【発明の詳細な説明】本発明は軸取付穴を有する永久磁石、特に軸取付穴を有
するマンガン−アルミニウムー炭素(Mn  −AI  −
C)系合金磁石の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet having a shaft mounting hole, particularly a manganese-aluminum-carbon (Mn-AI-carbon) having a shaft mounting hole.
 C) relates to a method for manufacturing alloy magnets.
Mn−AI−C系合金磁石は、磁気特性、化学的安定性
、機械的強度に勝れた永久磁石であり、特に温間塑性加
工法によって製造されたものは、磁気特性および機械的
強度が飛躍的に向上した永久磁石として多方面への応用
が図られている(特開昭50−465・08号公報)。Mn-AI-C alloy magnets are permanent magnets with excellent magnetic properties, chemical stability, and mechanical strength. In particular, those manufactured by the warm plastic working method have excellent magnetic properties and mechanical strength. As a dramatically improved permanent magnet, its application in many fields is being attempted (Japanese Patent Application Laid-Open No. 50-465-08).
また、上述の温間塑性加工法においては、目的とする磁
石形状への成形工程を同時に満足する加工法が提案され
ており、特に回転子用磁石の製造に適している。In addition, among the above-mentioned warm plastic working methods, a processing method has been proposed that simultaneously satisfies the steps of forming the magnet into the desired shape, and is particularly suitable for manufacturing rotor magnets.
上述の機械的強度に関しては、例えば引張強さ50kg
/ynyA、抗折力30kg/−および抗圧力250k
g/−が報告されており、従来の他の永久磁石では不可
能とされていた分野、例えば高速回転用モータ等高い材
料強度が要求される分野への用途が期待されている。Regarding the mechanical strength mentioned above, for example, the tensile strength is 50 kg.
 /ynyA, transverse rupture strength 30kg/- and transverse pressure 250k
 g/-, and is expected to be used in fields that have been considered impossible with other conventional permanent magnets, for example, fields that require high material strength such as high-speed rotation motors.
一方、例えばモータ及び発電機等に回転子として磁石を
用いる場合、回転伝達手段として軸を取り付けることが
行われている。On the other hand, when magnets are used as rotors in motors, generators, etc., for example, a shaft is attached as a rotation transmission means.
一般に軸の取付方法としては、磁石を鋳造時または成形
時に軸取付穴を設け、これに軸を挿入した後治具で芯出
しを行い、軸と軸取付穴との間に接着剤等の充填物を介
在させて固定する方法がとられている。In general, the shaft mounting method involves creating a shaft mounting hole when casting or molding the magnet, inserting the shaft into this, centering it using a jig, and then filling the space between the shaft and the shaft mounting hole with adhesive, etc. A method of fixing by interposing an object is used.
例えば樹脂を流し込み固化させる方法や亜鉛合金等のダ
イキャストによる充填等が行われている。For example, methods include pouring resin and solidifying it, and filling with zinc alloy or the like by die casting.
ここで、大きなトルクや軸の引張力に対する磁石と軸と
の間の接着強度は大別して次の要因に依存する。Here, the adhesive strength between the magnet and the shaft against large torque or tensile force of the shaft depends on the following factors.
(1)軸と充填物との間の接着強度(2)磁石と充填物との間の接着強度(3)充填物自体の機械的強度本発明は上述の種々の公知事実に鑑み、大きな機械的強
度と高い磁気特性を有するMn−AI−C系合金磁石を
、例えば回転子として実用するに際し、十分な固着力を
もって軸を取りつげる為の磁石製造法を提供するもので
ある。(1) Adhesive strength between the shaft and the filling (2) Adhesive strength between the magnet and the filling (3) Mechanical strength of the filling itself The present invention provides a magnet manufacturing method for attaching a shaft with sufficient fixing force when a Mn-AI-C based alloy magnet having physical strength and high magnetic properties is put to practical use, for example, as a rotor.
すなわち、本発明は、機械的強度及び磁気特性を向上す
るための温間塑性加工工程において、粗表面を有する軸
穴を形成するものである。That is, the present invention forms a shaft hole having a rough surface in a warm plastic working process for improving mechanical strength and magnetic properties.
本発明の方法は、軸穴及び外周部形状を定める成形工程
を伴5Mn    Al−C系合金磁石の温間塑性加工工程
において、少なくとも一方に開口した穴を有する合金ビ
レットを磁石の外周部形状を定める型内に配置するとと
もに、前記大向には穴より小さい断面の軸穴を定める心
棒を配し、前記穴と心棒との間の一部もしくは全部に温
間塑性加工温度においてMn−AI−C系合金よりも犬
なる硬度を有し、かつ加水分解性の粒状物を介在させて
、前記合金ビレットを心棒の軸方向に加圧成形した後、
残存する前記粒状物を加水分解によって除去することを
特徴とする。In the method of the present invention, in the warm plastic working process of a 5Mn Al-C alloy magnet, which involves a forming process that defines the shaft hole and the outer circumferential shape, an alloy billet having a hole opened on at least one side is shaped into the outer circumferential shape of the magnet. At the same time, a mandrel is arranged in the large direction to define an axial hole with a smaller cross section than the hole, and a part or all of the space between the hole and the mandrel is coated with Mn-AI- After pressure-forming the alloy billet in the axial direction of the mandrel with hydrolyzable granules interposed and having a hardness much higher than that of the C-based alloy,
 The method is characterized in that the remaining particulate matter is removed by hydrolysis.
上述の(1)、(2)及び(3)の各要因について、要
因(3)は材料特性自体であり、また接着表面が平滑な
場合は要因(1)乱切2)も主として材料特性に依存す
る。Regarding the factors (1), (2), and (3) above, factor (3) is the material property itself, and if the adhesive surface is smooth, factor (1) scarification 2) is also mainly due to the material property. Dependent.
また、樹脂等を充填物として使用すると、高結晶性高分
子材料の様に機械的強度の大きいものは逆に接着力が小
さいという事が一般に言われている。Furthermore, when a resin or the like is used as a filler, it is generally said that a material with high mechanical strength such as a highly crystalline polymer material has a low adhesive strength.
このような欠点を克服するには、各種接着表面を十分粗
くして、充填物自体の機械的強度の範囲で大きなトルク
や軸の引張力に耐える固着方法を採ることが出来る。In order to overcome these drawbacks, it is possible to use a fixing method in which the various bonding surfaces are sufficiently roughened to withstand large torques and axial tensile forces within the range of the mechanical strength of the filler itself.
軸表面に関しては、簡単には、例えばローレット加工を
する等、いかなる表面状態に加工することも可能である
。As for the shaft surface, it is possible to simply process it into any surface condition, for example by knurling.
しかし、磁石内部の軸穴に関しては、任意に表面状態を
加工することが困難であり、特に本発明の適用されるM
n−AI−C系合金磁石の製造法においては軸穴内部表
面は平滑となるのが特徴であった。However, it is difficult to arbitrarily process the surface condition of the shaft hole inside the magnet.
 The manufacturing method for n-AI-C alloy magnets was characterized in that the inner surface of the shaft hole was smooth.
即ち、上述のMn−Al    C系合金磁石の製造法は、
温間塑性加工に起因する著しい磁気特性の向上と、製品
形状への成形工程とを同時に行う事を特徴とする生産性
の極めて高い方法であって、軸穴もまた外部形状と同様
に同一工程で成形される。That is, the method for manufacturing the above-mentioned Mn-Al C alloy magnet is as follows:
 It is an extremely highly productive method that is characterized by the remarkable improvement of magnetic properties caused by warm plastic working and the process of forming the product shape at the same time, and the shaft hole is also formed in the same process as the external shape. molded in.
従って心棒により成形された軸穴表面は一般に平滑とな
る。Therefore, the surface of the shaft hole formed by the mandrel is generally smooth.
また、例えば歯車形状の断面を有する心棒を用いたとし
ても、次の様な難点が存在する。Further, even if a mandrel having a gear-shaped cross section is used, for example, there are the following difficulties.
即ち、成形工程に続いて心棒の引き抜きが必要であり、
軸方向に均一断面を有する心棒しか用いられない。That is, it is necessary to pull out the mandrel following the forming process,
 Only mandrels with uniform cross-section in the axial direction are used.
従って無秩序な粗状表面を形成することができず、特に
引抜力に対して抵抗が低下する。Therefore, it is not possible to form a disordered rough surface, and the resistance in particular to pull-out forces is reduced.
また、心棒の引き抜きに際して離型を容易にする為、あ
らかじめ潤滑剤を介在させることが必要である。Further, in order to facilitate release from the mold when the mandrel is pulled out, it is necessary to apply a lubricant in advance.
また、Mn−AI−C系合金の温間塑性加工は530℃
以上の温度域で行われ、潤滑剤としては一般に炭素系の
様な固体潤滑剤が用いられる。In addition, warm plastic working of Mn-AI-C alloy is performed at 530°C.
 The process is carried out in the above temperature range, and a solid lubricant such as a carbon-based lubricant is generally used as the lubricant.
上述の様な軸穴内部表面形状を得る為、比較的小さな凹
凸の歯車形状断面を有する心棒を用いると、凹部に固体
潤滑剤が局在し、心棒形状を十分に磁石軸穴内面に転写
することが出来ない。In order to obtain the above-mentioned inner surface shape of the shaft hole, if a mandrel with a gear-shaped cross section with relatively small irregularities is used, the solid lubricant will be localized in the recesses and the shape of the mandrel will be sufficiently transferred to the inner surface of the magnet shaft hole. I can't do that.
一方、本発明によれば、成形用心棒との間に介在する粒
状物によって磁石軸穴内面は粗面に成形される。On the other hand, according to the present invention, the inner surface of the magnet shaft hole is formed into a rough surface by the granules interposed between the forming body and the forming body.
心棒表面は平滑でよく、心棒の離型も容易である。The surface of the mandrel may be smooth, and the mandrel can be easily released from the mold.
更に、心棒表面に潤滑剤を塗布しても粒状物による軸穴
内面粗化に悪影響はない。Furthermore, even if a lubricant is applied to the surface of the shaft, there is no adverse effect on the roughening of the inner surface of the shaft hole caused by particulate matter.
また潤滑剤を該粒状物に混合して用いる事も可能である
。It is also possible to use a lubricant mixed with the granules.
この様な方法では心棒の離型は更に容易となる。This method makes it easier to release the mandrel from the mold.
粒状物を介在させて粗面を形成させる場所については、
この磁石軸穴内面のいかなる面についても可能であるが
、望ましくは広範囲に形成すべきである。For places where a rough surface is formed by intervening particulate matter,
 It is possible to form this on any surface of the inner surface of the magnet shaft hole, but preferably it should be formed over a wide range.
即ち、磁石両端面に開口する貫通軸穴の場合には側壁全
面に、また一方にのみ開口する軸穴の場合には側壁面の
みならず軸穴底面にも本発明の方法を適用することが可
能である。That is, in the case of a through shaft hole that opens on both end faces of the magnet, the method of the present invention can be applied to the entire side wall, and in the case of a shaft hole that opens only on one side, the method of the present invention can be applied not only to the side wall surface but also to the bottom surface of the shaft hole. It is possible.
また、上記後者の場合には軸穴底面に比較的多量の粒状
物を介在させ、この粒状物を心棒先端面にて加圧し軸穴
最深部を押し拡げることも可能である。In the latter case, it is also possible to interpose a relatively large amount of granular material on the bottom surface of the shaft hole, pressurize this granular material with the tip end surface of the mandrel, and force the deepest part of the shaft hole to expand.
この様な場合は軸の固定はより強固に行い得ると考えら
れる。In such cases, it is thought that the shaft can be fixed more firmly.
粒状物の粒子サイズについては、100メツシユより太
きいものについて効果が認められたが、特に軸穴側壁面
の粗化に対しては150メツシユより小さい微細粒子を
用いた場合には効果は認められなかった。Regarding the particle size of the granules, an effect was observed when using particles larger than 100 mesh, but no effect was observed when using fine particles smaller than 150 mesh, especially against roughening of the side wall surface of the shaft hole. There wasn't.
望ましくは20〜50メツシュ程度の粒状物が用いられ
るべきである。Preferably, granules of about 20 to 50 mesh should be used.
また目的に応じてはより大きなサイズの粒状物を用いる
ことも可能である。It is also possible to use larger sized particles depending on the purpose.
本発明の粒状物は本発明の目的からして温間塑性加工温
度においてMn−AI−C系合金よりも犬なる硬度を有
する事が必要である。For the purpose of the present invention, the granules of the present invention need to have a hardness that is higher than that of the Mn-AI-C alloy at the warm plastic working temperature.
ここで上述の温間塑性加工温度はMn    AI    C系
合金磁石の製造法に特徴的な温度範囲である530から
830℃の間で選ばれる。Here, the above-mentioned warm plastic working temperature is selected between 530 and 830° C., which is a temperature range characteristic of the manufacturing method of Mn AI C alloy magnets.
この粒状物は単体でも、又結合剤や潤滑剤等との混合物
としても用いられる。This granular material can be used alone or as a mixture with a binder, lubricant, etc.
また、粒体もしくはスラリー状でも、又結合剤等と共に
固化した状態でも用いられる。It can also be used in the form of granules or slurry, or in a solidified state with a binder or the like.
ここで軸穴底面に粒状物を介在せしめるについては上記
の方法に何ら制限は無い。There is no restriction on the method described above in interposing particulate matter on the bottom surface of the shaft hole.
また軸穴側壁面についても、粒状物は種々の方法で容易
に介在せしめる事が可能である。Furthermore, particles can be easily interposed on the side wall surface of the shaft hole by various methods.
即ち、心棒を合金中に開口する穴に挿入した後には、粒
体もしくはスラリー状で両者の間隙に充填する方法が用
いられる。That is, after inserting the mandrel into a hole opened in the alloy, a method is used in which the gap between the two is filled with granules or slurry.
また、心棒を合金中に開口する穴に挿入する以前におい
ては、心棒もしくは穴内壁、望ましくは心棒表面に粒状
物を付着せしめる方法が用いられる。Furthermore, before inserting the mandrel into a hole opened in the alloy, a method is used in which granules are attached to the mandrel or the inner wall of the hole, preferably to the surface of the mandrel.
上述の方法の中で、次に述べる方法は実用上合理的であ
り、特に有用である。Among the above-mentioned methods, the following method is practically reasonable and particularly useful.
即ち、結合剤としての樹脂を有機溶剤にて溶解したもの
を心棒に塗布し粒状物を付着せしめるか、あるいはあら
かじめ粒状物を混合してスラリー状となし心棒表面に付
着せしめる。That is, a resin serving as a binder dissolved in an organic solvent is applied to the mandrel and the granules are attached thereto, or the granules are mixed in advance to form a slurry and the mixture is adhered to the surface of the mandrel.
然る後、心棒が温間塑性加工温度に加熱された合金中に
開口する穴に挿入されるまでに有機溶剤は気化離散し、
粒状物は心棒表面に固着する。Thereafter, by the time the mandrel is inserted into the hole opened in the alloy heated to the warm plastic working temperature, the organic solvent is vaporized and dispersed.
 The particulate matter sticks to the mandrel surface.
而して心棒をより大なる開口面積を有する穴に挿入した
後、ステムを下降して温間塑性加工を施す。After inserting the mandrel into the hole having a larger opening area, the stem is lowered and subjected to warm plastic working.
その様にして同一の工程で磁気特性の向上、外部形状の
成形及び内面が粗化された軸穴の成形が行われる。In this way, the magnetic properties are improved, the external shape is formed, and the shaft hole with a roughened inner surface is formed in the same process.
成形後軸穴中に残存する粒状物もしくは混合物は、一般
には公知の方法で除去される。Particulate matter or mixture remaining in the shaft hole after molding is generally removed by known methods.
例えば加圧水の噴射もしくは溶剤との併用等である。For example, pressurized water injection or combined use with a solvent may be used.
軸穴内壁に深く侵入して容易に除去されない粒状物が存
在しても一応所期の目的は達成される。Even if there are particles that penetrate deeply into the inner wall of the shaft hole and are not easily removed, the intended purpose is still achieved.
しかしながら、その様な粒状物をも除去する事がより望
ましい。However, it is more desirable to also remove such particulate matter.
本発明は更に、上述の様に強固に軸穴内壁に侵入した粒
状物をも除去する更に改良された製造法を提供するもの
である。The present invention also provides a further improved manufacturing method for removing even the particulate matter that has firmly entered the inner wall of the shaft hole as described above.
即ち、粒状物として加水分解性でかつ温間塑性加工温度
においてMn−AI−C系合金より犬なる硬度を有する
化合物、例えばAl4C3を用いる。That is, a compound such as Al4C3, which is hydrolyzable and has a hardness higher than that of the Mn-AI-C alloy at the warm plastic working temperature, is used as the granular material.
軸穴成形後残存する、Al4C3は水と容易に反応して
メタンガスを発生して分解し、容易に除去される。Al4C3 remaining after forming the shaft hole easily reacts with water, generates methane gas, decomposes, and is easily removed.
このような目的では、アセチリド型炭化物等水と反応し
てメタンガスやアセチレンガスを発生して分解する種々
の炭化物の利用が考えられる。For this purpose, it is possible to use various carbides such as acetylide carbides that react with water to generate methane gas or acetylene gas and decompose.
これまで述べてきた様に、本発明は軸穴内壁に粗面を形
成する方法であり、一般の機械加工等により容易に表面
形状を与えられた軸との間に機械的強度の大きな充填物
を介在させて、全体の軸取付強度を向上させたものであ
る。As described above, the present invention is a method of forming a rough surface on the inner wall of a shaft hole, and a filling material with high mechanical strength is placed between the shaft and the shaft, which is easily given a surface shape by general machining. This improves the overall shaft mounting strength.
充填物としては、一般の接着用樹脂のみならずポリアセ
タール系等高密度、高結晶性高分子材料、銀ろう等の金
属、セメント系等の複合接着材等巾広く選択することが
出来る。The filler can be selected from a wide range of materials, including not only general adhesive resins but also high-density, highly crystalline polymer materials such as polyacetal, metals such as silver solder, and composite adhesives such as cement.
つまり、一般の接着法で重複されるところの平滑表面で
の接着力をある程度犠牲にしてでも充填物自体の機械的
強度及び流動状態での濡れ性のみに着目して選択するこ
とが出来る。In other words, it is possible to select a filler by focusing only on the mechanical strength of the filler itself and the wettability in a fluid state, even if it sacrifices the adhesive force on a smooth surface to some extent, which is redundant in general adhesive methods.
本発明の方法により製造された磁石は、充填物により軸
を取り付けた場合、軸固着強さ、つまり引き抜き強さ及
び耐トルク強さは著しく向上して、従来の方法に比して
約2倍以上の強さを示す。When the magnet manufactured by the method of the present invention has a shaft attached with a filler, the shaft fixing strength, that is, the pull-out strength and torque resistance strength are significantly improved, and are approximately twice as strong as those produced by the conventional method. It shows the strength above.
また、温間塑性加工法によって同時に成型されたMn−
Al−C系合金磁石の大きな機械的強度と相俟って、高
速モータは勿論、1100000rp以上を要する超高
速モータ用の回転子としても充分耐え得るものである。In addition, Mn-
 Coupled with the high mechanical strength of the Al-C alloy magnet, it can withstand not only high-speed motors but also rotors for ultra-high-speed motors that require 1,100,000 rpm or more.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
マンガン(Mn  )、アルミニウム(AI)および炭素
(C)を高周波炉で溶解し、シェル型により鋳造した。Manganese (Mn), aluminum (AI) and carbon (C) were melted in a high frequency furnace and cast in a shell mold.
鋳造品は内径7朋φの貫通穴を有する外径18mmφ、
高さ35間の形状である。The cast product has an outer diameter of 18mmφ with a through hole of inner diameter 7mmφ,
 It has a shape with a height of 35 mm.
分析組成は71.83wt%のMl  、  0.96  w
j%のC1及び残部のA1であった。The analytical composition is 71.83 wt% Ml, 0.96 w
 j% of C1 and the balance of A1.
この鋳造品に1100℃で2時間の均質化熱処理を施し
た後、約り00℃/分の冷却速度で500℃以下まで強
制風冷し、更に550°Cで30分の熱処理を行った。This cast product was subjected to homogenization heat treatment at 1100°C for 2 hours, then forced air cooling to below 500°C at a cooling rate of approximately 00°C/min, and further heat treated at 550°C for 30 minutes.
この熱処理済試料の磁気特性を測定したところ、Br
=2800G、  bHc  =14500e、(BH)m
ax:1.1×1060−Oeであった。When we measured the magnetic properties of this heat-treated sample, we found that Br
 =2800G, bHc =14500e, (BH)m
 ax: 1.1×1060-Oe.
次に塑性加工工程の概略を図面により述べる。Next, an outline of the plastic working process will be described using drawings.
図において、上ポンチ1の心棒11の表面に1・1・1
−トリクロルエタンを溶媒としてフェノール樹脂を塗着
した。In the figure, the surface of the shaft 11 of the upper punch 1 is 1.1.1.
 - Phenol resin was applied using trichloroethane as a solvent.
また、この樹脂溶液中には、潤滑剤としての炭素を少量
混入した。A small amount of carbon as a lubricant was also mixed into this resin solution.
心棒の直径は5.5關φである。The diameter of the mandrel is 5.5 mm.
次にこの塗布面に約20〜50メツシユの炭化アルミニ
ウム(A14C3)粒状結晶を分散して付着させ、後、
溶媒を気化離散させた。Next, about 20 to 50 meshes of aluminum carbide (A14C3) granular crystals are dispersed and adhered to the coated surface, and then
 The solvent was vaporized and dispersed.
表面に炭素系潤滑剤を塗布した鋳造ビレット2を加工温
度まで加熱した後、下ポンチ3上に中心軸を合わせ静置
した。A cast billet 2 whose surface was coated with a carbon-based lubricant was heated to a processing temperature, and then placed on a lower punch 3 with its center axis aligned.
型4の内径は25關φである。The inner diameter of the mold 4 is 25 mm.
プレスラムを下降させると共に、心棒11は粒状物であ
るAl4C3を固着したまま鋳造ビレット2の貫通穴に
挿入され、上ポンチ成形面12がビレットに到達するま
でに心棒11の先端は下ポンチ3の中心穴に嵌合される
。As the press ram is lowered, the mandrel 11 is inserted into the through hole of the casting billet 2 while fixing the Al4C3 granules, and by the time the upper punch forming surface 12 reaches the billet, the tip of the mandrel 11 is at the center of the lower punch 3. Fitted into the hole.
プレスラムを更に下降させ、塑性加工成形を行った。The press ram was further lowered to perform plastic processing.
加工温度は680℃であった。The processing temperature was 680°C.
この成形工程においては、ビレット2はその外周部が型
4によって拘束されるので、内周部は粒状物を介して心
棒に押しつげられ、こうして型及び心棒によって磁石の
外周部形状及び軸穴が定められる。In this forming process, the outer periphery of the billet 2 is restrained by the mold 4, so the inner periphery is pressed against the mandrel through the granules, and the shape of the outer periphery and the shaft hole of the magnet are thus shaped by the mold and the mandrel. determined.
成形終了後、上ポンチ1を上昇させたところ、心棒11
は容易に成形試料から抜き去る事が出来た。After forming, when the upper punch 1 is raised, the mandrel 11
 could be easily removed from the molded sample.
成形試料は下ポンチ3をノックアウトとして用いて取り
出し、空冷した後水中に1時間放置した。The molded sample was taken out using the lower punch 3 as a knockout, cooled in air, and then left in water for 1 hour.
なお、炭化アルミニウムを心棒に保持させたフェノール
樹脂は塑性加工工程を焼失した。In addition, the phenolic resin holding aluminum carbide on the mandrel was burned out during the plastic working process.
こうして得られた外径25mπφ、長さ16間の外部形
状を持つMn−AI−C系磁石の貫通軸穴を調べたとこ
ろ、内壁表面は粗く、表面粗さ約200μm程度が得ら
れた。When the through shaft hole of the thus obtained Mn-AI-C magnet having an external shape of 25 mπφ and 16 mm in length was examined, the inner wall surface was rough, with a surface roughness of about 200 μm.
また、Al4C3は残留しておらず、加水分解によって
除去された事が確認された。Further, it was confirmed that Al4C3 did not remain and was removed by hydrolysis.
また、この試料の外周部より一辺が8間の立方体試料を
切り出して磁気特性を測定したところ、Br=3400
G、bHc=25000e。Also, when we cut out a cubic sample with 8 sides on each side from the outer periphery of this sample and measured its magnetic properties, we found that Br=3400.
 G, bHc=25000e.
(BH)max:2.3×1060−Oe  の優しタ特
性を示した。(BH)max: 2.3 x 1060-Oe.
ローレット加工を施した直径5關φの銅製シャフトをポ
リビニルアヤタールとフェノール系樹脂の混合接着剤を
用いて上記の磁石の軸穴に取りつげたところ、約102
0kgの引き抜き強度を示した。When a knurled copper shaft with a diameter of 5 mm was attached to the shaft hole of the above magnet using a mixed adhesive of polyvinyl ayatar and phenolic resin, the result was approximately 10 mm.
 It showed a pull-out strength of 0 kg.
一方、心棒に潤滑剤を塗布したのみで成形した場合には
、300kg以下の引き抜き強度を示し、樹脂と磁石軸
穴との間の剥離が認められた。On the other hand, when molding was performed with only a lubricant applied to the mandrel, the pull-out strength was less than 300 kg, and peeling between the resin and the magnet shaft hole was observed.
図面は塑性加工時の成形装置及びビレットの配置を示す
断面図である。The drawing is a sectional view showing the arrangement of a forming device and a billet during plastic working.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP15934875AJPS5830729B2 (en) | 1975-12-25 | 1975-12-25 | Jikuanaoyuusurujishayakunoseizohou | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP15934875AJPS5830729B2 (en) | 1975-12-25 | 1975-12-25 | Jikuanaoyuusurujishayakunoseizohou | 
| Publication Number | Publication Date | 
|---|---|
| JPS5279296A JPS5279296A (en) | 1977-07-04 | 
| JPS5830729B2true JPS5830729B2 (en) | 1983-07-01 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP15934875AExpiredJPS5830729B2 (en) | 1975-12-25 | 1975-12-25 | Jikuanaoyuusurujishayakunoseizohou | 
| Country | Link | 
|---|---|
| JP (1) | JPS5830729B2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS59163133U (en)* | 1983-04-18 | 1984-11-01 | 愛三工業株式会社 | Fuel supply system throttle opening sensor - mounting structure | 
| US8833987B2 (en) | 2005-09-14 | 2014-09-16 | Donnelly Corporation | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | 
| US8884788B2 (en) | 1998-04-08 | 2014-11-11 | Donnelly Corporation | Automotive communication system | 
| US8908039B2 (en) | 2000-03-02 | 2014-12-09 | Donnelly Corporation | Vehicular video mirror system | 
| US9073491B2 (en) | 2002-09-20 | 2015-07-07 | Donnelly Corporation | Exterior rearview mirror assembly | 
| US9090211B2 (en) | 2002-09-20 | 2015-07-28 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly | 
| US9694749B2 (en) | 2001-01-23 | 2017-07-04 | Magna Electronics Inc. | Trailer hitching aid system for vehicle | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPS59163133U (en)* | 1983-04-18 | 1984-11-01 | 愛三工業株式会社 | Fuel supply system throttle opening sensor - mounting structure | 
| US8884788B2 (en) | 1998-04-08 | 2014-11-11 | Donnelly Corporation | Automotive communication system | 
| US8908039B2 (en) | 2000-03-02 | 2014-12-09 | Donnelly Corporation | Vehicular video mirror system | 
| US9694749B2 (en) | 2001-01-23 | 2017-07-04 | Magna Electronics Inc. | Trailer hitching aid system for vehicle | 
| US9073491B2 (en) | 2002-09-20 | 2015-07-07 | Donnelly Corporation | Exterior rearview mirror assembly | 
| US9090211B2 (en) | 2002-09-20 | 2015-07-28 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly | 
| US8833987B2 (en) | 2005-09-14 | 2014-09-16 | Donnelly Corporation | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | 
| US9045091B2 (en) | 2005-09-14 | 2015-06-02 | Donnelly Corporation | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | 
| US9694753B2 (en) | 2005-09-14 | 2017-07-04 | Magna Mirrors Of America, Inc. | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | 
| Publication number | Publication date | 
|---|---|
| JPS5279296A (en) | 1977-07-04 | 
| Publication | Publication Date | Title | 
|---|---|---|
| JPH07138614A (en) | Production of plastically worked and molded goods | |
| DE2460013A1 (en) | PROCESS FOR MANUFACTURING METALLIC SHAPED BODIES | |
| JPS5830729B2 (en) | Jikuanaoyuusurujishayakunoseizohou | |
| JPS6341966B2 (en) | ||
| WO1992017302A1 (en) | Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor | |
| EP0347627B1 (en) | Method for producing a piston with cavity | |
| US4920009A (en) | Method for producing laminated bodies comprising an RE-FE-B type magnetic layer and a metal backing layer | |
| JP5334842B2 (en) | Molded body for powder sintered body, powder sintered body and production method thereof | |
| JP2001501254A (en) | Die and mold with net shape, and manufacturing method therefor | |
| JPS649898B2 (en) | ||
| US6423369B1 (en) | Process for sealing pores in molded product, and bonded magnet with pores sealed by the process | |
| JPS6021306A (en) | Manufacturing method of composite reinforced member | |
| JPS6338402B2 (en) | ||
| JP7428069B2 (en) | Manufacturing method of bonded magnet | |
| JP2890909B2 (en) | Method of manufacturing a gear member of a rotary gear pump having a materially densified tooth profile | |
| JPH0643628B2 (en) | Method for manufacturing aluminum alloy member | |
| JP2860427B2 (en) | Method for producing sintered body made of amorphous alloy powder | |
| JP2954737B2 (en) | Forming method of semi-molten metal | |
| JPH0726338A (en) | Method for producing TiC whisker reinforced metal composite material | |
| JPH04365824A (en) | Method for manufacturing a slider for a current collector | |
| CA1301602C (en) | Method and assembly for producing extruded permanent magnet articles | |
| JPS63282220A (en) | Manufacture of amorphous-alloy block | |
| CN119905307A (en) | Anisotropic bonded magnet and preparation method thereof | |
| KR20230048757A (en) | Method for manufacturing battery case for electric vehicle powertrain and battery case manufactured thereby | |
| JPH0639643B2 (en) | Method for producing magnetic composite material of A1 or A1 alloy |