【発明の詳細な説明】本発明は水素ガスエンジンに関するものである。[Detailed description of the invention]The present invention relates to a hydrogen gas engine.
周知の如く水素ガスエンジンは石油系燃料エンジンに比
較して燃費の経済性と無公害という利点を有するため、
既に各種の分野において試作研究がなされている。しか
し乍ら今日まで試作された殆どの水素ガスエンジンは、
出力、エンジン形状及び重量及び経済性などの面におい
て従来の石油系燃料を用いるエンジンに比較して実用性
が大幅に劣り、開発に行詰りを生じているのが現状であ
る。As is well known, hydrogen gas engines have the advantage of being more economical in fuel consumption and non-polluting compared to oil-based fuel engines.
Prototype research has already been carried out in various fields. However, most of the hydrogen gas engines prototyped to date are
In terms of output, engine shape, weight, and economic efficiency, they are significantly less practical than conventional petroleum-based fuel engines, and their development is currently at a standstill.
従来において試みられた水素エンジンが未だ実用の段階
に到達し得ない根本的な原因は、その全ての試みが水素
ガスの燃焼爆発エネルギーを石油系燃料の燃焼爆発エネ
ルギーと同様そのままの形で機械的運動エネルギーに転
換させようと試みている泰らに外ならない・水素ガスを機械的運動エネルギーを得るための燃料とし
て考察した場合、水素ガスはその燃焼速度が石油系燃料
のそれと比較して著しく急速であり、その結果得られる
燃焼爆発エネルギーの機械的運動エネルギーへの転換率
が著しく低いため、機械的運動エネルギーに転換されな
い残余熱工率ルギーが蓄積増大すること\なり燃焼室形
成部分及びその周辺機器の異常温度上昇を来し、水素ガ
スの燃焼室内への円滑な供給と要求着火時期とが不確実
となって適切なエンジン駆動が行えないとと\なる。The fundamental reason why hydrogen engines that have been attempted in the past have not yet reached the stage of practical use is that all attempts have been made to mechanically convert the combustion explosive energy of hydrogen gas into the same form as the combustion explosive energy of petroleum-based fuels. This is none other than Yasu et al., who are attempting to convert it into kinetic energy.When considering hydrogen gas as a fuel for obtaining mechanical kinetic energy, the combustion rate of hydrogen gas is significantly faster than that of petroleum-based fuels. As a result, the conversion rate of the resulting combustion explosion energy into mechanical kinetic energy is extremely low, and the residual heat efficiency that is not converted into mechanical kinetic energy accumulates and increases. This causes an abnormal temperature rise in the equipment, and the smooth supply of hydrogen gas into the combustion chamber and the required ignition timing become uncertain, making it impossible to drive the engine appropriately.
従来においても水素ガスを燃焼した場合の高負荷時にお
けるバック7アイヤ及びノッキングの発生及び過熱部分
の温度降下を目的として、水素ガスと共に水を吸入させ
る方法は提唱されている・し力為し乍ら従来におけるこ
の種の試みは、いずれも水素と水と空気とを予め混合し
た状態で燃焼室内に送るという屯のであるため、パック
ファイヤやノッキングの防止は成る程度はたし得ても最
大出力時には充分に効果を得ることができないという問
題点を有していた。Conventionally, a method has been proposed in which water is inhaled together with hydrogen gas for the purpose of reducing the temperature of overheated parts and the occurrence of back 7-years and knocking during high loads when hydrogen gas is combusted. Previous attempts of this type have all involved feeding hydrogen, water, and air into the combustion chamber in a pre-mixed state, which may have prevented packfires and knocking, but only limited the maximum output. There was a problem that sometimes sufficient effects could not be obtained.
本発明は上記の如き従来における水素ガスエンジンの問
題点を解消し、水素ガスの燃焼爆発エネルギーの機械的
運動エネルギーへの転換率を高め得る実用化可能な水素
ガスエンジンの提供を目的としたものである。The present invention aims to solve the problems of conventional hydrogen gas engines as described above, and to provide a practical hydrogen gas engine that can increase the conversion rate of hydrogen gas combustion explosion energy into mechanical kinetic energy. It is.
本発明に係る水素ガスエンジンは、水素ガスを燃焼室内
において着火燃焼させることにより生ず用することはも
とより、燃焼室内に前記水素ガスとは別に水を水素ガス
と予混合の状態ではなく霧氷の状態で直接噴射供給する
ことによって、前記水素ガスの燃焼熱エネルギーを利用
して該霧氷を蒸気エネルギーに転換し、前記水素ガスの
撚部爆発エネルギーと蒸気エネルギーとの併合作用によ
り、動力源としての機械的運動エネルギーへの転換率が
高められるようにすると共に、斯る方式に基いて得られ
る駆動力が高負荷の状態はもとより低負荷の状態におい
て龜支障なく円滑に得られるようにしたことを特徴とす
るものである。The hydrogen gas engine according to the present invention not only uses hydrogen gas by igniting and burning it in the combustion chamber, but also uses water separately from the hydrogen gas in the combustion chamber, rather than in a premixed state with the hydrogen gas. By directly injecting and supplying the hydrogen gas, the combustion heat energy of the hydrogen gas is used to convert the hoarfrost into steam energy, and the combined action of the hydrogen gas's twisted part explosion energy and steam energy can be used as a power source. In addition to increasing the conversion rate to mechanical kinetic energy, the driving force obtained based on this method can be obtained smoothly not only under high load conditions but also under low load conditions without any problems. This is a characteristic feature.
次に本発明に係る水素エンジンを図示の実施例に基いて
詳記すれば、第1図は本発明をレシプロエンジンに適用
した場合におけるシリンダーの断面図である。図示の如
くシリンダー(flにおけるシリンダーヘッド(コ)に
は点火プラグ(3)、吸入パルプ(す)及び排気パルプ
(j)と共に、水素ガス加圧噴射ノズル(6)と霧氷噴
射ノズル(7)とを、夫々水素ガス(fl及び霧氷(9
)が燃焼室(lの内に噴出されるように併設する。これ
らの水素ガス加圧噴射ノズル(6)及び霧氷噴射ノズル
(7)は、いずれも図示外の供給装置より水素ガス(f
)及び霧氷(9)を同時に屯しくけタイミングをずらし
た状態で燃焼室(lの内に噴射する。Next, the hydrogen engine according to the present invention will be described in detail based on the illustrated embodiment. FIG. 1 is a sectional view of a cylinder when the present invention is applied to a reciprocating engine. As shown in the figure, the cylinder head (C) in the cylinder (fl) includes a hydrogen gas pressurized injection nozzle (6) and a hoarfrost injection nozzle (7), along with a spark plug (3), an intake pulp (S), and an exhaust pulp (J). , hydrogen gas (fl) and hoarfrost (9
) is installed so that the hydrogen gas is injected into the combustion chamber (l). Both the hydrogen gas pressurized injection nozzle (6) and the hoarfrost injection nozzle (7) are supplied with hydrogen gas (f) from a supply device not shown.
) and hoarfrost (9) are simultaneously injected into the combustion chamber (l) with staggered timing.
水素ガス(J)及び霧水(q)の噴射は、通常の石油系
燃料によるエンジンと同様吸入パルプ(4’l 、!:
W 気バルブ(5)とが共に閉じられた状態でピスト
ン(12)が上昇する圧縮行程において行われ、ピスト
ン(/2)が上死点に達する直前に夫々の噴射がIEめ
られ、同時に点火プラグ(3)により圧縮された水素ガ
スに点着火される。水素ガスの着火燃焼による熱エネル
ギーは直接機械的運動エネルギーに転換されると共に、
その一部が燃焼室(lの内の霧氷を瞬間的に蒸気エネル
ギーに変化させ、水素ガスの爆発熱エネルギーと蒸気工
率ルギーとが併合してピストン(12)を押し下げる機
械的運動エネルギーに転換される。前記爆発性根に引続
いて行われる排気及び吸入の各性根は通常の石油系燃料
エンジンと同様である。The injection of hydrogen gas (J) and mist water (q) is similar to that of a normal petroleum fuel engine, and the suction pulp (4'l,!:
It is carried out during the compression stroke in which the piston (12) rises with both the air valve (5) and the air valve (5) closed, and just before the piston (/2) reaches top dead center, each injection is set to IE, and at the same time the ignition is started. The compressed hydrogen gas is ignited by the plug (3). Thermal energy from ignition and combustion of hydrogen gas is directly converted into mechanical kinetic energy, and
A part of it instantly changes the hoarfrost in the combustion chamber (l) into steam energy, and the explosion heat energy of hydrogen gas and the steam efficiency combine to convert into mechanical kinetic energy that pushes down the piston (12). The exhaust and intake processes that follow the explosive process are similar to those of conventional petroleum-based fuel engines.
第一図はこの水素ガスエンジンの燃料供給路を示す系統
図であり、水素ガス(flは容器(/3)よりカス供給
路(le)を通り、気化器(2?)を通ることなくシリ
ンダー(1)内に直接加圧噴射される。この供給路(/
41)は容器(13)の口部に設けた圧力調整器(/S
)により水素ガスな約s h’101程度の圧力で供給
するが、途中にチェックパルプ(/6)及び減圧とMc
it調整を行えるレギュレータ(17)をセしており、
水素ガスはレギュレータ(17)を通り、0.!; k
Vf/、2程度の低圧で加圧噴射ノズル体)へ送られ、
該ノズル(6)により所定の圧力でシリンダー(1)内
に加圧噴射される。また前記ガス供給路(/#)におけ
るチェックパルプ(fl)が設けられた部分の両側には
、低負荷用の低圧ガス供給用バイパス(1g)が設けら
れている。このバイパス(1g)はチェックパルプ(/
9)と圧力調整器(2I7)とを備え、該圧力調整器(
〃)により容器(13)より約5kqf/1Ir2程度
で送られるガスを0.1 kqf/、2程度に減圧する
ようになっている。このバイパス(/I)はアイドル運
転の如き低負荷の状態のとき、例えばアクセルペダル(
2/)に設けられたリミットスイッチ(22)が戻った
ペダル(2/)により閉じられることにより、該バイパ
ス(11)のチェックバルブ(19)を間色、同時に供
給路(lグ)のチェックバルブ(16)が閉じられて前
記の如<0./kfM程度に減圧された低圧ガスがレギ
ュレータ(/7)内に送られる。しかし乍ら該レギュレ
ータ(17)の設定圧はバイパス(/I)からの流入圧
よりも大きいのでバイパス(/l)からの低圧ガスは0
、 / h’/as?程度の低圧のま\で加圧噴射ノ
ズル(乙)に送られ、該ノズル(6)により所定の圧力
に加圧された状態でシリンダー(/l内に噴射される。Figure 1 is a system diagram showing the fuel supply path for this hydrogen gas engine.Hydrogen gas (fl passes through the waste supply path (le) from the container (/3), and enters the cylinder without passing through the vaporizer (2?). (1) is directly pressurized and injected into this supply path (/
41) is a pressure regulator (/S) installed at the mouth of the container (13).
) to supply hydrogen gas at a pressure of approximately s h'101, but in the middle of the process, check pulp (/6) and pressure reduction and Mc
Equipped with a regulator (17) that can adjust it.
Hydrogen gas passes through the regulator (17) and passes through the regulator (17). ! ;k
Vf/, sent to the pressurized injection nozzle body at a low pressure of about 2,
The nozzle (6) injects it into the cylinder (1) at a predetermined pressure. Further, on both sides of the portion of the gas supply path (/#) where the check pulp (fl) is provided, low-pressure gas supply bypasses (1g) for low load are provided. This bypass (1g) is made of check pulp (/
9) and a pressure regulator (2I7), the pressure regulator (2I7)
〃) is designed to reduce the pressure of the gas sent from the container (13) at about 5 kqf/1 Ir2 to about 0.1 kqf/1 Ir2. This bypass (/I) is used during low load conditions such as idling, for example when the accelerator pedal (/I)
By closing the limit switch (22) provided on the pedal (2/), the check valve (19) of the bypass (11) is closed, and at the same time, the supply path (lg) is checked. The valve (16) is closed and the condition <0. The low-pressure gas whose pressure is reduced to approximately /kfM is sent into the regulator (/7). However, since the set pressure of the regulator (17) is higher than the inflow pressure from the bypass (/I), the low pressure gas from the bypass (/L) is 0.
, /h'/as? It is sent to the pressurized injection nozzle (B) at a relatively low pressure, and is injected into the cylinder (/l) after being pressurized to a predetermined pressure by the nozzle (6).
アクセルペダル(2/)が踏み込まれて高負荷の状態と
なると、前記スイッチ(22)が開務れ、バイパス(/
I)のチェックバルブ(19)が閉じられ、同時に供給
路昨)のチェックバルブ(/4)が開かれるので、容器
(/3)からのガスはレギュレータ(17)に送られ、
該レギュレータ(/7)により設定されたo、s ”v
’/JStの圧力で加圧噴射ノズル(≦)へ送られ、該
ノズル(6)により所定圧に加圧されてシリンダー(1
)内に噴射される。When the accelerator pedal (2/) is depressed and the load is high, the switch (22) is opened and the bypass (/) is activated.
The check valve (19) of I) is closed and at the same time the check valve (/4) of supply path I) is opened, so the gas from the container (/3) is sent to the regulator (17).
o,s ”v set by the regulator (/7)
'/JSt is sent to the pressurized injection nozzle (≦), and is pressurized to a predetermined pressure by the nozzle (6) and the cylinder (1
) is injected within.
エンジンの回転数の変化に伴う水素ガス(r)の供給量
の増減は、気化器(2F)における絞り弁の開閉度合に
より気化器(2?)と前記レギュレータ(17)とを結
ぶバキュームバイブ(2f)を通して行われるレギュレ
ータ(17)の流量調整により得られる。The amount of hydrogen gas (r) supplied due to changes in engine speed can be increased or decreased by the degree of opening and closing of the throttle valve in the carburetor (2F), which is controlled by the vacuum vibe (2?) connecting the carburetor (2?) and the regulator (17). 2f) by adjusting the flow rate of the regulator (17).
水素ガス(r)と共にシリンダー(/1内に噴射される
霧氷(9)は、タンクCB>からフィードポンプ(初を
有する管(27)により送られる水を、エンジン回転数
に応じて制御される噴射ポンプ(1)により、回転数の
変化に対応した供給量が調整されるようにして霧状に噴
射することにより得られる。The hoarfrost (9) injected into the cylinder (/1) together with hydrogen gas (r) is controlled according to the engine speed by sending water from the tank CB through a pipe (27) having a feed pump (first). It is obtained by injecting in the form of mist using the injection pump (1) so that the supply amount is adjusted according to changes in the rotational speed.
第1図は本発明をロータリーエンジンに適用した場合の
燃料供給路系統図である。この場合においては、水素ガ
ス(r)の供給系統は前記のレシプロエンジンの場合と
同じであるが、霧氷(9)の供給系統が若干レシプロエ
ンジンの場合と相違している。FIG. 1 is a fuel supply path system diagram when the present invention is applied to a rotary engine. In this case, the hydrogen gas (r) supply system is the same as in the case of the reciprocating engine described above, but the rime ice (9) supply system is slightly different from that in the case of the reciprocating engine.
このロータリーエンジンの場合には、霧水用の水はタン
ク(B)からフィードポンプ())により気化器(2?
)に送られ、該気化器(2?)により霧状化されて空気
と共に吸気口(//)を通してローターハウジング(/
//)内に噴射される。一方水素ガス(r)はレギュレ
ータ(17)から吸気口(/l)の一部に設けられたノ
ズル(61)より吸気口(/l)内に噴射される。この
水素ガス(Ir)の噴射と霧氷(9)との吸気口(//
)への噴射は別々に行われるという意味において水素ガ
スと水と空気とを予め混合した状態でシリンダー内に供
給するという従来より知られる予混合方式とは基本的に
相違する。In the case of this rotary engine, water for mist is supplied from the tank (B) to the vaporizer (2?) by the feed pump ().
), is atomized by the vaporizer (2?), and passes along with the air through the intake port (//) to the rotor housing (//).
//) is injected within. On the other hand, hydrogen gas (r) is injected into the intake port (/l) from the regulator (17) through a nozzle (61) provided in a part of the intake port (/l). This injection of hydrogen gas (Ir) and the inlet port (//
) is fundamentally different from the conventionally known premixing method in which hydrogen gas, water, and air are supplied into a cylinder in a premixed state in the sense that they are injected separately.
この発明に係る水素ガスエンジンにおいては、水素ガス
自体の燃焼速度は早いが、この燃焼によってもたらされ
る霧氷の蒸気化速度が石油系燃料の燃焼速度に比較して
遅いため、水素ガスの爆発燃焼と霧氷の蒸気化とが同一
燃焼室内で一連のつながりを持つ状態で行われその結果
機械的運動二車ルギーへの転換を石油系燃料の燃焼によ
る機械的運動エネルギーへの転換に近い状態とすること
ができる。その結果この発明に係る水素ガスエンジンに
おいては、水素ガスのみを燃焼させた場合に機械的運動
エネルギーとして有効に転換できずに彼らに排出されて
いた水素ガスの熱エネルギーを逃がすことなく効率良く
利用することができ、その分機械的運動エネルギーを増
大させることが可能となる。In the hydrogen gas engine according to the present invention, although the combustion rate of hydrogen gas itself is fast, the rate of vaporization of the hoarfrost produced by this combustion is slow compared to the combustion rate of petroleum-based fuel, so explosive combustion of hydrogen gas occurs. The vaporization of hoarfrost is carried out in a series of connections within the same combustion chamber, and as a result, the conversion to mechanical kinetic energy is similar to the conversion to mechanical kinetic energy by combustion of petroleum-based fuel. I can do it. As a result, in the hydrogen gas engine according to the present invention, the thermal energy of the hydrogen gas, which could not be effectively converted into mechanical kinetic energy and was emitted when only hydrogen gas was combusted, is efficiently used without escaping. This makes it possible to increase the mechanical kinetic energy accordingly.
またこのエンジンにおいては、水素ガスと共に燃焼室内
に供給されろ水を、水素ガスとは予め混合されていない
霧水の状態で直接供給するの一01該霧氷の供給により
燃焼室内において蒸気エネルギーの発生を得ることがで
き、この蒸気エネルギーの発生が水素ガスの燃焼に基〈
機械的運動工率ルギーへの転換率を向上することに役立
つ。しかもこの霧氷の供給により水素ガスの燃焼に伴う
残余熱エネルギーが減少するため、燃焼室形成部分並び
に燃焼室周辺機器部の温度上昇を抑制することができ、
従って水素ガスの燃焼室内への円滑な供給と、要求され
る着火時期とが得られるという利点を備えている。In addition, in this engine, the filtrate that is supplied into the combustion chamber together with hydrogen gas is directly supplied in the form of fog water that is not mixed with hydrogen gas in advance.101 Steam energy is generated in the combustion chamber by supplying the fog ice. can be obtained, and the generation of this steam energy is based on the combustion of hydrogen gas.
It helps to improve the conversion rate to mechanical motion power. Moreover, the supply of this hoarfrost reduces the residual thermal energy associated with the combustion of hydrogen gas, so it is possible to suppress the temperature rise in the combustion chamber forming part and the peripheral equipment part of the combustion chamber.
Therefore, it has the advantage that hydrogen gas can be smoothly supplied into the combustion chamber and the required ignition timing can be obtained.
またこの発明の水素ガスエンジンでは、水素ガスの供給
路(/りに低負荷時の運転に適した設定圧以下の低圧水
素ガスを供給し得る低圧ガス供給用バイパス(tX))
を有するため、前記供給路(lp )を通じての嵩負荷
時の運転を円滑に行えることはもとより、アイドル運転
の如き低負荷時の運転も該バイパス(tr)を通じての
低圧ガスの供給により支障なく円滑に持続することがで
きる。実験によれば市販の/100CCレシプロエンジ
ン車及びロータリーエンジン車のエンジンをそのま\用
いて本発明を適用した結果低速走行はもとよりlJOk
m迄の高速走行を支障なく行うことができた。Furthermore, in the hydrogen gas engine of the present invention, a hydrogen gas supply path (a low-pressure gas supply bypass (tX) that can supply low-pressure hydrogen gas below a set pressure suitable for operation at low load)
Therefore, it is possible to not only smoothly operate under a bulk load through the supply path (lp), but also operate under a low load such as idling without any trouble due to the supply of low pressure gas through the bypass (tr). can last for a long time. According to experiments, when the present invention was applied to the engines of commercially available /100CC reciprocating engine cars and rotary engine cars as they were, low-speed running and lJOk were achieved.
I was able to drive at high speeds up to m without any problems.
従ってこの発明によれば水素ガスの燃焼爆発エネルギー
を蒸気エネルギーとの併合により機械的運動エネルギー
に効率よく転換利用できるので、従来より実用化が問題
とされていた新しい動力源としての水素ガスエンジンを
確実に実用化し得るという効果を有するものである。Therefore, according to this invention, the combustion explosion energy of hydrogen gas can be efficiently converted into mechanical kinetic energy by merging it with steam energy, so that the hydrogen gas engine can be used as a new power source, whose practical application has been a problem. This has the effect that it can definitely be put into practical use.
第1図は本発明に係る水素ガスエンジンをレシプロエン
ジンに適用した場合のシリンダーの断面図、第2図は第
1[に示す水素ガスエンジンの燃料供給系統図、第3図
は本発明に係る水素ガスエンジンをロータリーエンジン
に適用した場合における燃料供給系統図である。図にお
いて、(3)二点火−プラグ、(4I) :吸入パルプ
、(j):排気パルプ、(/;):水素ガス加圧噴射ノ
ズル、(4/) : 水iガス噴射ノズル、(71:
#水噴射ノズル、(#) :水素ガス、(9):霧水、
(to) :燃焼室、(u) :吸気口、(/2) :
ピストン、(/J) :水素ガス容器、(lす:ガス供
給路、(lS)(#) ’圧力調整器、(/4)(/9
) :チェックパルプ、(17):レギュレータ、vg
> :低圧ガス供給用バイパス、(2?) :気化器、
<241) :バキュームパイプ、(25) :水タン
ク、<n> : 噴射ポンプ。特許出願人 渡 辺 賢 弐同 出願人 馬 場 膀 二軸 へω゛FIG. 1 is a cross-sectional view of a cylinder when the hydrogen gas engine according to the present invention is applied to a reciprocating engine, FIG. 2 is a fuel supply system diagram of the hydrogen gas engine shown in FIG. It is a fuel supply system diagram when a hydrogen gas engine is applied to a rotary engine. In the figure, (3) two spark plugs, (4I): suction pulp, (j): exhaust pulp, (/;): hydrogen gas pressurized injection nozzle, (4/): water i gas injection nozzle, (71 :
#Water injection nozzle, (#): Hydrogen gas, (9): Mist water,
(to): combustion chamber, (u): intake port, (/2):
Piston, (/J): Hydrogen gas container, (l: Gas supply path, (lS) (#) 'Pressure regulator, (/4) (/9
): check pulp, (17): regulator, vg
> : Low pressure gas supply bypass, (2?) : Vaporizer,
<241) : Vacuum pipe, (25) : Water tank, <n> : Injection pump. Patent applicant Ken Watanabe Nido Applicant Baba Two-axis ω゛
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP57014819AJPS58133449A (en) | 1982-02-03 | 1982-02-03 | Hydrogen gas engine |
| US06/425,915US4508064A (en) | 1981-11-12 | 1982-09-28 | Internal combustion engine of hydrogen gas |
| IN1195/CAL/82AIN158105B (en) | 1981-11-12 | 1982-10-14 | |
| AU89443/82AAU565499B2 (en) | 1981-11-12 | 1982-10-18 | Hydrogen gas engine |
| KR8204738AKR880001683B1 (en) | 1981-11-12 | 1982-10-22 | Sujins Internal Combustion Engine |
| AT82305920TATE25277T1 (en) | 1981-11-12 | 1982-11-05 | INTERNAL ENGINE FOR HYDROGEN GAS. |
| EP82305920AEP0079736B1 (en) | 1981-11-12 | 1982-11-05 | Internal combustion engine for hydrogen gas |
| DE8282305920TDE3275306D1 (en) | 1981-11-12 | 1982-11-05 | Internal combustion engine for hydrogen gas |
| FI823825AFI69912C (en) | 1981-11-12 | 1982-11-08 | VAETEGASFOERBRAENNINGSMOTOR |
| IL67192AIL67192A0 (en) | 1981-11-12 | 1982-11-08 | Hydrogen gas internal combustion engine |
| DK499782ADK499782A (en) | 1981-11-12 | 1982-11-09 | Hydrogen gas combustion engine |
| YU02524/82AYU252482A (en) | 1981-11-12 | 1982-11-10 | Hydrogen using, gas engine with internal combustion |
| IE2674/82AIE53478B1 (en) | 1981-11-12 | 1982-11-10 | Internal combustion engine for hydrogen gas |
| PH28118APH20355A (en) | 1981-11-12 | 1982-11-10 | Internal combustion engine for hydrogen gas |
| BR8206568ABR8206568A (en) | 1981-11-12 | 1982-11-11 | INTERNAL COMBUSTION ENGINE FOR HYDROGEN GAS |
| NO823763ANO823763L (en) | 1981-11-12 | 1982-11-11 | ENGINE WITH INTERNAL COMBUSTION OF HYDROGEN. |
| MX195138AMX154827A (en) | 1981-11-12 | 1982-11-11 | IMPROVEMENTS IN AN INTERNAL COMBUSTION ENGINE, WHICH USES AS A GAS HYDROGEN FUEL |
| HU823628AHU193154B (en) | 1981-11-12 | 1982-11-11 | Internal combustion engine operating by hydrogen gas |
| DD82244829ADD205959A5 (en) | 1981-11-12 | 1982-11-12 | AIR OR MIXTURES COMPRESSIVE ENGINE |
| CA000415442ACA1192107A (en) | 1981-11-12 | 1982-11-12 | Internal combustion engine of hydrogen gas |
| ES517360AES517360A0 (en) | 1981-11-12 | 1982-11-12 | INTERNAL COMBUSTION ENGINE OF HYDROGEN GAS. |
| KR1019880004679AKR880001431B1 (en) | 1981-11-12 | 1988-04-23 | Hydrogen gas tubine engine |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP57014819AJPS58133449A (en) | 1982-02-03 | 1982-02-03 | Hydrogen gas engine |
| Publication Number | Publication Date |
|---|---|
| JPS58133449Atrue JPS58133449A (en) | 1983-08-09 |
| JPS6217646B2 JPS6217646B2 (en) | 1987-04-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP57014819AGrantedJPS58133449A (en) | 1981-11-12 | 1982-02-03 | Hydrogen gas engine |
| Country | Link |
|---|---|
| JP (1) | JPS58133449A (en) |
| KR (1) | KR880001683B1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63124854A (en)* | 1986-11-13 | 1988-05-28 | Yamaha Motor Co Ltd | Output control device for gas fuel engine |
| WO2003067051A1 (en)* | 2002-02-05 | 2003-08-14 | Georges Polyzois | Environment-friendly internal combustion engine |
| WO2006061615A1 (en)* | 2004-12-08 | 2006-06-15 | Uws Ventures Limited | An engine which operates on water |
| US7739985B2 (en) | 2006-03-23 | 2010-06-22 | Lonox Engine Company, Inc. | Internal combustion water injection engine |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU4362297A (en)* | 1996-06-21 | 1998-01-07 | World Fusion Limited | Internal combustion engine using water decomposition gas |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63124854A (en)* | 1986-11-13 | 1988-05-28 | Yamaha Motor Co Ltd | Output control device for gas fuel engine |
| WO2003067051A1 (en)* | 2002-02-05 | 2003-08-14 | Georges Polyzois | Environment-friendly internal combustion engine |
| WO2006061615A1 (en)* | 2004-12-08 | 2006-06-15 | Uws Ventures Limited | An engine which operates on water |
| US7739985B2 (en) | 2006-03-23 | 2010-06-22 | Lonox Engine Company, Inc. | Internal combustion water injection engine |
| US7798119B2 (en) | 2006-03-23 | 2010-09-21 | Lonox Engine Company, Inc. | Internal combustion water injection engine |
| US7938103B2 (en) | 2006-03-23 | 2011-05-10 | Lonox Engine Company, Inc. | Internal combustion water injection engine |
| Publication number | Publication date |
|---|---|
| KR880001683B1 (en) | 1988-09-06 |
| JPS6217646B2 (en) | 1987-04-18 |
| KR840002070A (en) | 1984-06-11 |
| Publication | Publication Date | Title |
|---|---|---|
| EP0079736B1 (en) | Internal combustion engine for hydrogen gas | |
| US5937799A (en) | Cylinder water injection engine | |
| US4041910A (en) | Combustion engine | |
| US4722303A (en) | Method for operating an internal combustion engine | |
| RU2108471C1 (en) | Internal combustion engine and method of its operation | |
| CN108644034B (en) | Combustion system and method for high-power lean-burn natural gas engine based on ozone combustion | |
| US6463890B1 (en) | Combined diesel-rankine cycle reciprocating engine | |
| WO2011063742A1 (en) | Special homogeneous charge compression ignition engine | |
| US2615437A (en) | Method of operating internal-combustion engines | |
| US4838213A (en) | Thermal ignition method and apparatus for internal combustion engines | |
| US5899188A (en) | Air fuel vapor stratifier | |
| JPS58133449A (en) | Hydrogen gas engine | |
| US2376479A (en) | Internal-combustion engine and combustion mixture therefor | |
| US2199706A (en) | Internal combustion engine | |
| JPS6030420A (en) | Stratiform charging engine | |
| US5899195A (en) | Stratifier apparatus for engines | |
| US8266884B1 (en) | Asynchronous combustion system | |
| JPH08261004A (en) | Spray water injection type stroke separation engine | |
| US4367698A (en) | Internal combustion engine based on reactant contact ignition | |
| JPH0633785A (en) | Heat insulating gas engine with valve opening control device | |
| US2005063A (en) | Method of operating internal combustion engines | |
| WO1998003779A2 (en) | Engine having direct water injection during power stroke | |
| JP2871317B2 (en) | Fuel supply system for gas engine | |
| US1928754A (en) | Method of and apparatus for preparing and using fuel in internal combustion engines | |
| JP3048475B2 (en) | 2-stroke gas engine |