【発明の詳細な説明】[Detailed description of the invention][発明の技術分野]本発明は海洋温度差発電装置I:係り、特g:表層温海
水の取水装−に関する。[発明の技術的背景とその問題点]海洋温度着発tは、高熱源である表層温海水により低沸
点媒体を蒸発させ、蒸発媒体によりタービンおよび発電
機を駆動し、仕事をした蒸発媒体を低熱源である深海水
で凝縮する熱サイクルにより構成される。このような海洋温度差発電においては、設備費の低減化
及び発電出力増加を目指すためCij % (1)冷水
取水管工事の改善、(2)取水邦′をなるべく少くする
、(8)温水取水温度を高くする、等が考えられる。(
8)項に着目すると、現在一般に考えられている海洋温
度差発電における表層温海水(27〜28°C)と水深
500mの冷海水(6〜8℃)との温度差は略20℃で
あり、この温度差が比較的小さいのでプラント効率が悪
く、熱交換器が大きくなりがちである。一方発電装置を
運転するためC二必要な電力は温度差が小ざいほど大き
くなる傾向があり、たとえば5MWPの発電装置Cおい
て、温度差が17℃、20℃、25℃であるとすると、
運転に必要な電力はそれぞれ3.5MW、3MW、2M
Wとなる。即ち温度差が大きいほど低沸点媒体蒸発器で
の熱交換$1を大きくすることができ、タービンへ導く
蒸発量を増大することができるから効率が向上し、送電
端出力を大きくとれ、各機器をコンノくクト化すること
ができる。[発明の目的]゛本発明は表層温海水と冷海水との温度差を実質的(二
大きくしうる有効な手段を提供することを目的とする。[発明の概要]上記目的を達成するためC二本発明[Technical Field of the Invention] The present invention relates to an ocean temperature difference power generation device I, and particularly to a surface warm seawater intake device. [Technical background of the invention and its problems] Ocean temperature landing t evaporates a low boiling point medium using surface warm seawater, which is a high heat source, drives a turbine and a generator with the evaporative medium, and releases the evaporative medium that has done work. It consists of a thermal cycle that condenses deep sea water, which is a low heat source. In this type of ocean temperature difference power generation, in order to reduce equipment costs and increase power generation output, it is necessary to (1) improve cold water intake pipe construction, (2) reduce water intake as much as possible, and (8) improve hot water intake. Possible options include increasing the temperature. (
Focusing on item 8), the temperature difference between surface warm seawater (27-28°C) and cold seawater (6-8°C) at a depth of 500 m is approximately 20°C in ocean thermal energy conversion, which is currently generally considered to be the case. Since this temperature difference is relatively small, plant efficiency is poor and the heat exchanger tends to be large. On the other hand, the electric power required to operate the power generator tends to increase as the temperature difference becomes smaller. For example, in a 5 MWP power generator C, if the temperature differences are 17°C, 20°C, and 25°C,
The power required for operation is 3.5MW, 3MW, and 2M respectively.
It becomes W. In other words, the larger the temperature difference, the larger the heat exchange $1 in the low-boiling point medium evaporator, and the more the amount of evaporation led to the turbine can be increased, resulting in improved efficiency, higher output at the transmission end, and greater efficiency in each device. can be condensed. [Object of the invention] ゛An object of the present invention is to provide an effective means that can substantially increase the temperature difference between surface warm seawater and cold seawater. [Summary of the invention] To achieve the above object C2 invention
【ユよれば、表層温
海水な取水するに際し、トレ一式温水器を海水中1−設
け、海水がこの温水器を通過する間(=太陽光≦二より
暖められた表層温海水を取水するように構成する。[発明の実施例]以下図面を参照して本発明の一実施例を説明する。第1
図に概略構成を示すように、全体を一点鎖線で囲む海洋
温度差発電装置Pはポンプ10によりトレ一式温水’B
Tの表層温海水中≦二回目する・くイブ1】を経て温海
水を取水し、蒸発器12(二より低沸点媒体を蒸発させ
、蒸発媒体は)々イブ13を経てタービン14を態動す
る。タービンで仕事をした蒸発媒体は凝縮器+51−与
えられ、深海中C二回目するバイブ16からポンプ17
を経て取水された冷海AC二より凝縮される。凝縮媒体
はポンプ18により蒸発器、12へ与えられ循環する。19はタービン14 により駆動される発電機である。取水された冷海水はパイプ21を経て海中に戻される0
又温海水はパイプ20を経て再びトレ一式温水器Tへ戻
され、トレーを流れる間C二人陽光により暖められ温度
を上昇させ、循環させる。以上は天候が良く日射が得られる場合についでの説明で
あるが、天候が悪く日射が得られない場合には、三方弁
25を切換えて蒸発器12へ流す温海水は堀層温海水中
に開口するバイブ26を経てポンプ27より供給する。そして低温となった温海水はトレ一式温水器Tへ戻すこ
となく三方弁28により海洋へ放流する事により発電を
継続することができる。この場合得られる発電量は好天
の時に比し低下するので部分負荷運転となることは云う
までもない。第2図Fi菖i図の平面図でおり、トレ一式温水器Tの
一実施例を示している。トレ一式温水器Tは、発電所P
の容量C二応じてそのトレーの長さ、流量等が決定され
る。海水はトレーを流れる間C二太陽熱により暖められ
昇温するので暖まった海水が放熱しないよう1ニトレー
の上部5二は太陽光は通し、放熱を防止するカバーを取
付けるのが好ましい。又太陽熱をより有効に利用するた
め(二は、発電所の設置場所を選定する必要があり、そ
うすることにより本発明は更に有効なものとなる。[発明の効果]本発明によれば、太陽光を有効に活用し1表層温海水の
温度を一層高くすることができるので、冷海水との温度
差を大きくすることができ、プラント効率を向上しうる
とともに二、同定格の装置C二おいては各機器をコンパ
クト化することができる利点がある。しかも、トレ一式
温水器は源中C二支持するようC二構成したので潮の干
満に対して影響を受けることなく、海面下一定C二保持
され、安定した取水が可能である。[According to Yu, when taking surface warm seawater, a water heater with a tray set is installed in the seawater, and while the seawater passes through this water heater (= sunlight ≦ 2) [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings.
As the schematic configuration is shown in the figure, the ocean temperature difference power generation device P, which is entirely surrounded by a dashed line, is operated by a pump 10 to provide hot water with a tray set 'B'.
Temperature seawater at the surface layer of T≦Second time - Warm seawater is taken through the evaporator 12 (which evaporates a medium with a lower boiling point than the second), and the turbine 14 is activated through the evaporator 13. . The evaporative medium that has done work in the turbine is given to a condenser +51-, and is transferred from a vibe 16 to a pump 17 for the second time in the deep sea.
It is condensed from the cold sea AC2 that is taken in through the process. The condensed medium is provided by a pump 18 to the evaporator 12 for circulation. 19 is a generator driven by the turbine 14. The cold seawater taken is returned to the sea via pipe 21.
Also, the warm seawater is returned to the tray set water heater T through the pipe 20, and while flowing through the tray, it is warmed by the sunlight C, raising the temperature and circulating it. The above explanation is based on the case when the weather is good and sunlight is obtained, but when the weather is bad and sunlight is not obtained, the three-way valve 25 is switched and the warm seawater flowing to the evaporator 12 is opened into the warm seawater in the moat layer. It is supplied from a pump 27 through a vibrator 26. Then, the heated seawater, which has become low temperature, is discharged into the ocean by the three-way valve 28 without being returned to the tray water heater T, so that power generation can be continued. In this case, it goes without saying that the amount of power generated will be lower than in good weather, resulting in partial load operation. Fig. 2 is a plan view of Fig. 2, showing an embodiment of the tray-equipped water heater T. The tray set water heater T is the power plant P
The length, flow rate, etc. of the tray are determined according to the capacity C2. As seawater flows through the tray, it is warmed by solar heat and rises in temperature, so in order to prevent the warmed seawater from radiating heat, it is preferable to install a cover on the upper part 52 of the tray to allow sunlight to pass through and prevent heat radiation. Also, in order to utilize solar heat more effectively (secondly, it is necessary to select the installation location of the power plant, this makes the present invention even more effective. [Effects of the Invention] According to the present invention, By effectively utilizing sunlight, the temperature of surface warm seawater can be raised even higher, increasing the temperature difference between it and cold seawater, improving plant efficiency. This has the advantage of being able to make each device more compact.Moreover, since the tray set water heater has a C2 configuration that supports C2 in the source, it is not affected by the ebb and flow of the tide and can be placed at a constant level below sea level. C2 is retained and stable water intake is possible.
【図面の簡単な説明】[Brief explanation of drawings]第1図は本発明による海洋温度差発電装置の一実施例を
示す概略構成図、第2図は第1図の平面図である。12・・・蒸発器 14・・・タービン15・
・・凝縮器 19・・・発電機T・・・トレ一
式温水器FIG. 1 is a schematic configuration diagram showing an embodiment of the ocean temperature difference power generation device according to the present invention, and FIG. 2 is a plan view of FIG. 1. 12... Evaporator 14... Turbine 15.
... Condenser 19 ... Generator T ... Tray set water heater