Movatterモバイル変換


[0]ホーム

URL:


JPS59156325A - Indirect blood pressure measuring apparatus - Google Patents

Indirect blood pressure measuring apparatus

Info

Publication number
JPS59156325A
JPS59156325AJP58030500AJP3050083AJPS59156325AJP S59156325 AJPS59156325 AJP S59156325AJP 58030500 AJP58030500 AJP 58030500AJP 3050083 AJP3050083 AJP 3050083AJP S59156325 AJPS59156325 AJP S59156325A
Authority
JP
Japan
Prior art keywords
pressure
volume
cuff
blood
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58030500A
Other languages
Japanese (ja)
Other versions
JPH0131370B2 (en
Inventor
岸岡 和也
憲一 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medtech Supply Corp
Original Assignee
Elquest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elquest CorpfiledCriticalElquest Corp
Priority to JP58030500ApriorityCriticalpatent/JPS59156325A/en
Priority to US06/491,984prioritypatent/US4524777A/en
Publication of JPS59156325ApublicationCriticalpatent/JPS59156325A/en
Publication of JPH0131370B2publicationCriticalpatent/JPH0131370B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】この発明は血圧゛?連続的かつ全自動的に測定でさるよ
うにした間接的血圧測定方法に関する。
[Detailed Description of the Invention] This invention is based on blood pressure? This invention relates to an indirect blood pressure measurement method that performs continuous and fully automatic measurement.

周知θつように従来一般の血圧測定装置1′1は、適当
な劾j↓j1テ、例えば腕の動脈に外部から圧力を加え
るとその圧力が最高血圧以上ならばこび)動脈に血流が
なくケリ、散設!・血圧と最低面圧との中間にあれはこ
の切1!i Vc圧着した血流−ざ検出器に血流音が検
出され、iたIDPi、圧力が最低血圧より低くなれば
面幅は存在しても血流音は生じないか′fには極めてO
?1.弱となること?利用して、最高血圧、最低血圧の
何れ力)一方ど連続的に測定する装置ぞある。
As is well known, the conventional general blood pressure measuring device 1'1 calculates the blood flow in the artery by applying an external pressure to the artery in the arm (if the pressure exceeds the systolic blood pressure). Nakubuteri, scattered!・That is the cutout between the blood pressure and the lowest surface pressure! If the blood flow sound is detected by the blood flow detector that is crimped to Vc, and the pressure is lower than the diastolic blood pressure, there will be no blood flow sound even if the surface width is present.
? 1. To be weak? There are devices that can be used to continuously measure both systolic and diastolic blood pressure.

L力・し上記のような血圧測定装置においては、最高血
圧、最低血圧のうち何れか一方しか連続的に測定と行う
ことがでさす、最高、最低血圧を共に同時に測定?行い
たい場合の要求?満足することかでさなかった。疋た最
高、最低血圧の同時測定のみならず血圧波形の全変動状
態を記録することは、医学上さねめで利用範囲が広く、
従来このような血圧測定装置aは要望ざnながらも・こ
q要望に応える装置がみあたらなかった。
With the blood pressure measuring device described above, only one of the systolic and diastolic blood pressures can be measured continuously.Can both the systolic and diastolic blood pressure be measured at the same time? Request if you want to do it? I was not satisfied. Not only the simultaneous measurement of maximum and diastolic blood pressure, but also the recording of all fluctuations in the blood pressure waveform is medically important and has a wide range of applications.
Conventionally, there has been a demand for such a blood pressure measuring device (a), but no device has been found that meets this demand.

そこで、本出願人は先に特願昭52−ILfiΦ()2
号において、容積補償法によって最高血圧、最低血圧お
よび血圧波形の全変動状態ビ測定する装置nと提案した
この容積補償法による血圧測定は生体外から血管に外圧
を加え脈動する血管の逆位長当りの容積を一定に保つこ
とで生体外圧と血管内圧すなわち血圧と?平衡させ、こ
の状態と維持して前nelf’p圧?測定することによ
り血圧の連続測定2行うものである。
Therefore, the present applicant first applied for the patent application No. 52-ILfiΦ()2.
In this issue, we proposed a device for measuring systolic blood pressure, diastolic blood pressure, and all fluctuations in blood pressure waveforms using the volume compensation method. Blood pressure measurement using this volume compensation method involves applying external pressure to a blood vessel from outside the body and measuring the inverted length of a pulsating blood vessel. By keeping the per unit volume constant, the external pressure and intravascular pressure, that is, blood pressure? Equilibrate and maintain this state before nelf'p pressure? By measuring blood pressure, continuous measurement 2 is performed.

ところで、上述した先願装置においては後述するサーボ
目標Ilαの設定や血圧測定の記録などbで特殊な測定
技術が要求されるとともt/c測定操作が相当vc繁雑
であった。
By the way, in the device of the prior application described above, special measurement techniques are required for setting the servo target Ilα, recording of blood pressure measurement, etc., which will be described later, and the t/c measurement operation is considerably complicated.

こα)発明は上記の串消に話み、血圧と連続的かつ全自
動的に測定する間捉的血圧ン則定方法?提供するもので
、カフを介して被測定部位の動脈に外圧(カラ圧)?加
え、この動脈の血圧とカフ圧とと一致させる過程と、前
記血圧とカフ圧とが一致したとざのカフ圧?血圧として
表示する過程と?全自動的に行うことを特徴とする。
This α) invention is based on the above-mentioned question, and is an intermittent blood pressure determination method that continuously and fully automatically measures blood pressure? Does it provide external pressure (cara pressure) to the artery at the measurement site through the cuff? In addition, the process of matching the arterial blood pressure with the cuff pressure, and the cuff pressure at the point where the blood pressure and cuff pressure match? What is the process of displaying it as blood pressure? It is characterized by being fully automatic.

以下、この発明について詳細Qで説明する。This invention will be explained in detail below.

乏ず、この発明による血圧測定方法の原理について説明
する。この発明は容積補償法に基づくものである。容積
補償法は血管に流れる血液の圧力(血圧)P6と血管に
かかる外圧(カフ圧)Pcとを常時一定に保つことによ
り、血管壁と無負荷状−(すなわち圧力のか力)らlい
自然な状し)に維付し、こりとさのカフ圧を血圧として
抽出する方法である。従って容積補償法で血圧の測定と
行うには、Hji fが無負荷状態にあること?検出す
ることと・この状態と維持することの1点が最も重要な
課題となる。
First, the principle of the blood pressure measuring method according to the present invention will be explained. This invention is based on a volume compensation method. The volume compensation method maintains the pressure of blood flowing through the blood vessel (blood pressure) P6 and the external pressure (cuff pressure) Pc applied to the blood vessel at a constant constant level, thereby naturally reducing the unloaded state (i.e., pressure force) between the blood vessel wall and the blood vessel wall. In this method, the cuff pressure of the stiffness is maintained as the blood pressure. Therefore, in order to measure blood pressure using the volume compensation method, Hjif must be in an unloaded state. The most important issues are detection and maintenance of this state.

ところで、脈圧Oでよる血管壁の振動の振幅は、平均カ
フl(: J’ cと平均血圧F1とが一致したとさに
最大となることが知られている。そして、血管壁cv伽
’i’fJは血管の単位長当りの容積(以下単に血戦二
の容積という)とl対lに対応するから、結局、血戦′
の容積?逐次検出し、その変化計(脈圧による)が最大
となるような平均カフ圧口?見い出せばこれが平均血圧
Pbと一致することvc7Zる。゛従って血管と無負荷
状態に保つため【ては、■ず容積変化が最大となる平均
カフ圧Pc(=Pb)を検出し、次にこの平均カフ圧F
τに上述し7j mL圧?打ち消すための変化分ΔPc
を21<畳すればよい。
By the way, it is known that the amplitude of the vibration of the blood vessel wall due to the pulse pressure O becomes maximum when the average cuff l (: J' c and the average blood pressure F1 match. 'i'fJ corresponds to the volume per unit length of the blood vessel (hereinafter simply referred to as the volume of Blood War II) and l to l, so in the end, Blood War'
The volume of? Average cuff pressure port that is detected sequentially and whose change meter (based on pulse pressure) is maximum? If found, it will be found that this matches the average blood pressure Pb. Therefore, in order to maintain the blood vessel in an unloaded state, first detect the average cuff pressure Pc (=Pb) at which the volume change is maximum, and then calculate the average cuff pressure F
7j mL pressure mentioned above for τ? Change amount ΔPc for canceling
All you have to do is fold 21<.

そしてこの無負荷状態においては血管壁CでGコ何らの
力も作用しないから血管σ)容積は一定に保たれる0次に、血管の容積は血管?挾むように対間して配置され
た発光ダイオード(1,EL))とフォトトランジスタ
からなるツC学センサ(以ド、容積センサという)Vr
Cよって検出ぎnる。すなわち、血管を流しる血液(赤
血球)に含fれるヘモグロビンは可視光領域に強い吸収
帯?持っているので、血管の容積が太さいけど前記フォ
トトランジスタに到達する透過元社が減少する。従って
血管に印加されるカフ圧Pcが増加し血管の容積が減少
すると・透過ツC計が増しフォトトランジスタの出方型
1王(p)下容積信号という)Svが高くなる0テた、
脈圧による容積変化が大さいほど容積信号S vの振幅
も大さくなり、血管の容積が一定ならば容積信号Svも
一定′と婦。こうして、血・管の容積は容積センサtで
よって検出きれる。
In this unloaded state, no force acts on the blood vessel wall C, so the volume of the blood vessel σ) remains constant.0 Next, what is the volume of the blood vessel? A volumetric sensor (hereinafter referred to as a volumetric sensor) Vr consisting of a light emitting diode (1, EL) and a phototransistor arranged in a pair in a sandwiching manner.
It is detected by C. In other words, does hemoglobin contained in blood (red blood cells) flowing through blood vessels have a strong absorption band in the visible light region? Because of this, although the volume of the blood vessel is large, the amount of transmission that reaches the phototransistor is reduced. Therefore, when the cuff pressure Pc applied to the blood vessel increases and the volume of the blood vessel decreases, the transmittance C meter increases and the phototransistor output type 1 (p) lower volume signal) Sv increases.
The larger the volume change due to pulse pressure, the larger the amplitude of the volume signal Sv, and if the volume of the blood vessel is constant, the volume signal Sv is also constant. In this way, the volume of the blood vessel/vessel can be detected by the volume sensor t.

上述したところ?要約すると、容積補償法においては・
容積センサから得られる容積信号5vVc基づいて、容
積イB号Svの脈波成分(以下容積脈波信号という)S
gが最大となるような平均カフ圧■?設定し、次にぜ積
脈波イご号8gがゼロとなるように(すなわち血管の容
積が一定となるようCで)変化分△Pc2平均カフ圧匹
に重畳すれば、このとさのカフ圧Pc(=Pc+ΔPc
)が時々刻々変化する血圧と等しくなるということであ
る。
As mentioned above? To summarize, in the volume compensation method,
Based on the volume signal 5vVc obtained from the volumetric sensor, the pulse wave component (hereinafter referred to as volume pulse wave signal) S of volume I B Sv
Average cuff pressure that maximizes g?■? Then, by superimposing the change ΔPc2 on the average cuff pressure so that the blood pulse wave Igo 8g becomes zero (in other words, at C so that the volume of the blood vessel is constant), the cuff of this tosa Pressure Pc (=Pc+ΔPc
) is equal to the ever-changing blood pressure.

以下−図面に基づいて本発明の実tffL例?説明する
O第1図は本発明の一実施例の梅成?示すブロック図であ
り、この図VCおいて1は円環状のカフである。このカ
フ圧は被測定部位(本実施例においては指)2VC外圧
?印加するものであり、その内壁3,3は弾性薄膜から
なり、指2の外j剤に圧着芒れている。士にカフ1の内
g15にはチューブ4と介して水等の液体5が併給され
、この液体5がリニアポンプ6、刀!]振器7fCよっ
て万目圧ぎnる。こノ場合、リニアポンプ(s′は上述
した平均カフ圧Pct形成し、加振器7は変化分ΔPc
 e印加するものである。こうしてカフ圧内に形成され
たカフ圧PC(−PC+Δf’c)Gま指2内のぐ脈を
経皮的に加圧する。そしてこの方7−圧Pcがチューブ
4に連通する圧力センサ8VCよって検出己れ、電気信
号として出力される。
Below - an actual tffL example of the invention based on the drawings? Explain. Figure 1 shows an embodiment of the present invention. FIG. 1 is a block diagram showing the present invention, and in this figure VC, reference numeral 1 represents an annular cuff. Is this cuff pressure 2VC external pressure of the part to be measured (in this example, the finger)? The inner walls 3, 3 are made of an elastic thin film and are pressed against the external agent of the finger 2. A liquid 5 such as water is simultaneously supplied to g15 of the cuff 1 through a tube 4, and this liquid 5 is supplied to the linear pump 6 and the sword! ] Use the vibrator 7fC to apply ten-man pressure. In this case, the linear pump (s') forms the above-mentioned average cuff pressure Pct, and the vibrator 7 generates the variation ΔPc.
e is applied. The cuff pressure PC (-PC+Δf'c) G thus formed within the cuff pressure is percutaneously pressurized within the forefoot 2. This 7-pressure Pc is detected by a pressure sensor 8VC communicating with the tube 4 and output as an electrical signal.

一万、指2とカフ1の内壁3との間には発光ダイオード
(LED)9aとフォトトランジスタ(Ph)9bとか
らなる容積センサ9とが介挿されている。この場合、L
ED9aとPh9bとは指2に挾むように相対量してい
なければならない。
A volume sensor 9 consisting of a light emitting diode (LED) 9a and a phototransistor (Ph) 9b is inserted between the finger 2 and the inner wall 3 of the cuff 1. In this case, L
ED9a and Ph9b must be in relative amounts so that they can be held between fingers 2.

そして、LED9aから発光されたツCは舟2?嬬過し
てPh9bに受光され、その受元硅は血管の容積に対応
する0従ってPh9bの出7J ’Qt圧すなわち容積
信号Svも血管の容積に対応する。
And is the light emitted from LED 9a boat 2? By mistake, the light is received by Ph9b, and its receiving source corresponds to the volume of the blood vessel. Therefore, the output 7J'Qt pressure of Ph9b, that is, the volume signal Sv, also corresponds to the volume of the blood vessel.

次に11は容積信号Svと増幅する直流増幅W・であり
、直流増幅器11の出7E電圧の直流分はオフセット亀
ギvfによって自由に増減でさるようVCなっている。
Next, 11 is a DC amplifier W. which amplifies the volume signal Sv, and the DC component of the output voltage 7E of the DC amplifier 11 is set to VC so that it can be freely increased or decreased by the offset tortoise Vf.

例えばオフセット−圧Vf=00とさtC前記直流分が
toVであったとし、こり状態と保ったf〒オフセット
電圧Vfのみ全7vに変化させたとすると前記直流分c
′i3 Vとなる。こうして、この直流増幅器11は、
容積信号SV を単に増幅するだけでなく、その直流分
と除去χする作用もなす。この場合、オフセント重圧V
fは一後述する制御と316において形成され、12ビ
ツトのD/Aコンバータ17?介してgl:給され60
次に、■2はゲイン調節器であり、増幅率?変えること
のでさる直流ゴ曽幅器からなる。すなわち、このゲイン
調節器12はスイッチ素子と抵抗との直列接続回路と何
組か並列VC接鋭してりるフィードバック回・路を翁−
し、前記各スイッチ素子?制御信号CIによってオン/
オフし、これによってフィードバック回路の抵抗直を変
化させてゲインの蘭節と行うものである。こうしてゲイ
ン調節器12は、M]副信号C1の直に応じて直流増1
1荀器11の出力信号の振11’fl+を増減し容積脈
波信号Sg?出力fる。この容積脈波信号SgはA/L
)コンバータ18・と位相補償器1小とVC供給される
。■ず、A/1〕フンバータ18は容積脈波イー=f号
Sgとデジタル(Ft 停に変(灸し、このデジタル信
号−全バス15と介して1lilJ御部16に供給する
gビットのコンバータである。−万、位相補償j?E 
l 4・f′i谷積容積、・1を波イ;f%Sgの位相
とシフhしてこの信号をゲイン調節器18+fC供給す
る。このゲインW節器18はゲイン調節器12と日様の
購或を有し°、制御信号C2の1直に応じて前記(+4
号の振幅と増減して励u2信号S e f 形成し、こ
れ?ドライバ19とスイーンチ20のa丁が点に供給す
る。ここでスイッチ20は励振信号Seと制佃1部16
からb打点に供給されるリニアポンプ駆コ信号と?CC
点点介してドライバ21に切替え供給するもので、制御
部16から供給される制御信号C1vcよって12TI
替えが行われるαそして、ドライバ19力40k 函、
72、ドライバ21がリニアポンプ6l−i1勅する〇次K・カフ圧Pcは圧ブ]センサ80でよって検出され
、圧力センサ8からはカフ圧Pepで比例する信歓が出
力される。そしてこの13号が増幅器24によって増幅
され、カフ圧信号S r) M L −(A / Dコ
ンバータ25IJで供給される。この人/Dコンバータ
25はカフ圧13号81)とデジタル信号O?:変換し
・これとバス152介して制御F5151 fSに供1
恰するgピッiのコンバータである。支に、27りまブ
ラウン管告示装置等からなる表示部であり、カフ圧信号
5pTh血圧として吸水するととも(C%制御部16か
ら供給すれる血圧スケールト表示する。
For example, if offset-voltage Vf = 00 and tC, and the DC component is toV, and f is kept in a stiff state, and only the offset voltage Vf is changed to 7V in total, then the DC component c
'i3 V. In this way, this DC amplifier 11
It not only simply amplifies the volume signal SV, but also removes its DC component. In this case, the offcent pressure V
f is formed in a control section 316, which will be described later, and is connected to a 12-bit D/A converter 17? via gl: supplied 60
Next, ■2 is a gain adjuster, and is it an amplification factor? It consists of a DC gauge that can be changed. That is, this gain adjuster 12 has a feedback circuit/circuit in which several sets of parallel VC contacts are connected to a series connection circuit of a switch element and a resistor.
And each switch element mentioned above? Turned on/off by control signal CI
The switch is turned off, thereby changing the resistance value of the feedback circuit and adjusting the gain. In this way, the gain adjuster 12 increases the direct current by 1 in response to the sub-signal C1.
1 Increase or decrease the amplitude 11'fl+ of the output signal of the unit 11, and increase or decrease the volume pulse wave signal Sg? Output f. This volume pulse wave signal Sg is A/L
) Converter 18 and phase compensator 1 are supplied with VC. ■A/1] The Humbatater 18 converts the volume pulse wave E=f Sg into a digital signal (Ft), and supplies this digital signal to the 1lilJ control unit 16 via the entire bus 15 to the g-bit converter. −10,000, phase compensation j?E
The phase of the wave A;f%Sg is shifted from the phase of the wave A;f%Sg, and this signal is supplied to the gain adjuster 18+fC. This gain W adjuster 18 has a gain adjuster 12 and the same value as the gain adjuster 12, and adjusts the above (+4
The amplitude of the signal increases and decreases to form the excitation u2 signal S e f ? A driver 19 and a number of sweepers 20 supply the point. Here, the switch 20 is connected to the excitation signal Se and the control section 16.
What is the linear pump drive signal supplied from to point b? C.C.
12TI is switched and supplied to the driver 21 via a point and a control signal C1vc supplied from the control section 16.
The change is made α and the driver 19 force 40k box,
72, the 0th K cuff pressure Pc which the driver 21 controls the linear pump 6l-i1 is detected by the pressure sensor 80, and the pressure sensor 8 outputs a signal proportional to the cuff pressure Pep. Then, this signal No. 13 is amplified by the amplifier 24 and supplied by the A/D converter 25IJ. : Converted and provided to control F5151 fS via bus 152 1
It is a converter of g-pi. The main part is a display section consisting of a 27-rem cathode ray tube notification device, etc., which displays the cuff pressure signal 5pTh as blood pressure (blood pressure scaled) supplied from the C% control section 16.

ざて、上述した構成?有する本実施例において血圧の測
定を行う場合、第1図IC示すようにカフェVc指2と
挿入する。そして第2 ii tic示す時刻t。
So, what about the above configuration? When measuring blood pressure in this embodiment, the cafe Vc finger 2 is inserted as shown in FIG. and time t indicated by the second ii tic.

にスタートボタンと押上げると、制御部16がスインチ
20?b接点側に切替え、ドライバ21に11″信号と
供給する。これによってドライバz1がリニアポンプ6
?駆動し、カフ圧Pcは第11(イ)に示すように直線
的に増加する。これによって同図(ロ)に示す容積、信
1号8vも次第に上昇し、やがて)電圧Pcが被検者の
平均血圧pbに近づくと血管壁に脈圧による振動が現わ
れ、これが容積信号Svに脈波として生じる。同図(ハ
)Gオこの脈波信号(すな゛わち容積脈波信号)Sgの
波脣を示すものである。次に、カフ圧Pcがざらに上昇
し、カフ圧PCが平均血圧pbと一致すると、上述した
ように容積脈波信号Sgが最大振幅となる(なお、カフ
圧Pcは直線的に徐々に変化させているのでP C7P
 cとなる)。ぞしてこのときの容積信号Svの(直f
 S v s  とサーボ目標敏、カフ圧Pcの[Pc
52サーボ1初jlJl圧といい、これらは制御部16
に記憶される。そしてリニアポンプ6がざらに゛・駆動
E’れ、カフ圧Pcが増加するとカフ圧Pc〉血圧Pb
となり、これによって容積脈波1信号Sgは次第に小ど
くなり、やがてほぼゼロにIで減少する。そ、して制御
部L6はp)圧Pcが予め設定された士限脇(例え゛ば
/gO□1(g)になると、今度はドライバ21に10
″橢号と供給してリニアポンプ6を逆lJ慇動し、これ
によってカフ圧PC’r:W。
When the start button is pressed up, the control unit 16 switches to the switch 20? Switch to the b contact side and supply a 11" signal to the driver 21. This causes the driver z1 to switch to the linear pump 6.
? The cuff pressure Pc increases linearly as shown in 11th (A). As a result, the volume signal 8v shown in FIG. It occurs as a pulse wave. FIG. 3(C) G shows the range of this pulse wave signal (ie, volume pulse wave signal) Sg. Next, when the cuff pressure Pc gradually increases and the cuff pressure PC matches the mean blood pressure pb, the volume pulse wave signal Sg reaches its maximum amplitude as described above (the cuff pressure Pc gradually changes linearly). Because I let you do it, P C7P
c). Therefore, the (direction f) of the volume signal Sv at this time is
S v s, servo target sensitivity, and cuff pressure Pc [Pc
52 servo 1 initial jlJl pressure, these are the control unit 16
is memorized. Then, when the linear pump 6 is roughly driven and the cuff pressure Pc increases, the cuff pressure Pc>blood pressure Pb
As a result, the volume pulse wave 1 signal Sg gradually becomes smaller and eventually decreases to almost zero at I. Then, when the pressure Pc reaches a preset limit (for example, /gO□1 (g)), the control unit L6 instructs the driver 21 to
The linear pump 6 is pumped in reverse lJ by supplying the same signal as "0", thereby increasing the cuff pressure PC'r:W.

標的に減少させゐ。そして第2図の時刻t 、VCカフ
圧f’cがサーボ目標値1’cs に減少した時仄でス
イ7+20Tha接点制に切替え、リニアポンプ6と停
止させる。こうし下、カフ圧Pcがサーボ目標1直Pc
sにセラ)7れ、平均カフ圧Pc−平均血圧PbとなV
容積脈波信号Sgの振幅が第2図(ハ)に示すように最
大となる。なお、上記サーボ目標値Pcs検出動作の間
、ゲイン調節器12のゲインは一定に保たれている。:
fに、容積信号Sgの直流分か増10し、容積脈波信号
8gの振圃が予め設定された範囲を超えると制御部16
がオフ セット電圧Vfとコントロールして前記振幅?
前記範IHIvc引さ芙すように作用する。fに、制御
部I6は上記時刻1. vcゲイン調節器12に制御信
号CIと送り容積脈波信号Sgめ振幅?予め設定ぎわ、
た端となるように増減する。こうして、個人差にょる振
幅の差が除失され、一定振幅の容積脈波信号Sgが得ら
れる。
Reduce it to the target. Then, at time t in FIG. 2, when the VC cuff pressure f'c has decreased to the servo target value 1'cs, the switch 7+20Tha contact system is switched and the linear pump 6 is stopped. Under this condition, cuff pressure Pc is the servo target 1 shift Pc
s)7, the average cuff pressure Pc - the average blood pressure Pb and V
The amplitude of the volume pulse wave signal Sg becomes maximum as shown in FIG. 2 (c). Note that the gain of the gain adjuster 12 is kept constant during the servo target value Pcs detection operation. :
f, the DC component of the volume signal Sg is increased by 10, and when the amplitude of the volume pulse wave signal 8g exceeds a preset range, the controller 16
is controlled by the offset voltage Vf and the amplitude ?
It acts to subtract the range IHIvc. At time 1.f, the control unit I6 controls the time 1.f. The control signal CI and the amplitude of the sent volume pulse wave signal Sg are sent to the vc gain adjuster 12. Pre-set time,
It increases or decreases so that it reaches the end. In this way, differences in amplitude due to individual differences are eliminated, and a volume pulse wave signal Sg of constant amplitude is obtained.

以上の設定が終了すると、制御部16は前記容積脈波信
号Sgに基づいて加振器L7’t−励振し、カフ圧PC
の変化分ΔP、clコントロールシ、容積脈波信号Sy
がゼロになるように、すなわち血管の容積が一定になる
よう、にフィードバック制御する0ざらに詳述すると、
制御部16は第2図に示す時刻t:にゲイン調節器18
に制御信号C7?供給し、これによって励、振信号Se
の振幅2412節しながら容積脈波1信号Sgが次第に
小さくなるように、ドライバ19?介tて万ロ振器7?
7.イードバック制御する。この場合、g接脂波信号8
gは位相補償器14によって位相がシフトされ、これに
よって7]l]振器7Vcよって形成ざ丘るカフ圧の変
化分へP Cと脈圧とが互に打消し合うようにコントロ
ールされる。こうして、第2図に示す時刻t3に容積脈
波信号8gがほぼゼロになると、この時のカフ圧Pcが
血圧Pbと等しくなる。そしてカフ圧PCはカフ圧信号
8pとして得られ、この信号Spが表示@27に血圧ス
ケールとともにリアルタイムで表示される。こうして表
示部27には時々刻々変化する血圧の変動状態が表示さ
れる。なお、時刻t2以後、オフセント電圧Vfとゲイ
ン調節器12のゲインは共に一定に維Nぎれる。。そ、
して、時刻t2以後に平均血圧Pbが変化己これによっ
て容積脈波信号SgVC直流分が重畳された場合は、こ
の直流分が位相補償器1屯。
When the above settings are completed, the control unit 16 excites the vibrator L7't- based on the volume pulse wave signal Sg, and controls the cuff pressure PC.
change ΔP, cl control signal, volume pulse wave signal Sy
Feedback control is performed so that the volume of the blood vessel becomes zero, that is, the volume of the blood vessel is constant.
The control unit 16 controls the gain adjuster 18 at time t shown in FIG.
control signal C7? and thereby the excitation and oscillation signal Se
The driver 19? Intermediate million roller shaker 7?
7. Control feedback. In this case, g greasy wave signal 8
The phase of g is shifted by the phase compensator 14, thereby controlling the change in cuff pressure generated by the vibrator 7Vc so that Pc and pulse pressure cancel each other out. In this way, when the volume pulse wave signal 8g becomes almost zero at time t3 shown in FIG. 2, the cuff pressure Pc at this time becomes equal to the blood pressure Pb. Then, the cuff pressure PC is obtained as a cuff pressure signal 8p, and this signal Sp is displayed on the display @27 in real time together with the blood pressure scale. In this way, the display unit 27 displays the fluctuation state of blood pressure that changes from moment to moment. Note that after time t2, both the offset voltage Vf and the gain of the gain adjuster 12 remain constant. . So,
Then, when the mean blood pressure Pb changes after time t2, and as a result, the DC component of the volume pulse wave signal SgVC is superimposed, this DC component is used as the phase compensator.

ゲイン調節器182介tでドライバ21に供給されリニ
アポンプ6が駆動キ2する。そして再び平均カフ圧Pc
が平均血圧Pbと等しくなるようにフィードバック制御
される。
The signal is supplied to the driver 21 through the gain adjuster 182, and the linear pump 6 is driven. And again the average cuff pressure Pc
is feedback-controlled so that it becomes equal to the average blood pressure Pb.

なお、上記表示部2?に:は他の情報・例えば心電図?
血圧と同時Vci示すすることも可能である。
In addition, the above-mentioned display part 2? N: Is there other information, such as an electrocardiogram?
It is also possible to display Vci at the same time as blood pressure.

以上説明したようにこの発明に、容積補償法によ、る血
圧測定と全自動的に行えるようにしたので、ml続的な
血圧測定?極めて容易に行うことのでさる利点が得られ
る。
As explained above, in this invention, blood pressure measurement can be performed fully automatically using the volume compensation method, so it is possible to measure blood pressure continuously. A great advantage is that it is extremely easy to perform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1口は本発明の一実施例の構成?示すプロツり図、第
1図は同実施例便用時の各部波形と示す波形図であり、
同図(イ)Gまクツ圧Pcの波形図、(ロ)は容積信号
8 vの波形図、同図(/→は容積脈波信号Sgの波形
図である。1・・・・・・カフ、7・・・・・・刀口振器、8・・
パ・・圧力セン→1.9・・・・・・容積センサ。出即人 株式会社 ウ゛工□ダ鰻作所
Is the first port an embodiment of the present invention? The plot diagram shown in FIG. 1 is a waveform diagram showing the waveforms of various parts when using the same example,
In the same figure, (A) is a waveform diagram of the G eyelid pressure Pc, (B) is a waveform diagram of the volume signal 8V, and in the same figure (/→ is a waveform diagram of the volume pulse wave signal Sg. 1... Cuff, 7... Blade shaker, 8...
Pa... Pressure sensor → 1.9... Volume sensor. Derived from Wiko Co., Ltd. Da Unagi Farm

Claims (1)

Translated fromJapanese
【特許請求の範囲】被測定部位に装着されるカフと(前記カフ内のカフ圧?
増減する加近器と、前記カフ圧?検出する圧力センサと
、前記被測定部位と前記カフとの間に介挿己れ、前記カ
フ圧の変化およびj1取動によって変化する血管の単位
長当りの容積?逐次検出し、この容積に対応する容積信
号と出力する谷情センサと?設け、前記容積信号の容積
脈波成分すで基づいて前記71[、l振器k M振して
rji記カフ圧全増)炭し、これによって前記血管の単
位長当りの容積か一定となるようにコントロールし5そ
(7)時のカフ圧から被測定体の血圧を測定する…l的
皿圧測定方法ECおいて、(イ)・jiJ記容積脈波成分の振幅が最大となるカフ
圧を検出し、この”リフ圧?維持する第1C1,)過(
幇と、(ロ)°前記容積脈波成分VC基づいて前記加振
器茫励振し、こ−れによって前記、容積脈波成分の振幅
1が最小となるようにフィードバックii制御する第2
の過程と・(ハ)前記容積脈波成分の振1山が最小となったとさの
前記カフ圧と血圧として抽出する第3の過程と?全自動
的C/F行うこと?特徴とする間接的血圧測定方法。
[Claims] A cuff attached to a site to be measured and (cuff pressure within the cuff?
The accelerator that increases and decreases and the cuff pressure? A pressure sensor is inserted between the measuring site and the cuff, and the volume per unit length of the blood vessel changes depending on the change in the cuff pressure and the j1 movement. A valley sensor that sequentially detects and outputs a volume signal corresponding to this volume? Based on the volume pulse wave component of the volume signal, the volume per unit length of the blood vessel becomes constant. The blood pressure of the subject is measured from the cuff pressure at the time of 5 and (7).In the traditional dish pressure measurement method EC, (a). Detects the pressure and maintains this “rift pressure? 1st C1,) over (
and (b) a second step of performing feedback control (ii) by exciting the vibrator based on the volume pulse wave component VC so that the amplitude 1 of the volume pulse wave component is minimized.
(c) A third process of extracting the cuff pressure and blood pressure at the point where the peak of the volume pulse wave component becomes the minimum? Should I perform fully automatic C/F? Characteristic indirect blood pressure measurement method.
JP58030500A1983-02-251983-02-25Indirect blood pressure measuring apparatusGrantedJPS59156325A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
JP58030500AJPS59156325A (en)1983-02-251983-02-25Indirect blood pressure measuring apparatus
US06/491,984US4524777A (en)1983-02-251983-05-05Automatic, continuous and indirect blood pressure measurement apparatus

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP58030500AJPS59156325A (en)1983-02-251983-02-25Indirect blood pressure measuring apparatus

Publications (2)

Publication NumberPublication Date
JPS59156325Atrue JPS59156325A (en)1984-09-05
JPH0131370B2 JPH0131370B2 (en)1989-06-26

Family

ID=12305534

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP58030500AGrantedJPS59156325A (en)1983-02-251983-02-25Indirect blood pressure measuring apparatus

Country Status (2)

CountryLink
US (1)US4524777A (en)
JP (1)JPS59156325A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61265127A (en)*1985-05-181986-11-22中根 央Apparatus for continuously measuring blood pressure
JPS62194834A (en)*1986-02-201987-08-27シャープ株式会社Blood pressure measuring apparatus
JPS62243555A (en)*1986-04-151987-10-24株式会社 ウエダ製作所Blood pressure measuring device for small animal
JPS62275451A (en)*1986-05-211987-11-30株式会社 ウエダ製作所Cuff for measuring blood pressure
JPS6415030A (en)*1987-03-271989-01-19Uniberujita Iee Ee PurukiiniebNoninvasive automatic blood pressure monitor
WO2008015921A1 (en)2006-08-032008-02-07Omron Healthcare Co., Ltd.Electronic blood pressure monitor having cuff in whose inner pressure is adequately adjusted and its control method
JP2009285028A (en)*2008-05-282009-12-10Omron Healthcare Co LtdElectronic sphygmomanometer
JP2010051659A (en)*2008-08-292010-03-11Omron Healthcare Co LtdBlood pressure information measuring device
JP2011511686A (en)*2008-02-132011-04-14ユーピー メッド ゲーエムベーハー Method and apparatus for non-invasive measurement of dynamic cardiopulmonary interaction parameters
DE112009001929T5 (en)2008-08-292012-01-19Omron Healthcare Co., Ltd. Blood pressure information measurement device
DE112011101145T5 (en)2010-03-302013-01-10Omron Healthcare Co., Ltd. Blood pressure measuring device and control method for blood pressure measuring device

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5025792A (en)*1985-09-261991-06-25The Hon GroupContinuous cutaneous blood pressure measuring apparatus and method
US4747415A (en)*1986-06-161988-05-31Pierre LavoisierMethod and device for measuring penile rigidity
DE3879726T2 (en)*1987-01-271993-07-08Toto Ltd TOILET UNIT WITH A HEALTH EXAMINATION SYSTEM.
US4846189A (en)*1987-06-291989-07-11Shuxing SunNoncontactive arterial blood pressure monitor and measuring method
DE3885220T2 (en)*1987-08-241994-02-24Omron Tateisi Electronics Co Toilet with device for determining the composition of urine.
US5101825A (en)*1988-10-281992-04-07Blackbox, Inc.Method for noninvasive intermittent and/or continuous hemoglobin, arterial oxygen content, and hematocrit determination
DE69025677T2 (en)*1989-08-251996-10-17Toto Ltd Toilet with a health inspection system
JPH0763450B2 (en)*1989-10-311995-07-12テルモ株式会社 Photoplethysmograph
US5582179A (en)*1993-05-171996-12-10Omron CorporationDevice to measure vascular function
US5533511A (en)*1994-01-051996-07-09Vital Insite, IncorporatedApparatus and method for noninvasive blood pressure measurement
US6371921B1 (en)*1994-04-152002-04-16Masimo CorporationSystem and method of determining whether to recalibrate a blood pressure monitor
US6027452A (en)1996-06-262000-02-22Vital Insite, Inc.Rapid non-invasive blood pressure measuring device
US6519490B1 (en)*1999-12-202003-02-11Joseph WieselMethod of and apparatus for detecting arrhythmia and fibrillation
US6280390B1 (en)1999-12-292001-08-28Ramot University Authority For Applied Research And Industrial Development Ltd.System and method for non-invasively monitoring hemodynamic parameters
US8348850B2 (en)*2001-07-302013-01-08Henry Ford Health SystemMethod of monitoring dislodgement of venous needles in dialysis patients
US8974394B2 (en)2001-07-302015-03-10Henry Ford Health SystemDevice and method for detecting irregular placement of an extracorporeal vascular access needle
CA2488957C (en)*2001-07-302011-09-20Henry Ford Health SystemAccess pressure ratio device and testing method
US7011631B2 (en)*2003-01-212006-03-14Hemonix, Inc.Noninvasive method of measuring blood density and hematocrit
US7601123B2 (en)*2003-08-222009-10-13Eppcor, Inc.Non-invasive blood pressure monitoring device and methods
US7320599B2 (en)*2003-10-022008-01-22Gary Jay MorrisBlood pressure simulation apparatus with tactile interface
DE102004062435A1 (en)*2004-12-202006-06-29Braun Gmbh Method and device for non-invasive detection of the blood flow and dependent parameters in arteries, in particular the arterial waveform and the blood pressure
US7674231B2 (en)*2005-08-222010-03-09Massachusetts Institute Of TechnologyWearable pulse wave velocity blood pressure sensor and methods of calibration thereof
WO2007024777A2 (en)*2005-08-222007-03-01Massachusetts Institute Of TechnologyWearable blood pressure sensor and method of calibration
WO2007064654A1 (en)*2005-11-292007-06-07Massachusetts Institute Of TechnologyApparatus and method for blood pressure measurement by touch
JP5098721B2 (en)*2008-03-142012-12-12オムロンヘルスケア株式会社 Blood pressure measurement device, blood pressure derivation program, and blood pressure derivation method
JP5035114B2 (en)*2008-05-282012-09-26オムロンヘルスケア株式会社 Electronic blood pressure monitor
JP5200956B2 (en)*2009-01-232013-06-05オムロンヘルスケア株式会社 Blood pressure information measuring device
US8313439B2 (en)*2009-03-202012-11-20Massachusetts Institute Of TechnologyCalibration of pulse transit time measurements to arterial blood pressure using external arterial pressure applied along the pulse transit path
EP2493370B1 (en)*2009-10-292016-03-16CNSystems Medizintechnik AGDigital control method for measuring blood pressure
JP5418352B2 (en)*2010-03-252014-02-19オムロンヘルスケア株式会社 Electronic blood pressure monitor
JP6009914B2 (en)*2012-11-212016-10-19工布設計有限公司 Method for measuring immediate continuous pressure of fluid in elastic tube and compliance of elastic tube, and measuring device used in the method
CN103330555A (en)*2013-06-182013-10-02深圳市微纳集成电路与系统应用研究院Continuous blood pressure measurement device
EP3419515B1 (en)2016-02-222020-07-22CNSystems Medizintechnik AGMethod and measuring system for continuously determining the intra-arterial blood pressure
US11246971B2 (en)2016-09-192022-02-15Henry Ford Health SystemSystem and method of monitoring dislodgement of venous needles in dialysis patients
US11357416B2 (en)*2018-02-272022-06-14Edwards Lifesciences CorporationAdaptive tuning for volume clamp blood pressure measurement
DE102018006846A1 (en)2018-08-292020-03-05Pulsion Medical Systems Se Multi-part device for non-invasive detection of vital parameters
DE102018006844B3 (en)2018-08-292020-02-13Pulsion Medical Systems Se Method and device for correcting a blood pressure measurement carried out at a measuring location
DE102018006845B4 (en)2018-08-292020-04-16Pulsion Medical Systems Se Non-invasive blood pressure measuring device
DE102019008331A1 (en)2019-12-012021-06-02Pulsion Medical Systems Se CUFF PART AND MEASURING DEVICE
DE102019008319A1 (en)2019-12-012021-06-02Pulsion Medical Systems Se CUFF PADS, CUFF PARTS, METHOD OF MANUFACTURING THEREOF AND MEASURING DEVICE
DE102019008320B4 (en)2019-12-012021-07-15Pulsion Medical Systems Se DEVICE FOR MEASURING VITAL PARAMETERS WITH ADVANTAGEOUS SEAL ARRANGEMENT
DE202019004899U1 (en)2019-12-012019-12-09Pulsion Medical Systems Se measuring device
DE102019008332B4 (en)2019-12-012021-07-01Pulsion Medical Systems Se DEVICE FOR MEASURING VITAL PARAMETERS WITH ADVANTAGEOUS RADIATION GUIDANCE
DE102020202590A1 (en)2020-02-282021-09-02Pulsion Medical Systems Se DEVICE FOR MEASURING VITAL PARAMETERS WITH ADVANTAGEOUS LENS DEVICE
AT524040B1 (en)*2020-11-122022-02-15Cnsystems Medizintechnik Gmbh METHOD AND MEASURING DEVICE FOR THE CONTINUOUS, NON-INVASIVE DETERMINATION OF AT LEAST ONE CARDIAC CIRCULATORY PARAMETER
AT524039B1 (en)*2020-11-122022-02-15Cnsystems Medizintechnik Gmbh METHOD AND MEASURING SYSTEM FOR CONTINUOUS, NON-INVASIVE DETERMINATION OF ARTERIAL BLOOD PRESSURE
CN112932429B (en)*2021-02-022022-08-26成都泰盟软件有限公司Automatic real-time calibration method for continuous blood pressure measurement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3224435A (en)*1962-09-101965-12-21Gulton Ind IncMethod of measuring blood pressure
JPS5033676A (en)*1973-07-301975-03-31
JPS5441584A (en)*1977-09-071979-04-02Asahi Medical CoHuman body blood current meter

Cited By (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61265127A (en)*1985-05-181986-11-22中根 央Apparatus for continuously measuring blood pressure
JPS62194834A (en)*1986-02-201987-08-27シャープ株式会社Blood pressure measuring apparatus
JPS62243555A (en)*1986-04-151987-10-24株式会社 ウエダ製作所Blood pressure measuring device for small animal
JPS62275451A (en)*1986-05-211987-11-30株式会社 ウエダ製作所Cuff for measuring blood pressure
JPS6415030A (en)*1987-03-271989-01-19Uniberujita Iee Ee PurukiiniebNoninvasive automatic blood pressure monitor
JP2008036004A (en)*2006-08-032008-02-21Omron Healthcare Co LtdElectronic sphygmomanometer and its control method
WO2008015921A1 (en)2006-08-032008-02-07Omron Healthcare Co., Ltd.Electronic blood pressure monitor having cuff in whose inner pressure is adequately adjusted and its control method
JP2011511686A (en)*2008-02-132011-04-14ユーピー メッド ゲーエムベーハー Method and apparatus for non-invasive measurement of dynamic cardiopulmonary interaction parameters
JP2009285028A (en)*2008-05-282009-12-10Omron Healthcare Co LtdElectronic sphygmomanometer
JP2010051659A (en)*2008-08-292010-03-11Omron Healthcare Co LtdBlood pressure information measuring device
DE112009001929T5 (en)2008-08-292012-01-19Omron Healthcare Co., Ltd. Blood pressure information measurement device
US8715197B2 (en)2008-08-292014-05-06Omron Healthcare Co., Ltd.Blood pressure information measurement device
DE112009001929B4 (en)2008-08-292024-08-08Omron Healthcare Co., Ltd. Blood pressure information measuring device
DE112011101145T5 (en)2010-03-302013-01-10Omron Healthcare Co., Ltd. Blood pressure measuring device and control method for blood pressure measuring device
US9364156B2 (en)2010-03-302016-06-14Omron Healthcare Co., Ltd.Blood pressure measurement device and control method for blood pressure measurement device

Also Published As

Publication numberPublication date
US4524777A (en)1985-06-25
JPH0131370B2 (en)1989-06-26

Similar Documents

PublicationPublication DateTitle
JPS59156325A (en)Indirect blood pressure measuring apparatus
CA2187638C (en)Apparatus and method for measuring an induced perturbation to determine physiological parameter
US6254544B1 (en)Heart-function monitor apparatus
US4245648A (en)Method and apparatus for measuring blood pressure and pulse rate
US5099853A (en)Blood pressure monitoring system
EP0651969B1 (en)Blood pressure monitor system
US6471646B1 (en)Arterial line emulator
US4907596A (en)Blood pressure measuring appliance
US6648828B2 (en)Continuous, non-invasive technique for measuring blood pressure using impedance plethysmography
US6547742B2 (en)Apparatus for measuring pulse-wave propagation velocity
JP4040913B2 (en) Noninvasive arteriovenous oxygen saturation measuring device
Pepine et al.Aortic input impedance during nitroprusside infusion: a reconsideration of afterload reduction and beneficial action
US6736789B1 (en)Method and device for extracorporeal blood treatment with a means for continuous monitoring of the extracorporeal blood treatment
WO1991012767A1 (en)Intracranial pressure monitoring system
US20030167014A1 (en)Arteriosclerosis inspecting apparatus
US20130253566A1 (en)Method and device for the intermittent occlusion of the coronary sinus
JPH0417651B2 (en)
JP3443688B2 (en) Simultaneous continuous measurement of non-invasive blood pressure and blood oxygen saturation
US5046502A (en)Method and apparatus for measuring cardiac efficiency
US3585987A (en)Method for automatic continuous measuring and recording of blood pressure and arrangements for executing said method
US11020010B2 (en)Blood pressure/pulse wave measurement device
EP1410757A1 (en)Vital-information obtaining apparatus
EP3375360A1 (en)Circulatory dynamic measuring apparatus and circulatory dynamic measuring method
Vinten-Johansen et al.Prediction of myocardial O2 requirements by indirect indices
US6881190B2 (en)Standard pulse-wave-propagation-velocity-related-value determining apparatus and pulse-wave-propagation-velocity-related-value obtaining apparatus

[8]ページ先頭

©2009-2025 Movatter.jp