Movatterモバイル変換


[0]ホーム

URL:


JPS58109719A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPS58109719A
JPS58109719AJP56206919AJP20691981AJPS58109719AJP S58109719 AJPS58109719 AJP S58109719AJP 56206919 AJP56206919 AJP 56206919AJP 20691981 AJP20691981 AJP 20691981AJP S58109719 AJPS58109719 AJP S58109719A
Authority
JP
Japan
Prior art keywords
magnetic bearing
shaft
magnetic flux
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206919A
Other languages
Japanese (ja)
Inventor
Nobuo Tsumaki
妻木 伸夫
Kosuke Noda
野田 耕介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi LtdfiledCriticalHitachi Ltd
Priority to JP56206919ApriorityCriticalpatent/JPS58109719A/en
Publication of JPS58109719ApublicationCriticalpatent/JPS58109719A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】本発明は制御形磁気軸受に係り、特にノ(イアス磁石と
コントロール磁石とを有する制御形ラジアル磁気軸受に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a controlled magnetic bearing, and more particularly to a controlled radial magnetic bearing having an ear magnet and a control magnet.

コントロール用電磁石の発生する磁束によってバイアス
磁石の発生する磁束を増減してシャフトを所望の位置に
浮上支持する制御形ラジアル磁気軸受は、従来一般には
第1図に示すような磁石の配置になっている。すなわち
X、Y方向をそれぞれ2つの磁石によってコントロール
し、バイアスコイル4と制御用コイル3とは鉄心1に巻
かれている。この方式では強磁性体のシャフト2が回転
すると、磁石の発生するN、Sの磁極を横切るため、大
きな渦電流を生じ、シャフト2および磁石の発熱が大き
くなり特に回転数が大きい場合には使用に耐えない。そ
こで、磁石だけでなく、シャフトにも積層板を配置して
渦電流を押えるなどの対策がとられている。しかし、シ
ャフトに積層板を用いると、遠心強度の点で制約を受け
、シャフトのスピードをあまり大きくできないなどの問
題点がるる。
Controlled radial magnetic bearings, which levitate and support a shaft at a desired position by increasing or decreasing the magnetic flux generated by a bias magnet using the magnetic flux generated by a control electromagnet, have conventionally generally had magnets arranged as shown in Figure 1. There is. That is, the X and Y directions are each controlled by two magnets, and the bias coil 4 and control coil 3 are wound around the iron core 1. In this method, when the ferromagnetic shaft 2 rotates, it crosses the N and S magnetic poles generated by the magnet, resulting in a large eddy current, which generates a large amount of heat in the shaft 2 and the magnet.This method is particularly useful when the rotation speed is high. I can't stand it. Therefore, countermeasures have been taken, such as placing laminated plates not only on the magnet but also on the shaft to suppress eddy currents. However, when a laminated plate is used for the shaft, it is limited in terms of centrifugal strength, and there are problems such as not being able to increase the speed of the shaft very much.

本発明の目的はシャフトが回転しても渦電流による発熱
の問題がなく、かつシャフトに積層板を配設する必要の
ない磁気軸受を提供することにある。
An object of the present invention is to provide a magnetic bearing that does not have the problem of heat generation due to eddy current even when the shaft rotates, and does not require a laminated plate to be provided on the shaft.

磁気軸受において、渦電流が発生するのは強磁気体の回
転にともなって磁束が変化するからでろる。従って回転
方向に対して磁束が変化しないような磁石配置1を用い
れば渦′#L流損は小さくなる。
Eddy currents occur in magnetic bearings because the magnetic flux changes as the ferromagnetic material rotates. Therefore, if the magnet arrangement 1 is used such that the magnetic flux does not change in the direction of rotation, the vortex '#L flow loss will be reduced.

特に本発明にかかわる磁気軸受では、バイアス電磁石が
常に一足磁束を発生しているため、これによる渦電流損
が大きな問題である。そこでバイアス磁石ヲ壌状とし、
かつその軸方向断面をコの字形にして、シャフトの回転
方向には磁束の変化のない構成としたものでるる。
In particular, in the magnetic bearing according to the present invention, since the bias electromagnet always generates a certain amount of magnetic flux, eddy current loss caused by this is a major problem. Therefore, the bias magnet is made in the shape of a loam,
Moreover, its axial cross section is U-shaped, so that the magnetic flux does not change in the rotational direction of the shaft.

以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の磁気軸受を構成するバイアス電磁石の
一例である。図に示すように、バイアス電磁石の鉄心5
aを環状にし、かつその軸方向断面形状を図に示すとと
くコの字形とする。バイアス磁石として永久磁石を用い
るならば、図に示すように周方向に同一磁極ができるよ
うに磁化し、電磁石5bi用いる場合には、コイルを図
中に示すように巻けば、周方向に同一磁極が得られる。
FIG. 2 is an example of a bias electromagnet constituting the magnetic bearing of the present invention. As shown in the figure, the iron core 5 of the bias electromagnet
A is annular, and its axial cross-sectional shape is U-shaped as shown in the figure. If a permanent magnet is used as a bias magnet, it is magnetized so that it has the same magnetic poles in the circumferential direction as shown in the figure, and when using electromagnet 5bi, if the coil is wound as shown in the figure, it has the same magnetic poles in the circumferential direction. is obtained.

このようにすればシャフト2が回転しても周方向に磁束
の変化がないため、渦電流が生ずることがない。第3図
は本発明の磁気軸受を構成するコントロール電磁石6を
配置した場合の萌面図であり、また第4図は全体構成を
示した平面図である。コントロール電磁石6は鉄心6a
とコイル6bとで構成されている。
In this way, even when the shaft 2 rotates, there is no change in the magnetic flux in the circumferential direction, so no eddy current is generated. FIG. 3 is a top view of the arrangement of control electromagnets 6 constituting the magnetic bearing of the present invention, and FIG. 4 is a plan view showing the overall configuration. The control electromagnet 6 has an iron core 6a
and a coil 6b.

コントロール磁石6が動作すれば、当然周方向に磁束の
変化は生ずるが、シャフト2が中立点に保持されている
状態を考えれば、第1図の便米方式に比較して渦電流全
大幅に小さくすることができる。
When the control magnet 6 operates, a change in magnetic flux will naturally occur in the circumferential direction, but if we consider that the shaft 2 is held at a neutral point, the eddy current will be significantly reduced compared to the method shown in Figure 1. Can be made smaller.

以上述べたように本発明によればシャフトの回転にとも
なう渦電流の発生が小さく押えられ、発熱が減少すると
ともに、シャフトに積層板を用いるなどの対策が不要と
なるため、積層板の強度により、シャフトの回転速度が
制限されるなどの問題点がなくなるものである。
As described above, according to the present invention, the generation of eddy currents caused by the rotation of the shaft is suppressed to a minimum, heat generation is reduced, and there is no need to take measures such as using a laminated plate for the shaft. This eliminates problems such as the rotational speed of the shaft being limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の制御形ラジアル出猟軸受の全体構成を示
す図、第2図は本発明の磁気軸受を構成でするバイアス磁石を一部断面に示す斜視図、第3八図は本発明の磁気軸受を構成するコントロール磁石を組
合せた状態を一部断面にて示す斜視図、第4図は本発明
の磁気軸受の全体構成を示す図である。2・・・シャフト、5・・・バイアス電磁石、6・・・
コントロール電磁石。代理人 弁理士 薄田利幸笥 1 図猟              5を第4図硅     6&
Fig. 1 is a diagram showing the overall configuration of a conventional controlled radial hunting bearing, Fig. 2 is a perspective view partially showing a bias magnet that constitutes the magnetic bearing of the present invention, and Fig. 38 is a diagram showing the present invention. FIG. 4 is a partially sectional perspective view showing a combination of control magnets constituting a magnetic bearing, and FIG. 4 is a diagram showing the overall configuration of the magnetic bearing of the present invention. 2...Shaft, 5...Bias electromagnet, 6...
control electromagnet. Agent Patent Attorney Toshiyuki Usuda 1 Figure 5 Figure 4 Figure 6 &

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]コントロール用電磁石と一定磁束を発生するノくイアス
用磁石と金有し、コントロール用電磁石の発生する磁束
によって、バイアス用磁石の発生する磁束を増減して、
クヤフ)1−所望の位置に浮上支持する制御形ラジアル
磁気軸受において、前記バイアス磁石を環状としてシャ
フトをとりまくように配設し、かつその軸方向断面をコ
の字形としてロータの周方向にバイアス磁石の発生する
磁束が変化しないようにしたことを特徴とする磁気軸受
A control electromagnet, a bias magnet that generates a constant magnetic flux, and a wire are used, and the magnetic flux generated by the control electromagnet increases or decreases the magnetic flux generated by the bias magnet.
Kuyafu) 1- In a controlled radial magnetic bearing that floats and supports at a desired position, the bias magnet is annular and is arranged to surround the shaft, and its axial cross section is U-shaped, and the bias magnet is arranged in the circumferential direction of the rotor. A magnetic bearing characterized in that the magnetic flux generated by the magnetic bearing does not change.
JP56206919A1981-12-231981-12-23Magnetic bearingPendingJPS58109719A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP56206919AJPS58109719A (en)1981-12-231981-12-23Magnetic bearing

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP56206919AJPS58109719A (en)1981-12-231981-12-23Magnetic bearing

Publications (1)

Publication NumberPublication Date
JPS58109719Atrue JPS58109719A (en)1983-06-30

Family

ID=16531247

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP56206919APendingJPS58109719A (en)1981-12-231981-12-23Magnetic bearing

Country Status (1)

CountryLink
JP (1)JPS58109719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2612266A1 (en)*1987-03-131988-09-16Aerospatiale MAGNETIC BEARING FOR ACTIVE CENTERING, ACCORDING TO AT LEAST ONE AXIS, OF A MOBILE BODY ACCORDING TO ANOTHER BODY
WO1998032973A1 (en)*1997-01-281998-07-30Magnetal AbMagnetically suspended high velocity vacuum pump
US6118199A (en)*1997-01-282000-09-12Magnetal AbMagnetic bearings
CN113187815A (en)*2021-07-052021-07-30山东天瑞重工有限公司Radial decoupling hybrid magnetic bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2612266A1 (en)*1987-03-131988-09-16Aerospatiale MAGNETIC BEARING FOR ACTIVE CENTERING, ACCORDING TO AT LEAST ONE AXIS, OF A MOBILE BODY ACCORDING TO ANOTHER BODY
WO1998032973A1 (en)*1997-01-281998-07-30Magnetal AbMagnetically suspended high velocity vacuum pump
US6118199A (en)*1997-01-282000-09-12Magnetal AbMagnetic bearings
CN113187815A (en)*2021-07-052021-07-30山东天瑞重工有限公司Radial decoupling hybrid magnetic bearing

Similar Documents

PublicationPublication DateTitle
US6359357B1 (en)Combination radial and thrust magnetic bearing
US4920291A (en)Magnetic thrust bearing with high force modulation capability
US6727617B2 (en)Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US4285553A (en)Magnetic suspension momentum device
JP2002354767A (en)Magnetic levitation motor
JPS6014931B2 (en) Axial electromagnetic bearing for large diameter smooth shaft
JPH09509465A (en) Magnetic bearing cell having a rotor and a stator
CA2099979A1 (en)Magnetic-bearing cell
JPS6223350A (en)Synchronous electric motor
US6770995B1 (en)Passive radial magnetic bearing
US4455499A (en)Two-phase stepping motor
JP2886891B2 (en) Axial magnetic bearing assembly
JPS58109719A (en)Magnetic bearing
CN111043156B (en)Novel structure crossed tooth quadrupole hybrid magnetic bearing
JPH0226310A (en)Magnetic thrust bearing
JPS6211218B2 (en)
CN112065855A (en) Four-pole dual-stator hybrid magnetic bearing controlled by outer winding
JPH1047348A (en) Radial magnetic bearing stator
JP2004316756A (en) 5-axis control magnetic bearing
CN117366103B (en)Asymmetric suspension force four-degree-of-freedom hybrid magnetic bearing and design method thereof
CN118462719B (en) A three-pole AC homopolar hybrid magnetic bearing
JPS63206143A (en) permanent magnet generator
JPS5888222A (en)Yoke for magnetic bearing
JP2000087968A (en) Radial magnetic bearing device
JPS598010Y2 (en) magnetic bearing

[8]ページ先頭

©2009-2025 Movatter.jp