Movatterモバイル変換


[0]ホーム

URL:


JPS5844112B2 - Deep fluidized bed pyrolysis equipment - Google Patents

Deep fluidized bed pyrolysis equipment

Info

Publication number
JPS5844112B2
JPS5844112B2JP53004989AJP498978AJPS5844112B2JP S5844112 B2JPS5844112 B2JP S5844112B2JP 53004989 AJP53004989 AJP 53004989AJP 498978 AJP498978 AJP 498978AJP S5844112 B2JPS5844112 B2JP S5844112B2
Authority
JP
Japan
Prior art keywords
fluidized bed
air
deep
treated
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53004989A
Other languages
Japanese (ja)
Other versions
JPS5497605A (en
Inventor
大蔵 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Priority to JP53004989ApriorityCriticalpatent/JPS5844112B2/en
Publication of JPS5497605ApublicationCriticalpatent/JPS5497605A/en
Publication of JPS5844112B2publicationCriticalpatent/JPS5844112B2/en
Expiredlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】本発明は深層流動層方式の熱分解装置に関し、特に粗大
固体廃棄物の処理に適した熱分解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a deep fluidized bed type pyrolysis apparatus, and particularly to a pyrolysis apparatus suitable for treating bulky solid waste.

従来、一般廃棄物及び産業廃棄物は主として埋立て或い
は焼却によって処理されているが、埋立てによる方法に
は、埋立ての可能な土地に限度がある上、環境汚染の原
因となる等の問題がある。
Conventionally, general waste and industrial waste have been mainly disposed of by landfilling or incineration, but this method has problems such as limited land that can be reclaimed and causing environmental pollution. There is.

一方、焼却による方法は、エネルギーの回収を行うので
一見効果的であるようにも思われるが、実際は廃棄物中
に含有される各種の有害成分が大気中にまき散らされ、
大きな大気汚染源となっている。
On the other hand, the method of incineration may seem effective at first glance because it recovers energy, but in reality, various harmful components contained in the waste are dispersed into the atmosphere.
It is a major source of air pollution.

例えば、一般廃棄物中の水銀、カドミウム、鉛などの重
金属は焼却炉からの燃焼排ガスに伴なわれて大気汚染源
となり、また硫黄、塩素、窒素はそれぞれ亜硫酸ガス、
塩化水素ガス、酸化窒素ガスを生成する。
For example, heavy metals such as mercury, cadmium, and lead in general waste are accompanied by combustion exhaust gas from incinerators and become a source of air pollution, while sulfur, chlorine, and nitrogen cause sulfur dioxide gas and nitrogen, respectively.
Generates hydrogen chloride gas and nitrogen oxide gas.

従って、廃棄物を焼却処理する場合、環境汚染を防止す
るためには、燃焼排ガス中の重金属及び亜硫酸ガス、塩
素ガス、酸化窒素ガス等の除去設備が必要となり、全シ
ステムとしての設備費及び運転費の上昇を招く。
Therefore, when incinerating waste, equipment to remove heavy metals, sulfur dioxide gas, chlorine gas, nitrogen oxide gas, etc. from the combustion exhaust gas is required in order to prevent environmental pollution. This will lead to an increase in costs.

しかも、焼却によるエネルギー回収は、低圧の水蒸気或
いは温水として得られるのが一般であるから、エネルギ
ーの質そのものは低いものであって、例えば発電を行う
場合は劣悪な発電効率しか得られないものである。
Moreover, since energy recovery through incineration is generally obtained as low-pressure steam or hot water, the quality of the energy itself is low, and when generating electricity, for example, only poor power generation efficiency can be obtained. be.

従って、以上のような問題を有する焼却法は、将来の環
境、エネルギー事情に対して適当ではなく、このため廃
棄物の処理に際し、焼却炉からの排ガスに比べてはるか
に小量の可燃ガスを発生する熱分解方法の採用が注目さ
れる。
Therefore, the incineration method, which has the above-mentioned problems, is not suitable for the future environment and energy situation, and for this reason, when processing waste, it is necessary to emit a much smaller amount of combustible gas than the exhaust gas from the incinerator. The adoption of a pyrolysis method that generates heat is attracting attention.

即ち、この熱分解法は、上述のような有害成分を除去す
る設備が小さくて済むばかりではなく、有害成分のある
ものについては除去設備を必要としない利点を有する。
That is, this thermal decomposition method not only requires small equipment for removing harmful components as described above, but also has the advantage that it does not require any equipment for removing certain harmful components.

例えば、廃棄物中の窒素弁の相当割合は熱分解反応中に
アンモニアガスとなり、これが塩素分と反応して塩化ア
ンモニウムとして固定され、可燃ガス洗浄の過程で除去
されるから、焼却炉のように塩化水素ガス及び酸化窒素
ガス除去設備が不必要となる。
For example, a considerable proportion of nitrogen valves in waste becomes ammonia gas during the thermal decomposition reaction, which reacts with chlorine and is fixed as ammonium chloride, which is removed during the combustible gas cleaning process. Hydrogen chloride gas and nitrogen oxide gas removal equipment becomes unnecessary.

また、熱分解法において生成する熱分解ガスを精製した
ものは、発熱量の高い、クリーンガス燃料であり、これ
を高圧のボイラー或いはガスタービンに用いることによ
り、高効率のエネルギー変換が可能になる等の利点を有
し、このため上述したように廃棄物の熱分解処理法が非
常に注目されている。
In addition, the purified pyrolysis gas produced in the pyrolysis method is a clean gas fuel with a high calorific value, and by using it in a high-pressure boiler or gas turbine, highly efficient energy conversion becomes possible. Therefore, as mentioned above, the thermal decomposition treatment method of waste is attracting a lot of attention.

一般廃棄物及び産業廃棄物の熱分解を行うプロセスとし
ては、従来より各種のものが公知であり、例えば整流器
を有する流動層を用いる方法、及び熱媒体粒子の循環系
を用いる方法が知られている。
Various processes have been known for thermally decomposing general waste and industrial waste, such as a method using a fluidized bed with a rectifier and a method using a circulating system of heat carrier particles. There is.

特に、後者の熱媒体粒子の循環系を用いる方法は、本発
明者の発明に係るものであり、直径に比べて高さの大き
い流動層を有する熱分解反応塔と再熱基の2塔を用い、
反応塔中に固形廃棄物を送入し、熱分解を行って可燃ガ
スを発生させると共に、生成したチャーを熱媒体粒子と
一緒に再熱基に送入して流動層内燃焼を行うことにより
再熱塔内熱媒体粒子を加熱し、加熱された粒子を熱分解
反応塔に循環送入することによって熱分解に必要な熱エ
ネルギーを与えるものである。
In particular, the latter method using a circulation system for heat carrier particles is based on the invention of the present inventor, and consists of two towers: a pyrolysis reaction tower having a fluidized bed with a height larger than its diameter, and a reheating tower. use,
By feeding solid waste into a reaction tower and performing thermal decomposition to generate combustible gas, the generated char is fed into a reheating unit together with heat carrier particles to perform combustion in a fluidized bed. Thermal energy necessary for thermal decomposition is provided by heating the heat carrier particles in the reheating tower and circulating the heated particles into the thermal decomposition reaction tower.

(特許第871982号「固形廃棄物の熱分解方法」、
特開昭50−120169号「固形廃棄物用連続熱分解
装置」)そして、この方法によれば、固形廃棄物を熱分
解して発熱量の大きな燃料が得られるだけでなく、熱分
解によって生ずるチャーをも完全に燃焼してプロセス内
のエネルギー源とするので、環境及びエネルギーの両問
題を同時に解決することができる利点を生じるものであ
る。
(Patent No. 871982 “Method for thermal decomposition of solid waste”)
(Japanese Patent Application Laid-open No. 50-120169 "Continuous Pyrolysis Apparatus for Solid Waste") According to this method, not only can solid waste be pyrolyzed to obtain fuel with a large calorific value, but also the fuel produced by pyrolysis can be Since char is also completely combusted and used as an energy source in the process, there is an advantage that both environmental and energy issues can be solved at the same time.

しかるに、固形廃棄物の熱分解を行うに際し、発熱量の
高いガス燃料を必要とする場合には、この熱媒体粒子の
循環系を用いる方法は有利であるが、ガス燃料の発熱量
がそれほど高くなくとも良い場合には、熱分解反応塔と
再熱基の2つを使用する必要がなく、このため1つの反
応塔内で媒体粒子の循環を行わせ、上記と同様な効果に
よって熱分解反応を連続的に行わせることができる装置
が望まれる。
However, when pyrolysis of solid waste requires gas fuel with a high calorific value, this method using a circulating system of heat carrier particles is advantageous, but if the calorific value of the gas fuel is so high, In cases where it is not necessary, it is not necessary to use both a pyrolysis reaction column and a reheating group, and for this reason, the medium particles are circulated in one reaction column, and the pyrolysis reaction is carried out with the same effect as described above. A device that can perform this continuously is desired.

この発明は上記要望に応えるためになされたもので、最
大直径に比べて高さが2倍以上であり、しかも上方に向
って直径を大きくする単一の深層流動層を形成して、被
処理物(例えば粗大固形廃棄物)を熱分解して連続的に
可燃ガスを発生させると共に、生成する炭素を主成分と
する可燃物を上記流動層の下部で燃焼させ、発生した熱
エネルギーによって流動層下部の熱媒体粒子の温度を上
昇させて流動層の上部と下部の間に熱媒体粒子の激しい
循環を起させ、これにより流動層下部の熱媒体粒子を流
動層上部に移行させて熱分解に必要とする熱エネルギー
を供給し、従って単に1つの反応塔内で熱媒体粒子の循
環が効率よく行われ、これによって熱エネルギーの効果
的な供給も行われて、粗大固形廃棄物等を安定かつ連続
的に、しかも経済的に熱分解処理でき、この際、可燃ガ
スを製造できるだけでなく、生成する固形残渣もほぼ完
全に燃焼して取り出すことができ、環境並びにエネルギ
ーの両問題上有利な熱分解装置を提供することを目的と
する。
This invention was made in response to the above-mentioned needs, and it forms a single deep fluidized bed that has a height that is more than twice as large as the maximum diameter, and that increases in diameter upward. The combustible gas is continuously generated by thermally decomposing materials (e.g., bulky solid waste), and the combustible material whose main component is carbon is combusted at the bottom of the fluidized bed. The temperature of the heating medium particles at the bottom is increased to cause intense circulation of the heating medium particles between the upper and lower parts of the fluidized bed, which causes the heating medium particles at the bottom of the fluidized bed to move to the upper part of the fluidized bed and undergo thermal decomposition. The required thermal energy is supplied and therefore the circulation of the heat transfer medium particles within just one reaction column is carried out efficiently, which also provides an effective supply of thermal energy for stable and stable treatment of bulk solid waste etc. It can be thermally decomposed continuously and economically, and in this case, not only can combustible gas be produced, but also the solid residue produced can be almost completely combusted and removed. The purpose is to provide a decomposition device.

以下、本発明の一実施例につき第1図を参照して説明す
る。
Hereinafter, one embodiment of the present invention will be described with reference to FIG.

図中1は熱分解装置本体(反応器)で、この本体1の上
半部はほぼ円筒状、下半部は下方に向うに従い漸次小径
となるほぼ中空逆円錐状に形成されている。
In the figure, reference numeral 1 denotes a main body (reactor) of the pyrolysis apparatus, and the upper half of the main body 1 is formed into a substantially cylindrical shape, and the lower half is formed into a substantially hollow inverted conical shape whose diameter gradually becomes smaller toward the bottom.

上記本体1の内部は、その高さ方向はぼ中間部から下部
にかけて深層流動層域2となり、この流動層域2には、
平均粒径0.1〜3關の範囲にある熱媒体粒子3が存し
て、後述するように水蒸気及び空気もしくは酸素の導入
によりこれら粒子3が流動化し、上方に向って径が大き
くなりかつ高さが最大径の2倍以上ある深層流動層2a
が形成されるようになっている。
The inside of the main body 1 becomes a deep fluidized bed region 2 from approximately the middle part to the lower part in the height direction, and this fluidized bed region 2 includes:
There are heat transfer particles 3 having an average particle size in the range of 0.1 to 3 degrees, and as described later, these particles 3 are fluidized by introducing water vapor and air or oxygen, and the diameter increases upward. Deep fluidized bed 2a whose height is more than twice the maximum diameter
is starting to form.

また、上記本体1内に存して流動層域2の上方には、フ
リーボード域4が形成されている。
Furthermore, a freeboard area 4 is formed within the main body 1 and above the fluidized bed area 2.

上記本体1の上側部には、被処理物導入管5の一端が連
結され、熱分解されるべき粗大固形廃棄物等の被処理物
がこの導入管5内を通って深層流動層域2(深層流動層
2a)上部に導入されるようになっている。
One end of a material introduction pipe 5 is connected to the upper part of the main body 1, and the material to be processed, such as bulky solid waste to be thermally decomposed, passes through the introduction pipe 5 into the deep fluidized bed region 2 ( It is designed to be introduced into the upper part of the deep fluidized bed 2a).

また、上記本体1側部の上記導入管5連結箇所より下方
位置には、流動層域2の高さ方向のほぼ中間部に連通す
る水蒸気導入管6゜6′、及び流動層域2下部に連通ず
る空気導入管7゜7′の各一端がそれぞれ連結されてい
ると共に、これら導入管6,6′と7,7′との間に水
蒸気−空気導入管8,8′の各一端が連結されており、
これら導管6.6’、7.7’、8.8’より水蒸気、
空気が側方から導入されるようになっている。
In addition, at a position below the connection point of the introduction pipe 5 on the side of the main body 1, there is a water vapor introduction pipe 6° 6' communicating with the approximately middle part of the fluidized bed region 2 in the height direction, and a water vapor introduction pipe 6° 6' that communicates with the lower part of the fluidized bed region 2. One end of each of the communicating air introduction pipes 7, 7' is connected, and one end of each of steam-air introduction pipes 8, 8' is connected between these introduction pipes 6, 6' and 7, 7'. has been
Steam from these conduits 6.6', 7.7', 8.8',
Air is introduced from the side.

更に、上記空気導入管7,7′の下方に存して本体1の
下端部に連結された公知の排出機構9の直上には、固体
残渣中の可燃物を燃焼させるためのガス導入管10 、
10’の各一端がそれぞれ連結されている。
Furthermore, a gas introduction pipe 10 for burning combustibles in the solid residue is located directly above a known exhaust mechanism 9 located below the air introduction pipes 7, 7' and connected to the lower end of the main body 1. ,
10' are connected at one end.

上記本体1の上端部には可燃ガス導出管11の一端が一
体的に連結されていると共に、この導出管11の他端部
はサイクロン分離器12内に連通し、熱分解反応によっ
て発生した可燃ガスが本体1のガス出口11aより上記
導出管11を経てサイクロン分離器12内に流入し、随
伴する粉粒子を分離したのち、その出口13から流出し
、分離された粉粒子は一端が上記分離器12下端に連結
しかつ他端が本体1側部に連結する戻り管14を介して
本体1内の深層流動層2a上部に戻されるようになって
いる。
One end of a combustible gas outlet pipe 11 is integrally connected to the upper end of the main body 1, and the other end of this outlet pipe 11 communicates with the inside of a cyclone separator 12. The gas flows into the cyclone separator 12 from the gas outlet 11a of the main body 1 through the outlet pipe 11, separates the accompanying powder particles, and then flows out from the outlet 13, and the separated powder particles have one end connected to the above-mentioned separated part. It is returned to the upper part of the deep fluidized bed 2a in the main body 1 via a return pipe 14 connected to the lower end of the vessel 12 and the other end connected to the side of the main body 1.

なお、本体1の底部には公知のような流動層用整流器或
いはディストリビュータ−は配設されず、本装置は導入
管7.7’、8゜8′を通じて側方から空気を送入する
ことにより流動化を行うものである。
Note that a known fluidized bed rectifier or distributor is not provided at the bottom of the main body 1, and this device operates by introducing air from the side through the inlet pipes 7.7' and 8.8'. It is meant to liquefy.

次tこ、上記構成の熱分解装置を用いて被処理物の熱分
解を行う方法につき説明する。
Next, a method for thermally decomposing a workpiece using the thermal decomposition apparatus having the above configuration will be explained.

まず、導入管6,6′より水蒸気、導入管8,8′より
水蒸気と空気、並びに導入管7,7′より空気を熱分解
装置本体1内に側方からそれぞれ導入し、熱媒体粒子3
を流動化して、深層流動層域2に上方に向って直径を太
きくシ、かつ最大直径に比べて高さが2倍以上の深層流
動層2aを形成すると共に、被処理物導入管5から所定
の被処理物を上記流動層2a上部に連続的に送入する。
First, water vapor is introduced from the side through the introduction pipes 6 and 6', water vapor and air from the introduction pipes 8 and 8', and air is introduced from the side from the introduction pipes 7 and 7' into the pyrolysis apparatus main body 1, and the heating medium particles are
is fluidized to form a deep fluidized bed 2a whose diameter increases upward in the deep fluidized bed region 2 and whose height is more than twice as large as the maximum diameter, and from the material introduction pipe 5. A predetermined object to be treated is continuously fed into the upper part of the fluidized bed 2a.

この場合、深層流動層2aは平均粒径が0.1〜3朋の
範囲にある熱媒体粒子3によって構成されるが、熱媒体
粒子3としては熱分解の条件に耐えて流動化でき、粉化
の少いものであればどんな固体でもよく、例えば砂、耐
火物、石灰石、ドロマイト、石炭灰の焼結粒、石灰石・
珪石・アルミナなど無機物の焼成粉などを用いることが
できる。
In this case, the deep fluidized bed 2a is composed of heat transfer medium particles 3 having an average particle size in the range of 0.1 to 3 mm, but the heat transfer medium particles 3 can withstand the thermal decomposition conditions and become fluidized. Any solid material with low oxidation may be used, such as sand, refractories, limestone, dolomite, sintered coal ash particles, limestone, etc.
Calculated powder of inorganic materials such as silica stone and alumina can be used.

また、上記流動層2aの上部は通常600〜900℃の
範囲にある一定温度に保持される。
Further, the upper part of the fluidized bed 2a is usually maintained at a constant temperature in the range of 600 to 900°C.

被処理物としては、特に粗大固形廃棄物が好適で、例え
ばタイヤ、その破砕物、固形ピッチ、固形アスファルト
、固形スラッジ、木片、木皮片、植物の幹・根・枝・葉
、プラスチック片、書籍破片、或いは家具破片、箱など
の梱包用器材破片、更に現在は経済ベースに乗らず、元
来は投棄すべき草炭、泥炭、亜炭などの可燃物、それに
廃棄自動車・電機製品などの部品やその破片等が処理さ
れる。
Particularly suitable as the material to be treated are bulky solid wastes, such as tires, their crushed materials, solid pitch, solid asphalt, solid sludge, wood chips, bark chips, plant trunks, roots, branches, and leaves, plastic chips, and books. Fragments, furniture fragments, packaging equipment fragments such as boxes, combustible materials such as grass charcoal, peat, and lignite that are no longer economically viable and should originally have been dumped, and parts of discarded automobiles and electrical appliances, etc. Debris etc. will be disposed of.

送入された被処理物は深層流動層2の上部にまきこまれ
、600〜900℃の範囲の一定温度にある高温の熱媒
体粒子に接触して急速に加熱され、熱分解反応を起して
可燃ガスを発生する。
The transported material to be treated is thrown into the upper part of the deep fluidized bed 2, and is rapidly heated by contacting high temperature heat carrier particles at a constant temperature in the range of 600 to 900°C, causing a thermal decomposition reaction. Generates flammable gas.

可燃ガススはフリーボード域4及び出口11aを経て導
出管11よりサイクロン分離器12内に流入し、ここで
随伴する粉粒子を分離したのち、その出口13から次の
工程に入る。
The combustible gas flows into the cyclone separator 12 from the outlet pipe 11 through the freeboard area 4 and the outlet 11a, where the accompanying powder particles are separated, and then it enters the next step from the outlet 13.

一方、分離された粉粒子は戻り管14を通して本体1内
の流動層2aに戻される。
On the other hand, the separated powder particles are returned to the fluidized bed 2a in the main body 1 through the return pipe 14.

深層流動層2aの上部に存在する間に熱分解反応をうけ
た被処理物は炭素を主成分とする可燃物を含むが、これ
らは深層流動層2a内を下方に向って移動していき、下
方から送入される空気によって燃焼して熱エネルギーを
発生する。
The material to be treated that has undergone a thermal decomposition reaction while existing in the upper part of the deep fluidized bed 2a contains combustible materials whose main component is carbon, but these move downward within the deep fluidized bed 2a, It is combusted by air brought in from below to generate thermal energy.

そして第1図(こ示したように上方に向って直径を大き
くする本体1の形状は、深層流動層2aにおいて媒体粒
子3が上下方向に混合する速度を大きくすると共に、下
方に移動してくる被処理物をそのまま本体1の底部に沈
下させることなく、再び深層流動層2aの上部乃至は中
部に押上げ、従ってこの作用lこより被処理物は押上げ
られて深層流動層2a中での滞留時間が十分大きいもの
となる。
The shape of the main body 1 whose diameter increases upward as shown in FIG. The material to be treated does not sink to the bottom of the main body 1 as it is, but is pushed up again to the upper or middle part of the deep fluidized bed 2a, and this action pushes the material to be treated upward and causes it to stay in the deep fluidized bed 2a. The time will be large enough.

また、第1図に示すような上方に向って直径が大きくな
りかつ高さが最大径の2倍以上ある深層流動層2aは、
流動層反応器の特徴である整流器(或いは整流板、ディ
ストリビュータ−ともいう)を必要とせず、良好な流動
状態を保ち、しかも粗大固体を上方に押し上げる作用が
強いばかりではなく、深層流動層2aの上部と下部間に
媒体粒子3の激しい交換、即ち粒子3の循環が良好に行
われる特徴を有する。
In addition, a deep fluidized bed 2a whose diameter increases upward and whose height is more than twice the maximum diameter as shown in FIG.
It does not require a rectifier (also called a rectifier or distributor), which is a feature of a fluidized bed reactor, and maintains a good fluid state, and not only has a strong effect of pushing coarse solids upward, but also has a strong effect on the deep fluidized bed 2a. It is characterized by vigorous exchange of medium particles 3 between the upper and lower parts, that is, good circulation of the particles 3.

整流器(整流板或いはディストリビュータ−)を使用す
る一般の流動層により粗大固形廃棄物を熱分解すると、
粗大固形廃棄物は直ちに媒体流動層底部に沈下し、また
熱分解によって発生した可燃ガスが整流器を通じて送入
される空気流によって燃焼するために可燃ガス発生量が
少くなるだけではなく、可燃ガスがフリーボード域で爆
燃することか知られている。
When bulk solid waste is pyrolyzed by a general fluidized bed using a rectifier (straightening plate or distributor),
The bulky solid waste immediately sinks to the bottom of the media fluidized bed, and the combustible gas generated by pyrolysis is combusted by the air flow sent through the rectifier, which not only reduces the amount of combustible gas generated, but also increases the amount of combustible gas. It is known to deflagrate in the freeboard region.

これは粗大固形廃棄物に対する適当な熱分解温度が低い
ために、従来は止むを得ないことと考えられてきたが、
上記深層流動層2aを形成する本発明に係る熱分解装置
を用いる熱分解法によれば、流動層2aの中部に連通ず
る導入管6,6′を通じて水蒸気を送入することにより
、導入管5から流動層2a上端に導入される粗大固形廃
棄物等の被処理物より発生する可燃ガスが燃焼されるこ
とがなく、かつフリーボード域4において爆燃が起る如
き不都合もなく、比較的多量の可燃ガスを採取し得ると
共に、可燃ガスの発生を終了した被処理物が導入管7.
7’、8,8’から送入される空気によって燃焼されて
熱エネルギーを発生するので、深層流動層2aの下部は
上部よりも20〜150℃程度温度が上昇する。
This was previously thought to be unavoidable because the appropriate thermal decomposition temperature for bulky solid waste is low.
According to the pyrolysis method using the pyrolysis apparatus according to the present invention for forming the deep fluidized bed 2a, the introduction pipe 5 is The combustible gas generated from the material to be treated such as bulky solid waste introduced into the upper end of the fluidized bed 2a is not burned, and there is no inconvenience such as deflagration occurring in the freeboard area 4, and a relatively large amount of gas is not burned. The combustible gas can be collected and the processed material that has finished generating combustible gas is transferred to the inlet pipe 7.
Since the air introduced from 7', 8, and 8' is combusted to generate thermal energy, the temperature of the lower part of the deep fluidized bed 2a rises by about 20 to 150°C than the upper part.

そして、この下部で発生した熱エネルギーは深層流動層
2aの上部と下部間荷われる激しい媒体粒子3の循環に
よって深層流動層2aの上部に伝達され、導入管5を通
じて連続的に送入される粗大固形廃棄物等の被処理物を
熱分解するために必要なエネルギーが供給される。
Thermal energy generated in this lower part is transmitted to the upper part of the deep fluidized bed 2a by the circulation of intense media particles 3 loaded between the upper and lower parts of the deep fluidized bed 2a, and coarse particles are continuously introduced through the introduction pipe 5. The energy necessary to pyrolyze the material to be treated, such as solid waste, is supplied.

即ち、本発明に係る装置を用いる熱分解法は、上方に向
って直径を大きくする深層流動層2aを形成することに
より、粗大固形廃棄物等の被処理物の沈下を防ぐよう上
方に押し上げながら、深層流動層2aの上部と下部間に
激しい媒体粒子3の循環を行わせ、流動層2aの下部の
温度を熱分解温度よりも20〜150℃程度高い温度に
保つことができ、これによって流動層2a下部における
被処理物燃焼の安定化を実現し、かつ熱エネルギーの良
好な伝達をはかることができるものである。
That is, in the pyrolysis method using the apparatus according to the present invention, by forming a deep fluidized bed 2a whose diameter increases upward, the material to be treated such as bulky solid waste is pushed upward to prevent it from sinking. , the medium particles 3 are circulated vigorously between the upper and lower parts of the deep fluidized bed 2a, and the temperature of the lower part of the fluidized bed 2a can be maintained at a temperature approximately 20 to 150°C higher than the thermal decomposition temperature. This makes it possible to stabilize the combustion of the material to be treated in the lower part of the layer 2a and to ensure good transmission of thermal energy.

従って、本体1は単にそれ自体で熱分解反応塔と熱媒体
粒子再熱基との作用を同時に果し、−塔の設置で非常に
効率よく粗大固形廃棄物等の熱分解を連続的に行うこと
ができる。
Therefore, the main body 1 simply functions as a pyrolysis reaction column and a heat transfer medium particle reheating group at the same time, and by installing the column, thermal decomposition of bulky solid waste etc. can be carried out very efficiently and continuously. be able to.

このように、深層流動層2aの形成により、上記のよう
に粗大固形廃棄物を処理する場合においても、この粗大
固形廃棄物は流動層2a内に長く滞留できるだけでなく
、空気流の触れる距離が太きく、更には固形廃棄物の燃
焼を行う下部の温度を、熱分解温度よりも高くすること
ができるので、空気流は流動層2a中において燃焼を完
了し、流動層2aの上部では酸素の存在がないままに、
粗大固形廃棄物の熱分解に対して最も好適な一定温度で
熱分解反応を進めることができる。
In this way, by forming the deep fluidized bed 2a, even when treating bulky solid waste as described above, not only can this bulky solid waste stay in the fluidized bed 2a for a long time, but also the distance that the airflow touches is small. Furthermore, since the temperature of the lower part where solid waste is combusted can be made higher than the pyrolysis temperature, the air flow completes combustion in the fluidized bed 2a, and the oxygen is removed in the upper part of the fluidized bed 2a. Without existence,
The thermal decomposition reaction can proceed at a constant temperature that is most suitable for thermal decomposition of bulky solid waste.

そして、上述のような熱分解操作にあって、深層流動層
2aの底部には熱分解によって生成する固形残渣が沈積
するが、これは排出機構9を通じて本体1外に取り出さ
れる。
During the thermal decomposition operation as described above, solid residue generated by the thermal decomposition is deposited at the bottom of the deep fluidized bed 2a, and is taken out of the main body 1 through the discharge mechanism 9.

この際、導管10゜10′から空気、水蒸気或いはその
混合気体が送入され、排出機構9に送入される固体残渣
中に炭素質の可燃分が含有されていてもほぼ完全に燃焼
され、上記固体残渣は殆んど可燃分を含まない状態で取
出される。
At this time, air, water vapor, or a mixture thereof is fed through the conduits 10° and 10', and even if the solid residue fed to the discharge mechanism 9 contains carbonaceous combustible matter, it is almost completely combusted. The solid residue is removed in a state containing almost no combustible matter.

なお、第1図において、導入管6.6’、7.7’。In addition, in FIG. 1, the introduction pipes 6.6' and 7.7'.

8.8′は本発明の装置を実現する例であり、その形状
と数は任意である。
8.8' is an example of realizing the device of the present invention, and its shape and number are arbitrary.

また、可燃ガスに随伴する粉粒子の分離は第1図の実施
例に限られず、例えば第2図に示すようにフリーボード
域4内に内部サイクロン12′を設置することもでき、
更にサイクロン分離器の代りに他の適宜な粉粒体分離器
を用いることもできる。
Furthermore, the separation of powder particles accompanying combustible gas is not limited to the embodiment shown in FIG. 1; for example, as shown in FIG. 2, an internal cyclone 12' may be installed within the freeboard area 4.
Furthermore, other suitable powder separators can be used in place of the cyclone separator.

(なお、第2図中14′は戻り管である。(In addition, 14' in FIG. 2 is a return pipe.

)なおまた、本体1底部の内径(深層流動層2a底部の
直径)は任意であり、粗大固形廃棄物等の被処理物の熱
分解によって生ずる固形残渣の寸法より大きく、その取
出しに差支えない程度の大きさであればよく、またその
排出機構は任意で第1図の実施例に拘束されず、更に本
体(深層流動層)の底部と排出機構の連続部分の形状も
任意であって、例えば第3図に示すように、本体1の空
気導入管7,7′連結箇所より下方に存する底部内径を
大径に形成し、更に排出機構9の直上に空気、水蒸気或
いはその混合物の導入管15.15を配設するようにし
た構成としてもよい。
) Furthermore, the inner diameter of the bottom of the main body 1 (the diameter of the bottom of the deep fluidized bed 2a) is arbitrary, and it must be larger than the size of the solid residue generated by thermal decomposition of the object to be treated such as bulky solid waste, and to the extent that it does not interfere with its removal. The size of the ejection mechanism may be arbitrary, and the ejection mechanism is not limited to the embodiment shown in FIG. As shown in FIG. 3, the bottom inner diameter of the main body 1 below the connection point of the air inlet pipes 7, 7' is formed to have a large diameter, and an inlet pipe 15 for air, water vapor, or a mixture thereof is formed directly above the discharge mechanism 9. .15 may be provided.

また、上記実施例では空気を送入するようにしたが、空
気の代りに酸素或いは空気と酸素の混合物を送入するよ
うにしてもよく、その他の構成についても本発明の要旨
を逸脱しない範囲で種々変更して差支えない。
Furthermore, although air is introduced in the above embodiment, oxygen or a mixture of air and oxygen may be introduced instead of air, and other configurations may also be adopted within the scope of the present invention. You can make various changes.

次に、本発明装置を使用して実際に熱分解操作を行った
場合の使用例を示す。
Next, an example of use will be shown in which a thermal decomposition operation is actually carried out using the apparatus of the present invention.

〔使用例〕〔Example of use〕

第1図に示した構成を有し、炉底部内径750泪、中央
部内径1010007It上部内径20001m、高さ
13.7mの内部を耐火レンガで内張りをした熱分解装
置本体内に被処理物導入管より約15cIrL〜20c
IrLに切断した廃タイヤを1500 kg/ Hrの
均一速度で供給し、下記に示す条件で熱分解したところ
、下記の分解生成物を得た。
It has the configuration shown in Fig. 1, and the inside diameter of the furnace bottom is 750m, the center part is 1010007m, the upper part is 20001m, and the height is 13.7m.The inside of the pyrolysis equipment is lined with refractory bricks. From about 15cIrL to 20c
Waste tires cut into IrL were fed at a uniform rate of 1500 kg/Hr and thermally decomposed under the conditions shown below to obtain the following decomposition products.

以上説明したように、本発明は内部に上方に向って直径
を大きくしかつ高さが最大径の2倍以上である熱媒体粒
子の深層流動層が形成されると共に、上部に可燃がス出
口が設けられ、下部に固形残渣の排出機構が設けられた
熱分解装置本体と、上記流動層の上部に被処理物を送入
する導入管と、上記流動層の高さ方向のほぼ中間部に水
蒸気を供給する導入管と、上記流動層の下部に空気もし
くは酸素を供給する導入管を具備し、上記水蒸気導入管
及び空気もしくは酸素の導入管からそれぞれ導入された
水蒸気及び空気もしくは酸素により上記熱媒体粒子の深
層流動層を形威し、この深層流動層の上部に上記被処理
物導入管から送入された被処理物を熱分解して可燃ガス
を生成させると共に、熱分解されて流動層の下部に移動
してくる被処理物を上記空気もしくは酸素の導入管から
流動層下部に導入された空気もしくは酸素によって沈下
を防ぐように上方に押し上げながらこの被処理物中の固
形可燃物を燃焼し、この燃焼により発生した熱エネルギ
ーによって上記流動層下部の熱媒体粒子の温度を上昇さ
せ、上記流動層の上部と下部の間に熱媒体粒子の循環を
起こさせて上記流動層下部の加熱された熱媒体粒子を上
部に移送して熱分解に必要とする熱エネルギーを供給し
、かつ処理の終った被処理物の固形残渣を上記排出機構
によって排出するよう構成したことを特徴とするもので
ある。
As explained above, according to the present invention, a deep fluidized bed of heat transfer medium particles whose diameter increases upward and whose height is twice or more of the maximum diameter is formed inside, and a combustible air outlet is formed in the upper part. a pyrolysis apparatus main body, which is provided with a solid residue discharge mechanism at the bottom, an inlet pipe for feeding the material to be treated into the upper part of the fluidized bed, and a pyrolysis device located approximately in the middle of the fluidized bed in the height direction. An introduction pipe for supplying water vapor and an introduction pipe for supplying air or oxygen to the lower part of the fluidized bed are provided. Forms a deep fluidized bed of media particles, and thermally decomposes the material fed into the upper part of the deep fluidized bed from the material introduction pipe to generate combustible gas, which is then thermally decomposed into the fluidized bed. The solid combustibles in the treated material are combusted while pushing the material moving to the bottom of the fluidized bed upward to prevent it from sinking by the air or oxygen introduced into the lower part of the fluidized bed from the air or oxygen introduction pipe. The thermal energy generated by this combustion increases the temperature of the heat transfer medium particles at the bottom of the fluidized bed, causing circulation of the heat transfer medium particles between the upper and lower parts of the fluidized bed, thereby increasing the temperature of the heat transfer medium particles at the bottom of the fluidized bed. The apparatus is characterized in that it is configured such that the thermal energy necessary for thermal decomposition is supplied by transferring the heated heat medium particles to the upper part, and the solid residue of the processed material is discharged by the above-mentioned discharge mechanism. be.

従って本発明の装置によれば、細粒に破砕することが困
難或いは不経済な粗大固形廃棄物を安定かつ連続的に熱
分解して可燃ガスを製造し得、しかも装置内で可燃ガス
の燃焼や爆燃が生じるおそれが確実に回避されて多量の
可燃ガスを得ることができると共に、熱分解されて炭素
質物を主成分とする可燃物を含む被処理物を深層流動層
の下位置において送入される空気もしくは酸素lこより
沈下を防ぐように絶えず上方に押し上げながらこれを燃
焼し、発生した熱エネルギーによって深層流動層下部に
存在する熱媒体粒子の温度を上昇させ、深層流動層の上
部と下部との間に媒体粒子の激しい循環を起させること
により深層流動層下部の加熱媒体粒子を上部に移送して
熱分解に必要とする熱エネルギーを供給するので、これ
によって単に1つの反応塔(装置本体)内で同時に熱媒
体粒子の循環、熱エネルギーの供給が良好に行われ、被
処理物の流動層内滞留時間も長く、粗大固形廃棄物等の
熱分解を確実に、熱効率よく、かつ経済的に行うことが
できる。
Therefore, according to the apparatus of the present invention, combustible gas can be produced by stably and continuously thermally decomposing bulky solid waste that is difficult or uneconomical to crush into fine particles, and the combustible gas can be combusted within the apparatus. It is possible to obtain a large amount of combustible gas by reliably avoiding the risk of combustible gas or deflagration, and to feed the material to be treated containing combustible material, which is thermally decomposed and whose main component is carbonaceous material, at a position below the deep fluidized bed. The air or oxygen l is constantly pushed upwards to prevent it from sinking, and is burned.The generated thermal energy increases the temperature of the heat carrier particles present at the bottom of the deep fluidized bed, and the upper and lower parts of the deep fluidized bed are heated. The heating medium particles in the lower part of the deep fluidized bed are transferred to the upper part by causing a vigorous circulation of the medium particles between At the same time, the circulation of heat carrier particles and the supply of thermal energy are performed well within the main body, and the retention time of the treated material in the fluidized bed is long, ensuring thermal decomposition of bulky solid waste, etc., with high thermal efficiency and economy. It can be done in a specific manner.

更に、虫取する固形残渣もほぼ完全に可燃分を燃焼させ
て取出すことができるので、金属などを資源として回収
することもでき、環境・エネルギーの両問題に同時に役
立つことができる等の利点がある。
Furthermore, since the solid residue used to remove insects can be removed by almost completely burning the combustible content, metals and other materials can be recovered as resources, which has the advantage of being useful for both environmental and energy issues at the same time. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部縦断面図、第2図
は本発明の他の実施例を示す一部を省略した要部縦断面
図、第3図は本発明の更に別の実施例を示す一部省略要
部縦断面図である。1・・・・・・熱分解装置本体、2a・・・・・・深層
流動層、3・・・・・・熱媒体粒子、5・・・・・・被
処理物導入管、6゜6・・・・・・水蒸気導入管、7,
7・・・・・・空気導入管、9・・・・・・固形残渣排
出機構、11a・・・・・・可燃ガス出口。
FIG. 1 is a longitudinal cross-sectional view of a main part showing one embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of a main part showing another embodiment of the invention with some parts omitted, and FIG. FIG. 7 is a longitudinal cross-sectional view of a partially omitted main part showing another embodiment. 1...Pyrolysis apparatus main body, 2a...Deep fluidized bed, 3...Heating medium particles, 5...Product introduction pipe, 6゜6・・・・・・Steam introduction pipe, 7,
7... Air introduction pipe, 9... Solid residue discharge mechanism, 11a... Combustible gas outlet.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1 内部に上方に向って直径を大きくしかつ高さが最大
径の2倍以上である熱媒体粒子3の深層流動層2aが形
成されると共に、上部に可燃ガス出口11aが設けられ
、下部に固形残渣の排出機構9が設けられた熱分解装置
本体1と、上記流動層2aの上部に被処理物を送入する
導入管5と、上記流動層2aの高さ方向のほぼ中間部に
水蒸気を供給する導入管6,6′と、上記流動層2aの
下部に空気もしくは酸素を供給する導入管7,7′とを
具備し、上記水蒸気導入管6,6′及び空気もしくは酸
素の導入管7,7′からそれぞれ導入された水蒸気及び
空気もしくは酸素により上記熱媒体粒子3の深層流動層
2aを形成し、この深層流動層2aの上部に上記被処理
物導入管5から送入された被処理物を熱分解して可燃ガ
スを生成させると共に、熱分解されて流動層2aの下部
に移動してくる被処理物を上記空気もしくは酸素の導入
管7゜7′から流動層2a下部に導入された空気もしく
は酸素によって沈下を防ぐように上方に押し上げながら
この被処理物中の固形可燃物を燃焼し、この燃焼により
発生した熱エネルギーによって上記流動層2a下部の熱
媒体粒子3の温度を上昇させ、上記流動層2aの上部と
下部の間に熱媒体粒子3の循環を起こさせて上記流動層
2a下部の加熱された熱媒体粒子3を上部に移送して熱
分解に必要とする熱エネルギーを供給し、かつ処理の終
った被処理物の固形残渣を上記排出機構9によって排出
するよう構成したことを特徴とする深層流動型熱分解装
置。
1 A deep fluidized bed 2a of heat carrier particles 3 whose diameter increases upward and whose height is at least twice the maximum diameter is formed inside, and a combustible gas outlet 11a is provided at the upper part, and a combustible gas outlet 11a is provided at the lower part. The pyrolysis apparatus main body 1 is provided with a solid residue discharge mechanism 9, the introduction pipe 5 feeds the material to be treated into the upper part of the fluidized bed 2a, and the water vapor is provided at approximately the midpoint in the height direction of the fluidized bed 2a. and introduction pipes 7, 7' that supply air or oxygen to the lower part of the fluidized bed 2a, and the water vapor introduction pipes 6, 6' and air or oxygen introduction pipes. A deep fluidized bed 2a of the heat transfer medium particles 3 is formed by water vapor and air or oxygen introduced from 7 and 7', respectively, and the material introduced from the to-be-treated material introduction pipe 5 is placed above the deep fluidized bed 2a. The material to be treated is thermally decomposed to generate combustible gas, and the material to be thermally decomposed and moved to the lower part of the fluidized bed 2a is introduced into the lower part of the fluidized bed 2a from the air or oxygen introduction pipe 7°7'. The solid combustibles in the treated material are combusted while being pushed upward to prevent sinking by the air or oxygen, and the temperature of the heat carrier particles 3 at the bottom of the fluidized bed 2a is increased by the thermal energy generated by this combustion. The heating medium particles 3 are caused to circulate between the upper and lower parts of the fluidized bed 2a, and the heated heating medium particles 3 in the lower part of the fluidized bed 2a are transferred to the upper part to generate the thermal energy required for thermal decomposition. A deep flow type pyrolysis apparatus characterized in that it is configured to supply a solid residue of the processed material and to discharge the solid residue of the treated material by the discharge mechanism 9.
JP53004989A1978-01-191978-01-19 Deep fluidized bed pyrolysis equipmentExpiredJPS5844112B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP53004989AJPS5844112B2 (en)1978-01-191978-01-19 Deep fluidized bed pyrolysis equipment

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP53004989AJPS5844112B2 (en)1978-01-191978-01-19 Deep fluidized bed pyrolysis equipment

Publications (2)

Publication NumberPublication Date
JPS5497605A JPS5497605A (en)1979-08-01
JPS5844112B2true JPS5844112B2 (en)1983-09-30

Family

ID=11599007

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP53004989AExpiredJPS5844112B2 (en)1978-01-191978-01-19 Deep fluidized bed pyrolysis equipment

Country Status (1)

CountryLink
JP (1)JPS5844112B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5634009A (en)*1979-08-281981-04-06Babcock Hitachi KkFluidized device
DE2947222C2 (en)*1979-11-231987-05-07Carbon Gas Technologie GmbH, 4030 Ratingen Device for gasification of solid, dusty to lumpy carbonaceous fuels and their use
JPH06102786B2 (en)*1982-08-251994-12-14小野田セメント株式会社 Pyrolysis furnace for waste tires
JPS5936192A (en)*1982-08-251984-02-28Onoda Cement Co LtdThermal decomposition furnace of waste tire
JPH072953B2 (en)*1984-09-041995-01-18富士スタンダ−ドリサ−チ株式会社 Gasification method for carbonaceous pits
JP6422679B2 (en)*2014-06-062018-11-14太平洋セメント株式会社 Hollow particle production equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5117561B2 (en)*1972-04-201976-06-03

Also Published As

Publication numberPublication date
JPS5497605A (en)1979-08-01

Similar Documents

PublicationPublication DateTitle
US6333015B1 (en)Synthesis gas production and power generation with zero emissions
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
EP0908672B1 (en)Methods for fusion treating a solid waste for gasification
KR20020052148A (en)Method and device for the pyrolyzing and gasifying organic substances or substance mixtures
JP2003504454A5 (en)
CN101294708A (en) Fluidized bed gasification combustion treatment method for municipal solid waste
RU2120460C1 (en)Method and apparatus for producing combustible gases from solid fuel, method and apparatus for treating raw phosphates
JPS5844112B2 (en) Deep fluidized bed pyrolysis equipment
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
US7063026B1 (en)Waste carbonizing and energy utilizing system
KR100482887B1 (en) Fluidized Bed Gasification and Melting Combustion Method and Apparatus
JP2898625B1 (en) Method and apparatus for removing and decomposing dioxins with unburned ash
RU2156406C1 (en)Waste recovery process
JPH0361085B2 (en)
JPH11106211A (en)Production of active carbon from refuse derived fuel
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
EP0855005B1 (en)Installation for processing waste
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP2002115829A (en)Method for waste treatment and gasification and melting apparatus
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP3270456B2 (en) Waste treatment method and gasification and melting equipment
JPH11201434A (en)Thermal decomposition melting combustion device of waste
JPH11106210A (en)Production of active carbon from refuse derived fuel

[8]ページ先頭

©2009-2025 Movatter.jp