Movatterモバイル変換


[0]ホーム

URL:


JPS5846874B2 - Junction field effect transistor - Google Patents

Junction field effect transistor

Info

Publication number
JPS5846874B2
JPS5846874B2JP52049273AJP4927377AJPS5846874B2JP S5846874 B2JPS5846874 B2JP S5846874B2JP 52049273 AJP52049273 AJP 52049273AJP 4927377 AJP4927377 AJP 4927377AJP S5846874 B2JPS5846874 B2JP S5846874B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
gate
region
type semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52049273A
Other languages
Japanese (ja)
Other versions
JPS53133379A (en
Inventor
真理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric CorpfiledCriticalMitsubishi Electric Corp
Priority to JP52049273ApriorityCriticalpatent/JPS5846874B2/en
Priority to US05/897,775prioritypatent/US4215356A/en
Priority to DE2818584Aprioritypatent/DE2818584C2/en
Publication of JPS53133379ApublicationCriticalpatent/JPS53133379A/en
Publication of JPS5846874B2publicationCriticalpatent/JPS5846874B2/en
Expiredlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】この発明は、接合型電界効果トランジスタの構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a junction field effect transistor.

従来の縦形の接合型電界効果トランジスタ(以下J−F
ETと称する)の構造は、第1図に示す様に、ドレイン
領域となる低比抵抗を有するN+十形板1の上に高比抵
抗を有するN−形半導体層2をエピタキシャル成長させ
、とのN−形半導体層20表面領域に、選択的にP十形
ゲート領域3及び低比抵抗を有するN十形ソース領域4
を拡散形成し、N−形半導体層2上の絶縁膜5にコンタ
クトホールを設け、ゲート電極6及びソース電極7を形
成した構成からなっている。
Conventional vertical junction field effect transistor (hereinafter referred to as J-F
As shown in FIG. 1, the structure of the ET (hereinafter referred to as ET) consists of epitaxially growing an N- type semiconductor layer 2 having a high resistivity on an N+ ten-shaped plate 1 having a low resistivity and serving as a drain region. A P-type gate region 3 and an N-type source region 4 having low specific resistance are selectively formed on the surface region of the N-type semiconductor layer 20.
A contact hole is formed in an insulating film 5 on an N-type semiconductor layer 2, and a gate electrode 6 and a source electrode 7 are formed.

また、図中、8はチャンネル領域であり、選択的に設け
られたP十形ゲート領域3に狭1れたN−形半導体層2
部分を示す。
Further, in the figure, 8 is a channel region, and the N-type semiconductor layer 2 is narrowed in the selectively provided P-shaped gate region 3.
Show parts.

なか、この第1図じ示した従来装置はNチャンネル形の
J−FETを示している。
The conventional device shown in FIG. 1 is an N-channel type J-FET.

この様に構成されたJ−FETの相互コンダクタンスg
m(△ID/△Vo)は、ゲート・バイアスが零ボルト
の時、ピンチオフ領域にかいて一般に下記〔1〕式の如
くあられされる。
Mutual conductance g of J-FET configured in this way
m(ΔID/ΔVo) is generally expressed in the pinch-off region as shown in the following equation [1] when the gate bias is zero volts.

但し、μnはキャリア移動度、qは電子の単位電荷量、
NDはN−形半導体層2の不純物濃度、Wgはゲート間
隔、lsはN十形ソース領域4のソース長、Lはチャン
ネル領域80チヤンネル長を示す。
However, μn is carrier mobility, q is unit charge of electron,
ND is the impurity concentration of the N- type semiconductor layer 2, Wg is the gate interval, ls is the source length of the N-type source region 4, and L is the channel length of the channel region 80.

従って、不純物濃度NDが高いほど、即ち、比抵抗が低
いほど相互コンダクタンスgmは大きくなる。
Therefore, the higher the impurity concentration ND, that is, the lower the specific resistance, the greater the mutual conductance gm.

また、P十形ゲート領域3とドレイン領域1との間のゲ
ート、ドレイン間容量Cgdは、一般に下記CID式の
如くあられされ、P十形ゲート領域3からN−形半導体
層2中へのびる空乏層中りは下記〔■〕式の如くあられ
される。
In addition, the gate-drain capacitance Cgd between the P-domain gate region 3 and the drain region 1 is generally expressed as the following CID equation, and the depletion extending from the P-domain gate region 3 into the N-type semiconductor layer 2 The thickness of the layer appears as shown in the formula [■] below.

但し、εは比誘電率、ε0は真空の誘電率、AgはP十
形ゲート領域3のゲート長、WはP+十形ゲート領域3
ゲート巾、AはP十形ゲート領域3のゲート拡散面積で
あり、ゲート長1gとゲート巾Wとの積を示し、πは円
周率、φ1は拡散電位、Vgdはゲート、ドレイン間電
圧を示す。
However, ε is the relative dielectric constant, ε0 is the permittivity of vacuum, Ag is the gate length of the P+decade gate region 3, and W is the P+decade gate region 3.
The gate width, A is the gate diffusion area of the P-shaped gate region 3, and is the product of the gate length 1g and the gate width W, π is the pi, φ1 is the diffusion potential, and Vgd is the voltage between the gate and drain. show.

従って、ゲート、ドレイン間容量Cgdの大きさは、P
十形ゲート領域3からN−形半導体層2中へほとんど空
乏層がのびていない時に最大となり空乏層がのびてN十
形基板1に到達した時に最小となる。
Therefore, the size of the gate-drain capacitance Cgd is P
It reaches a maximum when almost no depletion layer extends from the 10-shaped gate region 3 into the N-type semiconductor layer 2, and reaches a minimum when the depletion layer extends and reaches the N-1 substrate 1.

このため、N−形半導体層2の不純物濃度NDを低くす
るほど、即ち、比抵抗が高いほど小さなゲート、ドレイ
ン間電圧Vgdによりゲート、ドレイン間容量Cgdを
小さくすることができる。
Therefore, the lower the impurity concentration ND of the N-type semiconductor layer 2, that is, the higher the specific resistance, the smaller the gate-drain capacitance Cgd can be made by reducing the gate-drain voltage Vgd.

ところで、一般に、J−FETO高周波特性は相互コン
ダクタンスgmが大きく、しかもゲートドレイン間容量
Cgd及びゲート、ソース間容量Cgsが小さいほど優
れているということが知られている。
By the way, it is generally known that the high frequency characteristics of J-FETO are better as the mutual conductance gm is larger and the gate-drain capacitance Cgd and the gate-source capacitance Cgs are smaller.

ところが、第1図に示す従来装置において、エピタキシ
ャル成長させたN形半導体層2の比抵抗を比較的低くし
たときは、相互コンダクタンスgmは大きくなるが、ゲ
ート、ドレイン間容量Cgdも大きくなり、比抵抗を比
較的高くしたときは、Cgdは小さくなるがgmも小さ
くなってし1う。
However, in the conventional device shown in FIG. 1, when the resistivity of the epitaxially grown N-type semiconductor layer 2 is made relatively low, although the mutual conductance gm increases, the gate-drain capacitance Cgd also increases, and the resistivity decreases. When Cgd is made relatively high, gm also becomes small, although Cgd becomes small.

具体的に、例えばN形半導体層2の比抵抗を10(Ω鼾
〕としたとき、相互コンダクタンスgmは60〔mU〕
程度となり、比抵抗を50〔Ωα〕としたときgmは2
0’(mU)程度となる。
Specifically, for example, when the specific resistance of the N-type semiconductor layer 2 is 10 (Ω), the mutual conductance gm is 60 [mU].
When the specific resistance is 50 [Ωα], gm is 2
It becomes about 0' (mU).

このため、J−FETO高周波特性が悪くなるという不
都合が生じた。
For this reason, a problem occurred in that the high frequency characteristics of J-FETO deteriorated.

この発明は上記欠点に鑑みなされたものであり、相互コ
ンダクタンスgmが大きく、かつ小さなゲート、ドレイ
ン間電圧Vdgによりゲート、ドレイン間容量Cgdを
最小の大きさにすることができる高周波特性の優れたJ
−FETを提供することを目的とする。
This invention was made in view of the above-mentioned drawbacks, and is a JJ with excellent high-frequency characteristics that can minimize the gate-drain capacitance Cgd by having a large mutual conductance gm and a small gate-drain voltage Vdg.
- Aims to provide FET.

以下図面に基づいてこの発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第2図はこの発明によるJ−FETの一実施例の構造を
示す断面図である。
FIG. 2 is a sectional view showing the structure of an embodiment of the J-FET according to the present invention.

図中、第1図と同一または相当部分には同一符号を付し
である。
In the figure, the same or corresponding parts as in FIG. 1 are given the same reference numerals.

この実施例の構造は、ドレイン領域となる低比抵抗を有
するN十形基板1の上に、例えば50〔Ω備〕程度の高
比抵抗を有するN−形半導体層2をエピタキシャル成長
し、さらに、とのN−形半導体層2の上にこれより比抵
抗の低い、例えば10〔Ωα〕程度の比抵抗を有するN
形半導体層10をエピタキシャル成長し、このN形半導
体層100表面領域に、選択的にP十形ゲート領域3及
び低比抵抗を有するN十形ソース領域4を拡散形成した
構成となっている。
In the structure of this embodiment, an N-type semiconductor layer 2 having a high specific resistance of, for example, about 50 [Ω] is epitaxially grown on an N-type substrate 1 having a low specific resistance and serving as a drain region. N-type semiconductor layer 2 with a lower resistivity, for example, about 10 [Ωα], is formed on the N-type semiconductor layer 2.
A type semiconductor layer 10 is epitaxially grown, and a P<0> type gate region 3 and an N<0> type source region 4 having a low specific resistance are selectively diffused into the surface region of this N type semiconductor layer 100.

即ち、夫々比抵抗の異なるN形の三層基体の中のやや比
抵抗の高いN形半導体層100表面領域に、ゲート及び
ソース領域3.4を形成した構造である。
That is, it has a structure in which the gate and source regions 3.4 are formed in the surface region of the N-type semiconductor layer 100 having a slightly high resistivity in the N-type three-layer substrate having different resistivities.

また、図中、6゜7は夫々ゲート電極及びソース電極で
あり、N形半導体層10上の絶縁膜5に形成されたコン
タクトホールを介して設けられている。
Further, in the figure, reference numerals 6.sup.7 denote a gate electrode and a source electrode, respectively, which are provided through contact holes formed in the insulating film 5 on the N-type semiconductor layer 10.

8はチャンネル領域であり、ソース、ドレイン領域4,
1間の電流通路のP十形ゲート領域3に狭1れたN形半
導体層10部分を示す。
8 is a channel region, source and drain regions 4,
1 shows a portion of the N-type semiconductor layer 10 narrowed to the P-type gate region 3 of the current path between the two.

この第2図に示した実施例装置はNチャンネル形のJ−
FETを示している。
The embodiment shown in FIG. 2 is an N-channel type J-
FET is shown.

この第2図に示した実施例構造にあ・いて、N形半導体
層100層厚をtとした際に、ゲート間隔の半分(Wg
/2)を、P十形ゲート領域3とN−形半導体層2との
間のN形半導体層10の距離、即ち厚さ方向の寸法(t
−L)より小さく形成した場合、ピンチオフがN−形半
導体層2より比抵抗の低いN形半導体層10内で起こる
ため、相互コンダクタンスgmが大きくiす、空乏層は
N形半導体層10の一部及び比抵抗の高いN−形半導体
層2に拡がるため、比較的小さ々ゲート、ドレイン間電
圧Vgdにより空乏層がN十形基板1に到達し、ゲート
、ドレイン間容量Cgdを最小にすることができる。
In the example structure shown in FIG. 2, when the thickness of 100 N-type semiconductor layers is t, half the gate interval (Wg
/2) is the distance of the N-type semiconductor layer 10 between the P-type gate region 3 and the N-type semiconductor layer 2, that is, the dimension in the thickness direction (t
-L), the pinch-off occurs in the N-type semiconductor layer 10, which has a lower resistivity than the N-type semiconductor layer 2, so the mutual conductance gm increases, and the depletion layer becomes a part of the N-type semiconductor layer 10. Since the depletion layer spreads to the N-type semiconductor layer 2 having high resistivity and high resistivity, the depletion layer reaches the N-type substrate 1 due to the relatively small gate-drain voltage Vgd, thereby minimizing the gate-drain capacitance Cgd. Can be done.

また、ゲート間隔の半分(Wg/2)と上述のN形半導
体層10の距離(t−L)とをほぼ等しく形成した場合
、P十形ゲート領域3からN形半導体層10中へのびる
空乏層がN−形半導体層2に到達するのとほぼ同時に、
ピンチオフが起こる。
Furthermore, when half the gate interval (Wg/2) and the above-mentioned distance (t-L) of the N-type semiconductor layer 10 are formed to be approximately equal, depletion extends from the P-shaped gate region 3 into the N-type semiconductor layer 10. Almost at the same time as the layer reaches the N-type semiconductor layer 2,
A pinch-off occurs.

このため、相互コンダクタンスgrr1.は、N形半導
体層10の不純物濃度により決定されるので、大きくな
る。
Therefore, the mutual conductance grr1. is determined by the impurity concentration of the N-type semiconductor layer 10, so it becomes large.

また、ピンチオフ時にすでに空乏層がN−形半導体層2
に到達しているため、非常に小さなゲート、ドレイン間
電圧Vgdにより空乏層をN十形基板1に到達せしめ、
ゲート、ドレイン間容量Cgdを最小にすることができ
る。
Moreover, at the time of pinch-off, the depletion layer is already in the N-type semiconductor layer 2.
, the depletion layer is caused to reach the N-type substrate 1 by a very small gate-drain voltage Vgd,
The gate-drain capacitance Cgd can be minimized.

従って、高周波特性の向上が図れ、(Wg/2)と(1
−L)とをほぼ等しい距離にした場合が最適値となる。
Therefore, the high frequency characteristics can be improved, and (Wg/2) and (1
The optimum value is when the distance between the two distances is approximately the same.

ところが、ゲート間隔の半分(Wg/2 )を上述のN
形半導体層10の距離(t−L)より太きく形成した場
合は、ピンチオフがN−形半導体層2内で起こるため、
非常に小さなゲート、ドレイン間電圧Vgdにより空乏
層をN十形基板1に到達せしめ、ゲート、ドレイン間容
量Cgdを最小にすることができるが、相互コンダクタ
ンスgmが非常に小さくなってし捷うので、適当とは言
え。
However, half of the gate spacing (Wg/2) is
If it is formed to be thicker than the distance (t-L) of the N-type semiconductor layer 10, pinch-off will occur within the N-type semiconductor layer 2.
Although the depletion layer can be made to reach the N-type substrate 1 by using a very small voltage Vgd between the gate and drain, and the capacitance Cgd between the gate and drain can be minimized, the mutual conductance gm becomes very small. , although it is appropriate.

ない。do not have.

従って、ゲート間隔の半分、即ちチャンネル領域80チ
ヤンネル巾Wgの半分(Wg/2)は、N形半導体層1
0の厚さ方向の寸法(t−L)と等しいかこれより小さ
くする必要がある。
Therefore, half of the gate interval, that is, half (Wg/2) of the channel width Wg of the channel region 80, is the width of the N-type semiconductor layer 1.
It is necessary to make it equal to or smaller than the dimension (t-L) in the thickness direction of 0.

なか、この第2図に示した実施例では、Nチャンネル形
のJ−FETについて説明したが、この発明はこれに限
らず、Pチャンネル形のJ−FETでもよい。
In the embodiment shown in FIG. 2, an N-channel type J-FET has been described, but the present invention is not limited to this, and a P-channel type J-FET may also be used.

以上の様に、この発明によるJ−FETは、低比抵抗を
有する第1導電形の第1半導体層と、この第1半導体層
上に形成され高比抵抗を有する第1導電形の第2半導体
層と、この第2半導体層上に形成されこれよりも低比抵
抗を有する第1導電形の第3半導体層と、この第3半導
体層の表面領域に選択的に設けられ第3半導体層部分に
チャンネル領域を形成する第2導形のゲート領域とを備
え、ゲート領域と第2半導体層との間に有する第3半導
体層の厚さ方向寸法をチャンネル領域のチャンネル巾の
−より小さくならないように形成しまたため、ピンチオフが上記第3半導体層内で起こること
により、相互コンダクタンスgmを大きくしかも小さな
ゲート、ドレイン間電圧によりゲート、ドレイン間容量
Cgdを最小にすることができるので、高周波特性の向
上を図れる効果がある。
As described above, the J-FET according to the present invention includes a first semiconductor layer of a first conductivity type having a low specific resistance, and a second semiconductor layer of a first conductivity type having a high specific resistance formed on the first semiconductor layer. a semiconductor layer, a third semiconductor layer of a first conductivity type formed on the second semiconductor layer and having a lower specific resistance than the second semiconductor layer, and a third semiconductor layer selectively provided in a surface region of the third semiconductor layer. a gate region of a second conductivity type forming a channel region in a portion thereof, and the dimension in the thickness direction of a third semiconductor layer between the gate region and the second semiconductor layer is not smaller than - the channel width of the channel region. Since pinch-off occurs in the third semiconductor layer, the mutual conductance gm can be increased, and the gate-drain capacitance Cgd can be minimized by a small gate-drain voltage, which improves high-frequency characteristics. This has the effect of improving performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のJ−FETの構造を示す断面図、第2
図は、この発明によるJ−FETの一実施例の構造を示
す断面図である。なか、図中同一部分または相当部分には同一符号を付し
である。1・・・第1半導体層、2・・・第2半導体層、3・・
・ゲート領域、8・・・チャンネル領域、10・・・第
3半導体装置
Figure 1 is a cross-sectional view showing the structure of a conventional J-FET;
The figure is a sectional view showing the structure of an embodiment of a J-FET according to the present invention. Identical or equivalent parts in the figures are designated by the same reference numerals. 1... First semiconductor layer, 2... Second semiconductor layer, 3...
- Gate region, 8... Channel region, 10... Third semiconductor device

Claims (1)

Translated fromJapanese
【特許請求の範囲】1 低比抵抗を有する第1導電形の第1半導体層、上記
第1半導体層上に形成され高比抵抗を有する第1導電形
の第2半導体層、上記第2半導体層上に形成されこれよ
りも低比抵抗を有する第1導電形の第3半導体層、上記
第3半導体層の表面領域に選択的に設けられ上記第3半
導体層部分にチャンネル領域を形成する第2導電形のゲ
ート領域を備え、上記ゲート領域と第2半導体層との間
に有する第3半導体層の厚さ方向寸法を上記チャンネル
領域のチャンネル巾の−より小さく寿らないようにした
ことを特徴とする接合型電界効果トランジスタ。2 ゲート領域と第2半導体層との間に有する第3半導
体層の厚さ方向寸法をチャンネル領域のチャンネル巾の
−にほぼ等しくなるようにしたことを特徴とする特許請
求の範囲第1項に記載の接合型電界効果トランジスタ。
[Scope of Claims] 1. A first semiconductor layer of a first conductivity type having a low specific resistance, a second semiconductor layer of a first conductivity type formed on the first semiconductor layer and having a high specific resistance, and the second semiconductor layer. a third semiconductor layer of a first conductivity type formed on the layer and having a lower resistivity than the third semiconductor layer; a third semiconductor layer selectively provided in a surface region of the third semiconductor layer and forming a channel region in a portion of the third semiconductor layer; The third semiconductor layer has a gate region of two conductivity types, and the third semiconductor layer between the gate region and the second semiconductor layer has a dimension in the thickness direction smaller than the channel width of the channel region so as not to last. Characteristics of junction field effect transistors. 2. Claim 1, characterized in that the thickness direction dimension of the third semiconductor layer between the gate region and the second semiconductor layer is approximately equal to - the channel width of the channel region. The junction field effect transistor described.
JP52049273A1977-04-271977-04-27 Junction field effect transistorExpiredJPS5846874B2 (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
JP52049273AJPS5846874B2 (en)1977-04-271977-04-27 Junction field effect transistor
US05/897,775US4215356A (en)1977-04-271978-04-19Junction field effect transistor
DE2818584ADE2818584C2 (en)1977-04-271978-04-27 Vertical type junction field effect transistor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP52049273AJPS5846874B2 (en)1977-04-271977-04-27 Junction field effect transistor

Publications (2)

Publication NumberPublication Date
JPS53133379A JPS53133379A (en)1978-11-21
JPS5846874B2true JPS5846874B2 (en)1983-10-19

Family

ID=12826225

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP52049273AExpiredJPS5846874B2 (en)1977-04-271977-04-27 Junction field effect transistor

Country Status (3)

CountryLink
US (1)US4215356A (en)
JP (1)JPS5846874B2 (en)
DE (1)DE2818584C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2014207460A (en)*2014-05-282014-10-30株式会社日立製作所Semiconductor device and electric power conversion device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4304042A (en)*1978-11-131981-12-08Xerox CorporationSelf-aligned MESFETs having reduced series resistance
JPS5568677A (en)*1978-11-171980-05-23Nec CorpJunction type field effect semiconductor
US4641174A (en)*1983-08-081987-02-03General Electric CompanyPinch rectifier
US4843441A (en)*1987-08-101989-06-27Willard Jerry WHigh frequency, high power field effect transistor
US4839310A (en)*1988-01-271989-06-13Massachusetts Institute Of TechnologyHigh mobility transistor with opposed-gates
US5945699A (en)*1997-05-131999-08-31Harris CorporationReduce width, differentially doped vertical JFET device
WO2001048809A1 (en)*1999-12-242001-07-05Sumitomo Electric Industries, Ltd.Junction field-effect transistor and method of manufacture thereof
JP5557581B2 (en)*2010-04-082014-07-23株式会社日立製作所 Semiconductor device and power conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2174774B1 (en)*1972-03-101977-01-14Teszner Stanislas
JPS49134282A (en)*1973-04-251974-12-24
US4041517A (en)*1974-09-041977-08-09Tokyo Shibaura Electric Co., Ltd.Vertical type junction field effect semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2014207460A (en)*2014-05-282014-10-30株式会社日立製作所Semiconductor device and electric power conversion device

Also Published As

Publication numberPublication date
JPS53133379A (en)1978-11-21
US4215356A (en)1980-07-29
DE2818584A1 (en)1978-11-16
DE2818584C2 (en)1986-01-23

Similar Documents

PublicationPublication DateTitle
US6222233B1 (en)Lateral RF MOS device with improved drain structure
US6034415A (en)Lateral RF MOS device having a combined source structure
US6271552B1 (en)Lateral RF MOS device with improved breakdown voltage
US7492015B2 (en)Complementary carbon nanotube triple gate technology
US6064088A (en)RF power MOSFET device with extended linear region of transconductance characteristic at low drain current
JPS59193066A (en) MOS type semiconductor device
US3600647A (en)Field-effect transistor with reduced drain-to-substrate capacitance
US6734509B2 (en)Semiconductor integrated circuit
US6724047B2 (en)Body contact silicon-on-insulator transistor and method
JPS5846874B2 (en) Junction field effect transistor
KR100373765B1 (en)Quasi-mesh gate structure including plugs connecting source regions with backside for lateral rf mos devices
JPS63141375A (en) Insulated gate field effect transistor
JP3402043B2 (en) Field effect transistor
US4268844A (en)Insulated gate field-effect transistors
JPH02231771A (en) vertical field effect transistor
JPH051083Y2 (en)
JPH0682840B2 (en) MOS semiconductor device
JPS6378574A (en) Manufacturing method of semiconductor device
JPS6055995B2 (en) Junction field effect transistor
US8334576B2 (en)High frequency MOS device and manufacturing process thereof
JPH04115538A (en)Semiconductor device
KR19980084367A (en) Modeling Method for Reduced Surface Field Transverse Double-Diffusion Morse Transistor Using Silicon-on-Insulator Substrate
JPS6119177A (en)Field-effect type transistor having split self-alignment gate structure
JPH0673381B2 (en) Field effect semiconductor device
JP3385835B2 (en) Dielectric separated type semiconductor device

[8]ページ先頭

©2009-2025 Movatter.jp