Movatterモバイル変換


[0]ホーム

URL:


JPS58148909A - Measurement method using a light wave rangefinder - Google Patents

Measurement method using a light wave rangefinder

Info

Publication number
JPS58148909A
JPS58148909AJP3062482AJP3062482AJPS58148909AJP S58148909 AJPS58148909 AJP S58148909AJP 3062482 AJP3062482 AJP 3062482AJP 3062482 AJP3062482 AJP 3062482AJP S58148909 AJPS58148909 AJP S58148909A
Authority
JP
Japan
Prior art keywords
measurement
reflector
light
light wave
measurement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3062482A
Other languages
Japanese (ja)
Inventor
Suetoshi Inoue
井上 末年
Hiroshi Matsudate
松「あ」 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei CorpfiledCriticalTaisei Corp
Priority to JP3062482ApriorityCriticalpatent/JPS58148909A/en
Publication of JPS58148909ApublicationCriticalpatent/JPS58148909A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】本発明は、光波測距儀による測定方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measurement method using a light wave range finder.

地下発電所や地下タンクなど地下大空洞構造物において
は掘削の進行に伴う壁面の状態の変化を常時把掘してお
くことが施工管理上必要である。
In large cavernous underground structures such as underground power plants and underground tanks, it is necessary for construction management to constantly monitor changes in the condition of the walls as excavation progresses.

しかし実際には空洞の形状変化を測定することは、空洞
が大きく深くなると困−な仕事であね、例えば第4図に
示すように両壁面の足場に作業員(M)が登り両壁間に
テープ(T)を渡して距離tlIl定するような方法f
採用しているが、労力が多く危険も伴ないかつ正確な測
定値fM待できず更に空洞内部で作業中は測定できない
、といつ★欠点を有する。
However, in reality, measuring changes in the shape of the cavity is a difficult task when the cavity is large and deep.For example, as shown in Figure 4, a worker (M) climbs onto the scaffolding on both walls. A method such as passing the tape (T) to determine the distance tlIl f
However, it is labor-intensive and dangerous, and it has drawbacks such as not being able to wait for an accurate measurement value fM, and furthermore, not being able to measure while working inside a cavity.

また光波測距儀の反射体としてプリズムを用いる方法も
存在するがプリズム蝶反射角がtF管っているためVC
測定範囲が限られ、壇た高価であるから測定の蜜に回収
しなければならず、更にプリズムは反射内縦が定まって
いるから測距儀を設置できる範囲が限定されてしまう。
There is also a method of using a prism as a reflector for a light wave rangefinder, but since the reflection angle of the prism is tF, the VC
The measurement range is limited, and since it is expensive, it must be recovered at the point of measurement.Furthermore, since the vertical direction of the reflection of the prism is fixed, the range in which the rangefinder can be installed is limited.

オな写真測量によって掘削形状を測定する方法も開発さ
jてbるが、撮影時から結果が出る★でに永い日時Vr
要するため記録として残してお(県らともかく、迅速な
施工管理に利用することは1禰である。
A method of measuring the excavation shape by photogrammetry has also been developed, but results are available from the time of photography.
Because it is necessary, it is necessary to keep it as a record (the prefecture and others only need to use it for quick construction management).

同様な間@位地工大空洞の#AIIIIlの場合KII
IIらずダムや墳立てなど地上の測定で本発生している
Similar interval @ KII in the case of #AIIIl
This phenomenon occurs when measurements are taken on the ground, such as at dams and burial mounds.

本発明はこのような点會改畳する★めKlkされ六本の
で、掘削機械などの作動している施工中であっても、嵩
所の測定点を常時迅速でかつ安全な作業の本とに測定す
ることのできる測定方法を提供することを目的とする。
The present invention has six Klks for changing such points, so even during construction when excavating machines are in operation, the measurement points in the bulk area can always be quickly and safely used. The purpose is to provide a measurement method that can measure

を大木発明は測定結果を直ちに処理して、短時間のうち
に現場の形状を把1し、施工管理に反映させることので
きる測定方法を提供することを目的とする。
The object of the invention is to provide a measurement method that can immediately process measurement results, grasp the shape of the site in a short time, and reflect this in construction management.

次に本発明の方法を地下空洞の掘削作業に利用する例に
ついて説明するが、本発明の方法で社次のような測角測
距儀と反射体を使用する。
Next, an example in which the method of the present invention is used for excavating underground cavities will be described, in which a goniometer and a reflector such as Shatsugi are used in the method of the present invention.

〈イ〉 測角測距−測角測距暖(1)は光波測距儀とセオPライトとを組合
せ★測定器である。
<A> Angle and Distance Measurement - Angle and Distance Measurement (1) is a measuring instrument that combines a light wave distance meter and a TheoP light.

光波測距llIは光源からの光を変調電圧によって変化
させ、このf調光を送光管で反射体まで送ね、反射して
来た光を受光優で受け、この光の強弱を電流の強弱Kf
喚して変調光の往復の位相便化を電気的に測定するもの
である。
Light wave distance measurement llI changes the light from the light source by modulating voltage, sends this f dimming through a light transmitting tube to a reflector, receives the reflected light with a light receiver, and changes the intensity of this light by changing the current. Strength Kf
This method electrically measures the round-trip phase shift of modulated light.

変調光は集束した平行線であるから反射体に正確に向け
て発光する必要があり、そのための望遠鏡が七オPライ
トの望遠値と兼用している。
Since the modulated light is a focused parallel line, it must be emitted accurately toward the reflector, and the telescope for this purpose also serves as the telephoto value of the 7-P light.

測定した数値は目読したり針幅に書き移す必要がなく、
そのfオ数値信号としてコンビエータへ入力させること
ができる。
There is no need to visually read the measured values or transfer them to the needle width.
The f value can be input to the combiator as a numerical signal.

〈口〉 反射体(第1図)反射体(2) Fi球または半球、円筒、多角柱などの
表面に反射材f塗布し管たに貼り付ける。
<Mouth> Reflector (Fig. 1) Reflector (2) Apply reflective material f to the surface of Fi sphere, hemisphere, cylinder, polygonal prism, etc. and attach it to the tube.

あるいは反射材自体を上記のような形状に形成すること
もできる。
Alternatively, the reflective material itself can be formed into the above shape.

球の場合にはどの角1から質調光を送っても反射光を受
光することができるが円筒や多角柱の場合Kti中心軸
に対して質調光の交わる角度はある範囲に限定される。
In the case of a sphere, reflected light can be received no matter which corner 1 the quality light is sent from, but in the case of a cylinder or polygonal prism, the angle at which the quality light intersects with the central axis of Kti is limited to a certain range. .

反射体(2)の一部にはピン(5)を突設して壁面への
取り付けを容易にする構成も考えられる。
A configuration may be considered in which a pin (5) is provided protruding from a part of the reflector (2) to facilitate attachment to a wall surface.

反射体(2°)自体はいわゆるスコッチテープ勢の反射
テープを円筒体等に貼り付Hるだ叶で製作できるからき
わめて安価であり、測定点の壁面郷へ取り付行なまま使
い捨てにすることができる。
The reflector (2°) itself is extremely inexpensive because it can be made by pasting a so-called Scotch tape type reflective tape onto a cylindrical body, etc., and it can be disposed of without being attached to the wall surface of the measurement point. Can be done.

次に測定方法について説明する。Next, the measurement method will be explained.

〈イ〉 反射体の設営前記した反射体(2)f掘削の進行に伴って壁[I (
3)に取り付けておく。
<B> Setting up the reflector As the above-mentioned reflector (2) f excavation progresses, the wall [I (
3).

地中に大空洞を掘削する場合には順次床面の# (4)
 f下げてゆくから、壁面(3)K散り付けた反射体(
2)扛盤(4)上の測定位置よ轢も相対的に順次高い点
に位置することになる。
When excavating a large underground cavity, the # (4) of the floor surface is sequentially
As f is lowered, the wall surface (3) K scattered reflectors (
2) The measurement positions on the pick board (4) and the tracks will also be located at relatively higher points.

すなわち本発明の測定方法では反射体(2)は作業員が
測定時に運搬したり測定後に回収したりすゐ必豐なく、
測定点にその1重固定しておくことが特徴である。
That is, in the measurement method of the present invention, the reflector (2) does not have to be carried by the worker during the measurement or collected after the measurement.
The feature is that one layer is fixed at the measurement point.

実施例の場合は反射体(2)Fi垂直方向にも、水平方
向に本複数個取り付ける。
In the case of the embodiment, a plurality of reflectors (2) Fi are attached both vertically and horizontally.

ψ〉 測定(第3図)磐(4)の1点(人)に測角測距11 (1) f@え
つ行、他の基準点(B)+41に視する。
ψ〉 Measurement (Fig. 3) Angle measurement and distance measurement to one point (person) on rock (4) 11 (1) f@Etsu line, look at other reference point (B) + 41.

そしてB点と測定すべき反射体(C1)との相対水平角
(θ)、鉛直線と反射体(2)との鉛璽角(−反び光波
の反射から斜距離(tlとを目視tたは自動読取わを行
う。
Visually check the relative horizontal angle (θ) between point B and the reflector (C1) to be measured, the vertical angle (-) between the vertical line and the reflector (2), and the oblique distance (tl) from the reflection of the warped light wave. or perform automatic reading.

同様にしてA点にm見つけたtオ他の反射体(CI)・
・・(0職) を順次測定し光波を反射させて角変と斜
距離を得る。
Similarly, I found another reflector (CI) at point A.
...(0 position) is measured sequentially and the light waves are reflected to obtain the angle change and oblique distance.

il!に積電の向上と確gt目的としてB点からも一様
碌測定を行う場合もある。
Il! In some cases, uniform measurement is also carried out from point B for the purpose of improving the load and ensuring gt.

反射体(2)の形状が球、半球状の場合KFi測定点(
A)は盤(4)上のどこの点であっても光波の反射を得
ることができる。
If the shape of the reflector (2) is spherical or hemispherical, the KFi measurement point (
In A), light waves can be reflected from any point on the board (4).

反射体(2)が円筒形で壁面(3)からほぼ−直に突設
させたような場合には出来るだけ反射体(2)側の壁面
(3)に近い位置に測角測距儀(1)を据え付けた方が
良好な結果が得られ為。
If the reflector (2) is cylindrical and protrudes almost directly from the wall (3), place a goniometer and rangefinder (on the side of the reflector (2) as close to the wall (3) as possible). Better results can be obtained by installing 1).

このように測角測距儀(1)を据え付ける位置(盤)は
掘削工事の進行と共に便化するが、使い捨て可能な反射
体(2)の方扛移動することなく一定点に固定し大状趨
のままである。
In this way, the location (board) for installing the angle and range finder (1) will become more convenient as the excavation work progresses, but the disposable reflector (2) can be fixed at a fixed point without moving around and can be used for large-scale installations. The trend remains the same.

この関係に地下掘削の場合に限らず、ダムや造成工率の
場合も同様であって反射体(2)の方に移動することが
なく、測角測距儀(1)の据え村上位置が便化する。
This relationship is not limited to underground excavation, but also applies to dams and construction rates; the angle and range finder (1) will not move toward the reflector (2), and the Murakami position of the angle and range finder (1) will be the same. To facilitate.

ぐ)〉 解析測定データは電気信号として小型コンピュータへ入力し
、演算させることによって次のような処憚を行うことが
〒きる。
(g)> By inputting the analytical measurement data into a small computer as an electrical signal and performing calculations, the following processing can be performed.

■ ディスプレイに設計111Fr面を画かせる。■ Show the design 111Fr surface on the display.

■ 第1回の測定値を初期値として設計断面と重ねてデ
ィスプレイに表示させ、掘削量の過不足を判定する。
■ The first measured value is used as the initial value and displayed on the display overlapping the design cross section to determine whether the amount of excavation is excessive or insufficient.

■ 掘削の進行に伴い繰返して測定し、その度に設計断
面と比較して形状の変位を確認する。
■ Repeat measurements as excavation progresses, and compare with the design cross-section each time to confirm shape displacement.

■ 掘削作業の完了後、正確な断面積と空洞容積を求め
る。
■ Determine accurate cross-sectional area and cavity volume after excavation work is completed.

本発明は上記したようKなるから次のような効果f朝侍
することができる。
As described above, the present invention can achieve the following effects.

〈イ〉 反射体に対して規準位置が垂直方向にどこまで
移動しても反射体は固定したままの状態で直ちに測定し
て角質、斜距離を得ることができる。
<B> No matter how far the reference position moves in the vertical direction with respect to the reflector, the reflector remains fixed and measurement can be performed immediately to obtain the corneum and oblique distance.

従って作業員が測定点まで行くような労力や危#はまっ
たくなく、測距儀で規準するだけで直ちに多数点の位置
を知り図形化できるから従来にない迅速な施工管理が可
能である。
Therefore, there is no need for workers to go to the measurement points, and there is no need for them to go to the measurement points, and simply by using a rangefinder, the positions of multiple points can be immediately known and visualized, making it possible to manage construction work more quickly than ever before.

〈口〉 また規準位置が掘削床面上でX方向、Y方向に
どのように移動してもやはり固定し大オオの反射体から
の反射光を得て直ちに測定を行うことができる。
<Exposure> Also, no matter how the reference position moves in the X and Y directions on the excavation floor surface, it remains fixed and measurements can be made immediately by obtaining the reflected light from the large reflector.

くノシ 反射体は安価であるからその管ま回収せずに使
い捨てることができる。
Kunoshi reflectors are cheap, so they can be thrown away without having to collect the tubes.

l!に安価であるためと測定時間が短かいために多数点
に設置できるので従来にない正確な施工状況の把握が可
能である。
l! Because it is inexpensive and the measurement time is short, it can be installed at multiple points, making it possible to understand the construction situation more accurately than ever before.

ぐウ 測定値をコンピュータに入力すれば直ち(設計断
面との比較ができるので迅速(施工管理に反映させbこ
とができる。
By inputting the measured values into the computer, they can be quickly compared with the design cross-section and reflected in construction management.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明の#I宇方法に使用する反射体の実施例
の斜視図。tx2.3図:測定状態の説明図、第4図;従来の測定方法の説明図、1:測角測距儀、2:反射体、3:壁面、4:盤。特許出願人  大成建設株式会社
FIG. 1: A perspective view of an embodiment of a reflector used in the #I method of the present invention. tx2.3 Figure: Explanatory diagram of the measurement state, Figure 4: Explanatory diagram of the conventional measurement method, 1: Angle and range finder, 2: Reflector, 3: Wall surface, 4: Board. Patent applicant: Taisei Corporation

Claims (1)

Translated fromJapanese
【特許請求の範囲】位置の移動しない測定点に1反射体を設けた壕オにしておき、光波#j距蟻とセオドライトを組合せた測定器を用いて
、不特定の測定点から移動しない反射体を測定することf
轡像とする、光a[距儀による測定方法。
[Claims] A trench is provided with a reflector at a measurement point that does not move, and a measuring device that combines a light wave #j and a theodolite is used to measure the reflection that does not move from an unspecified measurement point. to measure one's body
Light a [Measurement method using a rangefinder.
JP3062482A1982-03-011982-03-01 Measurement method using a light wave rangefinderPendingJPS58148909A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP3062482AJPS58148909A (en)1982-03-011982-03-01 Measurement method using a light wave rangefinder

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP3062482AJPS58148909A (en)1982-03-011982-03-01 Measurement method using a light wave rangefinder

Publications (1)

Publication NumberPublication Date
JPS58148909Atrue JPS58148909A (en)1983-09-05

Family

ID=12309005

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP3062482APendingJPS58148909A (en)1982-03-011982-03-01 Measurement method using a light wave rangefinder

Country Status (1)

CountryLink
JP (1)JPS58148909A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6118812A (en)*1984-07-061986-01-27Hazama Gumi LtdAutomatic displacement measuring apparatus
JPS62153706A (en)*1985-12-271987-07-08Shimizu Constr Co Ltd Inner space displacement measurement method using high frequency modulated light waves
JPH01250718A (en)*1988-03-311989-10-05Electric Power Dev Co Ltd Tunnel inner shape measurement method
JP2019158637A (en)*2018-03-142019-09-19西松建設株式会社Tunnel construction management system and determination method
JP2021099268A (en)*2019-12-232021-07-01株式会社JfdエンジニアリングSurvey target device

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5219561A (en)*1975-08-051977-02-14Oki Electric Ind Co LtdDistance-detecting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS5219561A (en)*1975-08-051977-02-14Oki Electric Ind Co LtdDistance-detecting system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6118812A (en)*1984-07-061986-01-27Hazama Gumi LtdAutomatic displacement measuring apparatus
JPS62153706A (en)*1985-12-271987-07-08Shimizu Constr Co Ltd Inner space displacement measurement method using high frequency modulated light waves
JPH01250718A (en)*1988-03-311989-10-05Electric Power Dev Co Ltd Tunnel inner shape measurement method
JP2019158637A (en)*2018-03-142019-09-19西松建設株式会社Tunnel construction management system and determination method
JP2021099268A (en)*2019-12-232021-07-01株式会社JfdエンジニアリングSurvey target device

Similar Documents

PublicationPublication DateTitle
EP1033556A1 (en)Three-dimensional measuring method and surveying instrument using the same
CN101410573A (en)Position indicating and guidance system and method thereof
US6671058B1 (en)Method for determining the position and rotational position of an object
US20070044568A1 (en)Strain measurement method and device
JPS58148909A (en) Measurement method using a light wave rangefinder
US6240649B1 (en)Sighting assembly
CN106092069A (en)Guiding in a kind of underground engineering construction and the device of displacement monitoring
Catalano et al.Preliminary evaluation of the prototype stereoscopic endoscope: precise three-dimensional measurement system
CN118583059A (en) Arch dam displacement monitoring device and method based on machine vision
JPH11304429A (en) Ground displacement measurement device
JP2000275083A (en)Method and device for measuring amount of stone load in sand carrier with grab bucket
JPH1089957A (en) 3D measurement method for structural members
JP2004053328A (en)Method and instrument for surveying spot where set point observation is difficult
JPH0694457A (en) Displacement measuring device for underground structures
JP2640766B2 (en) Method and apparatus for detecting relative angle in two-dimensional measurement by laser displacement meter
JP3300888B2 (en) Ground displacement measuring device
JPS59206709A (en)Measuring method of position having moving measuring point at intermediate
JPS6046410A (en)Survey device
Jauregui et al.Bridge inspection using virtual reality and photogrammetry
JPH03125926A (en)Surface level measuring apparatus, volume measuring apparatus and measurement of volume
Gaich¹ et al.Contact-free measurement of rock mass structures using the JointMetriX3D system
JPH0829168A (en) Surveying equipment
KR100544632B1 (en) Slope measurement method using conventional measuring instrument
CN215725884U (en)Portable elevation measuring tool
JP7316870B2 (en) Tunnel excavation management method and excavation management device

[8]ページ先頭

©2009-2025 Movatter.jp