からMに移るに
従って明暗状態が段階的に暗い方向へ向かう。このよう
に本発明によれば階調表示も可能である。
As is clear from the figure, as the pattern moves from (1) to M, the bright and dark state gradually becomes darker. As described above, according to the present invention, gradation display is also possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、光学素子から出る
光の強度が光機能材に印加する外場の極性の反転に伴っ
て強弱逆転する特性を有するにもかかわらず、交流駆動
によって高コントラストが得られるという効果がある。
As explained above, according to the present invention, even though the intensity of light emitted from an optical element has a characteristic that its intensity is reversed with the reversal of the polarity of the external field applied to the optical functional material, AC driving provides high contrast. This has the effect that it can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は強誘電性液晶の印加電界に対する状態を示す図
、第2図、第20図は本発明が適用できる液晶素子の実
施例を示す断面図、第3図は強誘電性液晶分子の螺旋軸
方向と背光板の偏光軸方向との関係を示す説明図、第4
図、第16図は強誘電性液晶の光透過特性図、第5図は
本発明が適用できる強誘電性液晶のパルス電圧Vpに対
する光透過状態の応答を示す特性図、第6図はパルス電
圧列に対する光透過状態の応答を示す特性図、第7図、
第10図、第11図、第12図、第13図。第19図、第21図、第24図は夫々本発明の光学装置
の実施例の駆動波形図、第8図は第7図に示す駆動波形
を実現する回路図、第9図は第8図の回路の各信号のタ
イミング説明図、第14図。第22図は本発明の光学装置の実施クリの構成を示す模
式図、第15図は第14図の実施例で用いるパルス電圧
の説明図、第17図は第14図の実施例のチョッパの特
性図、第18図は第14図の実施例の駆動原理説明図、
第23図は第22図の実施例で用いるパルス電圧の説明
図、第25図は本発明の光学装置の実施例で階調表示を
行う際の駆動波形図である。1・・・強誘電性液晶分子、2・・・螺旋軸、3・・・
基板、4・・・表示電極、5・・・配向制御膜、6・・
・強誘電性液晶層、8・・・交流電源、91.92・・
・偏光板、10・・・液晶素子、19・・・光源、20
・・・チョッパ、21・・・透光部、23.27・・・
駆動装置、24・・・パルス発信器、29・・・電子ス
イッチ、■・・・光強度、V L、C・・・・印加電圧
。代理人 弁理士 高橋明夫禎 l 図(εし)          (b)        
  (C)第 2 図第3図(a)                      
 (b)第 lJ−図〔p刃口tiVt−c嬉  5 図(ζう(b)第  6  図(1))第  7 図第8図第 70 図り9   lノ   図第  12  図拓13図第  14  図第 15 図第 20 図S第  21 図第 22  図0第 23 図
FIG. 1 is a diagram showing the state of a ferroelectric liquid crystal with respect to an applied electric field, FIGS. 2 and 20 are cross-sectional views showing an example of a liquid crystal element to which the present invention can be applied, and FIG. Explanatory diagram showing the relationship between the helical axis direction and the polarization axis direction of the back plate, No. 4
16 is a light transmission characteristic diagram of a ferroelectric liquid crystal, FIG. 5 is a characteristic diagram showing the response of a light transmission state to a pulse voltage Vp of a ferroelectric liquid crystal to which the present invention can be applied, and FIG. 6 is a diagram showing a response of a light transmission state to a pulse voltage Vp. A characteristic diagram showing the response of the light transmission state to the column, FIG.
10, 11, 12, and 13. 19, 21, and 24 are drive waveform diagrams of an embodiment of the optical device of the present invention, FIG. 8 is a circuit diagram realizing the drive waveform shown in FIG. 7, and FIG. 9 is a diagram of the drive waveform shown in FIG. 8. FIG. 14 is a timing explanatory diagram of each signal of the circuit. 22 is a schematic diagram showing the configuration of the optical device according to the present invention, FIG. 15 is an explanatory diagram of the pulse voltage used in the embodiment of FIG. 14, and FIG. 17 is a diagram of the chopper of the embodiment of FIG. 14. Characteristic diagram, FIG. 18 is an explanatory diagram of the driving principle of the embodiment shown in FIG. 14,
FIG. 23 is an explanatory diagram of pulse voltages used in the embodiment of FIG. 22, and FIG. 25 is a drive waveform diagram when performing gradation display in the embodiment of the optical device of the present invention. 1... Ferroelectric liquid crystal molecules, 2... Helical axis, 3...
Substrate, 4... Display electrode, 5... Orientation control film, 6...
・Ferroelectric liquid crystal layer, 8... AC power supply, 91.92...
・Polarizing plate, 10... Liquid crystal element, 19... Light source, 20
...Chopper, 21...Transparent part, 23.27...
Drive device, 24...Pulse transmitter, 29...Electronic switch, ■...Light intensity, VL, C...Applied voltage. Agent Patent Attorney Akio Takahashi Figure (εshi) (b)
(C) Figure 2 Figure 3 (a)
(b) Fig. 1J-Fig. 5 (ζU (b) Fig. 6 (1)) Figure 14 Figure 15 Figure 20 Figure S Figure 21 Figure 22 Figure 0 Figure 23

Claims (1)

Translated fromJapanese
【特許請求の範囲】1、対向面に電極を有する一対の基板間に光機能材を挾
持してなる光学素子を具備し、該光学素子からの放射光の強度が印加する外場の極性の
反転に伴って非対称に変化する特性を有する光機能材を
備えた光学装置において、前記放射光の強度を定める一
極性のパルス・電圧及び逆極性のパルス電圧を所定周期
で該所定周期内の電圧平均値が零となるように前記光機
能材に印加する第1手段と、一方の極性のパルス電圧が印加されたときの前記放射光
強度と他方のパルス電圧が印加されたときの前記放射光
強度とを選択または変更する第2手段とを備えることを
特徴とする光学装置。2、!¥j許請求の範囲第1項記載の光学装置において
、前記第2手段は前記光学素子を通過する光の通路上に
配置されて光を断続させる機能を有する装置であり、か
つこの光の断続と前記パルス電圧の印加とを同期させる
ことを特徴とする光学装置。3、特許請求の範囲第1項記載の光学装置において、前
記第1手段は前記所定周期内における前記パルス電圧の
印加時間を前記電圧信号の印加時間よシも充分短くしか
つ該パルス電圧の波高値の絶対値を該電圧信号の波高値
の絶縁値よりも充分大きくする手段であることを特徴と
する光学装置。4、特許請求の範囲第1項、第2項または第3項記載の
光学装置において、前記光機能材が強誘電性液晶である
ことを特徴とする光学装置。5、%許請求の範囲第1項、第2項、第3項または第4
項記載の光学装置において、前記光学素子は光透過型素
子であることを特徴とする光学装置。6、対向面に電極を有する一対の基板間に光機能材を挾
持してなる光学素子を具備し、該光学素子からの放射光の強度が印加する外場の極性の
反転に伴って非対称に変化する特性を有する光機能材を
備えた光学装置において、前記放射光の強度を定める一
極性のパルス電圧及び逆極性のパルス電圧を所定周期で
該所定周期内の電圧平均値が零となるように前記光機能
材に印加する第1手段と、前記光学素子を通過する光の通路上に配置されて光を断
続させる機能を有しかつこの光の断続と前記−極性のパ
ルス電圧の印加とが同期するようにしたチョッパとを備
えることを特徴とする光学装置。7、特許請求の範囲第6項記載の光学装置において、前
記チョッパは前記−極性のパルス電圧の印加と光の通過
とを同期させて透過光を明状態とし、一方前記一極性の
パルス′成圧の印加と光路遮断とを同期させて透過光を
暗状態として明暗両状態の切り替え機能を有することを
特徴とする光学装置。8、特許請求の範囲第6項記載の光学装置において、前
記チョッパは前記−極性のパルス電圧の印加時機と光の
通過時機とを一部重複させて同期させることにより前記
光学素子から出る透過光の階調機能を有することを特徴
とする光学装置。9、特許請求の範囲第6項、第7項または第8項記載の
光学装置において、前記チョッパは多色性強誘電性液晶
素子であることを特徴とする光学装置。10、特許請求の範囲第6項、第7項または第8項記載
の光学装置において、前記チョッパは透光部を有する回
転体であることを特徴とする光学装置。11、特許請求の範囲第6項、第7項、第8項、第9項
または第10項記載の光学装置において、前記光機能材
が強誘電性液晶であることを特徴とする光学装置。12、特許請求の範囲第11項記、成の光学装置におい
て、前記強誘電性液晶はそのら静軸の向きが前記各基板
面に略平行なある優先方位に揃って配列していることを
特徴とする光学装置。
[Claims] 1. An optical element comprising an optical functional material sandwiched between a pair of substrates having electrodes on opposing surfaces, wherein the intensity of emitted light from the optical element changes the polarity of an applied external field. In an optical device equipped with an optical functional material having a characteristic that changes asymmetrically with reversal, a pulse/voltage of one polarity that determines the intensity of the emitted light and a pulse voltage of opposite polarity are applied at a predetermined period to a voltage within the predetermined period. a first means for applying voltage to the optical functional material such that the average value is zero; and the intensity of the emitted light when a pulse voltage of one polarity is applied and the emitted light when a pulse voltage of the other polarity is applied. and second means for selecting or changing the intensity. 2,! In the optical device according to claim 1, the second means is a device disposed on the path of light passing through the optical element and has a function of intermittent light, and the second means is a device having a function of intermittent light. and the application of the pulse voltage are synchronized. 3. In the optical device according to claim 1, the first means makes the application time of the pulse voltage within the predetermined cycle sufficiently shorter than the application time of the voltage signal, and An optical device characterized in that it is means for making the absolute value of the high value sufficiently larger than the insulation value of the peak value of the voltage signal. 4. An optical device according to claim 1, 2, or 3, wherein the optical functional material is a ferroelectric liquid crystal. 5. Percentage of Claims 1st, 2nd, 3rd or 4th
3. The optical device according to item 1, wherein the optical element is a light transmission type element. 6. Equipped with an optical element formed by sandwiching an optical functional material between a pair of substrates having electrodes on opposing surfaces, the intensity of emitted light from the optical element is asymmetrical as the polarity of the applied external field is reversed. In an optical device equipped with an optical functional material having changing characteristics, a pulse voltage of one polarity and a pulse voltage of opposite polarity that determine the intensity of the emitted light are applied at a predetermined period so that the average voltage value within the predetermined period becomes zero. a first means disposed on the path of light passing through the optical element and having a function of intermittent light, and a first means disposed on the path of light passing through the optical element and having a function of intermittent the light and application of the pulse voltage of the - polarity; An optical device comprising a chopper and a chopper that are synchronized. 7. In the optical device according to claim 6, the chopper synchronizes the application of the - polarity pulse voltage and the passage of light to bring the transmitted light into a bright state, while the unipolar pulse 'formation' An optical device characterized by having a function of switching between bright and dark states by synchronizing the application of pressure and blocking of the optical path to turn transmitted light into a dark state. 8. In the optical device according to claim 6, the chopper synchronizes the application timing of the - polarity pulse voltage and the passage timing of the light by partially overlapping each other, thereby reducing the transmitted light emitted from the optical element. An optical device characterized by having a gradation function. 9. The optical device according to claim 6, 7, or 8, wherein the chopper is a polychromatic ferroelectric liquid crystal element. 10. The optical device according to claim 6, 7, or 8, wherein the chopper is a rotating body having a transparent portion. 11. An optical device according to claim 6, 7, 8, 9, or 10, wherein the optical functional material is a ferroelectric liquid crystal. 12. In the optical device as set forth in claim 11, it is provided that the ferroelectric liquid crystals are aligned in a preferential direction with their static axes substantially parallel to each substrate surface. Featured optical device.
JP58060826A1983-04-081983-04-08Optical deviceGrantedJPS59187324A (en)

Priority Applications (5)

Application NumberPriority DateFiling DateTitle
JP58060826AJPS59187324A (en)1983-04-081983-04-08Optical device
EP84103810AEP0123181B1 (en)1983-04-081984-04-06Electrooptical device
KR1019840001808AKR890005338B1 (en)1983-04-081984-04-06Optic devices
US06/597,746US4634226A (en)1983-04-081984-04-06Optical apparatus using ferroelectric liquid crystal and switching unit for emitted light
DE8484103810TDE3484827D1 (en)1983-04-081984-04-06 ELECTROOPTICAL DEVICE.

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP58060826AJPS59187324A (en)1983-04-081983-04-08Optical device

Publications (2)

Publication NumberPublication Date
JPS59187324Atrue JPS59187324A (en)1984-10-24
JPH0585886B2 JPH0585886B2 (en)1993-12-09

Family

ID=13153540

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP58060826AGrantedJPS59187324A (en)1983-04-081983-04-08Optical device

Country Status (5)

CountryLink
US (1)US4634226A (en)
EP (1)EP0123181B1 (en)
JP (1)JPS59187324A (en)
KR (1)KR890005338B1 (en)
DE (1)DE3484827D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6228717A (en)*1985-07-301987-02-06Sharp CorpMethod for driving liquid crystal display device
WO1990007725A1 (en)*1985-07-311990-07-12Minoru YazakiMethod of driving liquid crystal element
JPH075434A (en)*1993-12-031995-01-10Semiconductor Energy Lab Co LtdMethod for driving liquid crystal electrooptic device
JP2015004870A (en)*2013-06-212015-01-08キヤノン株式会社 Polarizing optical element, driving method thereof, display device, image display device, lens unit, and imaging device

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4697887A (en)*1984-04-281987-10-06Canon Kabushiki KaishaLiquid crystal device and method for driving the same using ferroelectric liquid crystal and FET's
JPS6117127A (en)*1984-07-041986-01-25Hitachi LtdDriving method of optical switch element
US4709995A (en)*1984-08-181987-12-01Canon Kabushiki KaishaFerroelectric display panel and driving method therefor to achieve gray scale
JPS6167833A (en)*1984-09-111986-04-08Citizen Watch Co LtdLiquid crystal display device
JPS6167832A (en)*1984-09-121986-04-08Canon Inc liquid crystal element
JPS6211829A (en)*1985-03-281987-01-20Toshiba CorpActive matrix type liquid crystal display device
DE3689699T2 (en)*1985-06-141994-06-23Semiconductor Energy Lab Optical disk storage with liquid crystal.
US4855976A (en)*1985-06-141989-08-08Semiconductor Energy Laboratory Co., Ltd.Information writing method for an optical disc memory system utilizing a smectic chiral liquid crystal
JPS626225A (en)*1985-07-021987-01-13Semiconductor Energy Lab Co LtdLiquid crystal display device
JPH0712717B2 (en)*1985-07-291995-02-15富士写真フイルム株式会社 Halftone image forming method
DE3630012A1 (en)*1985-09-041987-04-23Canon Kk FERROELECTRIC LIQUID CRYSTAL DEVICE
US4755415A (en)*1985-10-031988-07-05Fuji Photo Film Co., Ltd.Optical shutter array and method for making
JPS6283728A (en)*1985-10-091987-04-17Hitachi Ltd Time-division drive optical switch array
JPS62112128A (en)*1985-11-111987-05-23Semiconductor Energy Lab Co LtdLiquid crystal device
JP2654940B2 (en)*1985-12-241997-09-17キヤノン株式会社 Manufacturing method of electro-optical element
JPS62278540A (en)*1986-05-271987-12-03Canon Inc Liquid crystal element, its alignment control method and its driving method
JPS62284334A (en)*1986-06-031987-12-10Canon Inc liquid crystal device
US4835751A (en)*1986-06-131989-05-30Semiconductor Energy Laboratory, Ltd.Reading system for use with optical disc memory system utilizing a smectic chiral liquid crystal
US4853911A (en)*1986-06-131989-08-01Semiconductor Energy Laboratory Co., Ltd.Optical disc memory system utilizing a smectic chiral liquid crystal
GB8621689D0 (en)*1986-09-091986-10-15Ici PlcLiquid crystal material
EP0263225B1 (en)*1986-10-071992-04-08S.A.R.L. S.T. LagerwallA device for submicrosecond electro-optic modulation in the liquid crystal smectic-a phase
JPH01200232A (en)*1988-02-041989-08-11Sharp Corp Ferroelectric liquid crystal display device
US5202600A (en)*1988-08-311993-04-13Seikosha Co., Ltd.Piezoelectric device and related converting devices
JP2709318B2 (en)*1988-08-311998-02-04セイコープレシジョン株式会社 Liquid crystal panel and conversion device using liquid crystal panel
US5187402A (en)*1988-08-311993-02-16Seikosha Co., Ltd.Piezoelectric device and related converting devices
JPH07104506B2 (en)*1989-03-141995-11-13スタンレー電気株式会社 Ferroelectric liquid crystal panel
US6693696B1 (en)*1992-06-302004-02-17Semiconductor Energy Laboratory Co., Ltd.Electro-optical device
US5920301A (en)*1994-06-101999-07-06Casio Computer Co., Ltd.Liquid crystal display apparatus using liquid crystal having ferroelectric phase and method of driving liquid crystal display device using liquid crystal having ferroelectric phase
US5963187A (en)*1994-06-101999-10-05Casio Computer Co., Ltd.Liquid crystal display apparatus using liquid crystal having ferroelectric phase and method of driving liquid crystal display device using liquid crystal having ferroelectric phase
US5835120A (en)*1994-10-251998-11-10Oki Electric Industry Co., Ltd.Double-resolution optical system for electrophotographic printer
US5808800A (en)1994-12-221998-09-15Displaytech, Inc.Optics arrangements including light source arrangements for an active matrix liquid crystal image generator
US5748164A (en)1994-12-221998-05-05Displaytech, Inc.Active matrix liquid crystal image generator
US5757348A (en)1994-12-221998-05-26Displaytech, Inc.Active matrix liquid crystal image generator with hybrid writing scheme
US5933213A (en)*1995-09-261999-08-03Imation Corp.Apparatus and method for imparting a succession of predetermined latent images on a strip of unexposed light sensitive film
US20010052885A1 (en)*1997-09-122001-12-20Masaya OkitaMethod for driving a nematic liquid crystal
JPH11296150A (en)1998-04-101999-10-29Masaya OkitaHigh-speed driving method for liquid crystal
US8164557B2 (en)*2004-10-292012-04-24Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device and method for driving the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5179370A (en)*1974-12-201976-07-10Casio Computer Co Ltd
JPS5330237U (en)*1976-08-211978-03-15

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3891981A (en)*1973-02-201975-06-24Olivetti & Co SpaDrive circuit for a liquid crystal display
US3881808A (en)*1973-12-071975-05-06Motorola IncLiquid crystal light control device having a high transmission efficiency
US3890628A (en)*1973-10-231975-06-17Motorola IncLiquid crystal light control device and circuit
GB1595861A (en)*1977-02-141981-08-19Citizen Watch Co LtdMatrix drive system for liquid crystal display
JPH0629919B2 (en)*1982-04-161994-04-20株式会社日立製作所 Liquid crystal element driving method
JPS59129837A (en)*1983-01-141984-07-26Canon Inc Time division voltage application method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5179370A (en)*1974-12-201976-07-10Casio Computer Co Ltd
JPS5330237U (en)*1976-08-211978-03-15

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6228717A (en)*1985-07-301987-02-06Sharp CorpMethod for driving liquid crystal display device
WO1990007725A1 (en)*1985-07-311990-07-12Minoru YazakiMethod of driving liquid crystal element
JPH075434A (en)*1993-12-031995-01-10Semiconductor Energy Lab Co LtdMethod for driving liquid crystal electrooptic device
JP2015004870A (en)*2013-06-212015-01-08キヤノン株式会社 Polarizing optical element, driving method thereof, display device, image display device, lens unit, and imaging device

Also Published As

Publication numberPublication date
KR890005338B1 (en)1989-12-22
DE3484827D1 (en)1991-08-29
KR840008997A (en)1984-12-20
EP0123181B1 (en)1991-07-24
US4634226A (en)1987-01-06
JPH0585886B2 (en)1993-12-09
EP0123181A3 (en)1986-11-20
EP0123181A2 (en)1984-10-31

Similar Documents

PublicationPublication DateTitle
JPS59187324A (en)Optical device
JPS58179890A (en)Driving of liquid crystal element
JPH0534672B2 (en)
JP2005070729A (en)Bistable chiral-splay nematic liquid crystal display
JPH01302226A (en)Ferroelectric liquid crystal element
JPS62280824A (en)Driving method for liquid crystal display device
JPH02153322A (en) liquid crystal electro-optical device
KR100297508B1 (en) LCD shutter and its driving method
JPH01177016A (en) Ferroelectric liquid crystal shutter
KR100751188B1 (en) Method for manufacturing ferroelectric liquid crystal display device
CN107209431B (en)Vertical spiral ferroelectric liquid crystal display unit
JPS60235121A (en) Driving method of liquid crystal element
KR101157229B1 (en)Liquid crystal display using ferroelectric liquid crystal and manufacturing method thereof
JP2601244B2 (en) Driving method of liquid crystal element
KR19980014982A (en) Liquid crystal display
KR100802306B1 (en) Liquid Crystal Display and Manufacturing Method Thereof
JPH0731322B2 (en) Liquid crystal element driving method
JP2022099168A (en)Display device control method and display device
JP2022099167A (en)Display device control method and display device
JPH1067987A (en) Liquid crystal electro-optical device
JP2000066169A (en) Liquid crystal display
JPH01161221A (en)Liquid crystal element and its driving method
JP2002040476A (en) Liquid crystal display device
JPH10206824A (en)Liquid crystal device, liquid crystal display device, and liquid crystal optical switch
JPS63213821A (en) Liquid crystal element drive device for optical shutter

[8]ページ先頭

©2009-2025 Movatter.jp