【発明の詳細な説明】本発明は制御形磁気軸受に係り、特にノ(イアス磁石と
コントロール磁石とを有する制御形ラジアル磁気軸受に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a controlled magnetic bearing, and more particularly to a controlled radial magnetic bearing having an ear magnet and a control magnet.
コントロール用電磁石の発生する磁束によってバイアス
磁石の発生する磁束を増減してシャフトを所望の位置に
浮上支持する制御形ラジアル磁気軸受は、従来一般には
第1図に示すような磁石の配置になっている。すなわち
X、Y方向をそれぞれ2つの磁石によってコントロール
し、バイアスコイル4と制御用コイル3とは鉄心1に巻
かれている。この方式では強磁性体のシャフト2が回転
すると、磁石の発生するN、Sの磁極を横切るため、大
きな渦電流を生じ、シャフト2および磁石の発熱が大き
くなり特に回転数が大きい場合には使用に耐えない。そ
こで、磁石だけでなく、シャフトにも積層板を配置して
渦電流を押えるなどの対策がとられている。しかし、シ
ャフトに積層板を用いると、遠心強度の点で制約を受け
、シャフトのスピードをあまり大きくできないなどの問
題点がるる。Controlled radial magnetic bearings, which levitate and support a shaft at a desired position by increasing or decreasing the magnetic flux generated by a bias magnet using the magnetic flux generated by a control electromagnet, have conventionally generally had magnets arranged as shown in Figure 1. There is. That is, the X and Y directions are each controlled by two magnets, and the bias coil 4 and control coil 3 are wound around the iron core 1. In this method, when the ferromagnetic shaft 2 rotates, it crosses the N and S magnetic poles generated by the magnet, resulting in a large eddy current, which generates a large amount of heat in the shaft 2 and the magnet.This method is particularly useful when the rotation speed is high. I can't stand it. Therefore, countermeasures have been taken, such as placing laminated plates not only on the magnet but also on the shaft to suppress eddy currents. However, when a laminated plate is used for the shaft, it is limited in terms of centrifugal strength, and there are problems such as not being able to increase the speed of the shaft very much.
本発明の目的はシャフトが回転しても渦電流による発熱
の問題がなく、かつシャフトに積層板を配設する必要の
ない磁気軸受を提供することにある。An object of the present invention is to provide a magnetic bearing that does not have the problem of heat generation due to eddy current even when the shaft rotates, and does not require a laminated plate to be provided on the shaft.
磁気軸受において、渦電流が発生するのは強磁気体の回
転にともなって磁束が変化するからでろる。従って回転
方向に対して磁束が変化しないような磁石配置1を用い
れば渦′#L流損は小さくなる。Eddy currents occur in magnetic bearings because the magnetic flux changes as the ferromagnetic material rotates. Therefore, if the magnet arrangement 1 is used such that the magnetic flux does not change in the direction of rotation, the vortex '#L flow loss will be reduced.
特に本発明にかかわる磁気軸受では、バイアス電磁石が
常に一足磁束を発生しているため、これによる渦電流損
が大きな問題である。そこでバイアス磁石ヲ壌状とし、
かつその軸方向断面をコの字形にして、シャフトの回転
方向には磁束の変化のない構成としたものでるる。In particular, in the magnetic bearing according to the present invention, since the bias electromagnet always generates a certain amount of magnetic flux, eddy current loss caused by this is a major problem. Therefore, the bias magnet is made in the shape of a loam,
Moreover, its axial cross section is U-shaped, so that the magnetic flux does not change in the rotational direction of the shaft.
以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.
第2図は本発明の磁気軸受を構成するバイアス電磁石の
一例である。図に示すように、バイアス電磁石の鉄心5
aを環状にし、かつその軸方向断面形状を図に示すとと
くコの字形とする。バイアス磁石として永久磁石を用い
るならば、図に示すように周方向に同一磁極ができるよ
うに磁化し、電磁石5bi用いる場合には、コイルを図
中に示すように巻けば、周方向に同一磁極が得られる。FIG. 2 is an example of a bias electromagnet constituting the magnetic bearing of the present invention. As shown in the figure, the iron core 5 of the bias electromagnet
A is annular, and its axial cross-sectional shape is U-shaped as shown in the figure. If a permanent magnet is used as a bias magnet, it is magnetized so that it has the same magnetic poles in the circumferential direction as shown in the figure, and when using electromagnet 5bi, if the coil is wound as shown in the figure, it has the same magnetic poles in the circumferential direction. is obtained.
このようにすればシャフト2が回転しても周方向に磁束
の変化がないため、渦電流が生ずることがない。第3図
は本発明の磁気軸受を構成するコントロール電磁石6を
配置した場合の萌面図であり、また第4図は全体構成を
示した平面図である。コントロール電磁石6は鉄心6a
とコイル6bとで構成されている。In this way, even when the shaft 2 rotates, there is no change in the magnetic flux in the circumferential direction, so no eddy current is generated. FIG. 3 is a top view of the arrangement of control electromagnets 6 constituting the magnetic bearing of the present invention, and FIG. 4 is a plan view showing the overall configuration. The control electromagnet 6 has an iron core 6a
and a coil 6b.
コントロール磁石6が動作すれば、当然周方向に磁束の
変化は生ずるが、シャフト2が中立点に保持されている
状態を考えれば、第1図の便米方式に比較して渦電流全
大幅に小さくすることができる。When the control magnet 6 operates, a change in magnetic flux will naturally occur in the circumferential direction, but if we consider that the shaft 2 is held at a neutral point, the eddy current will be significantly reduced compared to the method shown in Figure 1. Can be made smaller.
以上述べたように本発明によればシャフトの回転にとも
なう渦電流の発生が小さく押えられ、発熱が減少すると
ともに、シャフトに積層板を用いるなどの対策が不要と
なるため、積層板の強度により、シャフトの回転速度が
制限されるなどの問題点がなくなるものである。As described above, according to the present invention, the generation of eddy currents caused by the rotation of the shaft is suppressed to a minimum, heat generation is reduced, and there is no need to take measures such as using a laminated plate for the shaft. This eliminates problems such as the rotational speed of the shaft being limited.
第1図は従来の制御形ラジアル出猟軸受の全体構成を示
す図、第2図は本発明の磁気軸受を構成でするバイアス磁石を一部断面に示す斜視図、第3八図は本発明の磁気軸受を構成するコントロール磁石を組
合せた状態を一部断面にて示す斜視図、第4図は本発明
の磁気軸受の全体構成を示す図である。2・・・シャフト、5・・・バイアス電磁石、6・・・
コントロール電磁石。代理人 弁理士 薄田利幸笥 1 図猟 5を第4図硅 6&Fig. 1 is a diagram showing the overall configuration of a conventional controlled radial hunting bearing, Fig. 2 is a perspective view partially showing a bias magnet that constitutes the magnetic bearing of the present invention, and Fig. 38 is a diagram showing the present invention. FIG. 4 is a partially sectional perspective view showing a combination of control magnets constituting a magnetic bearing, and FIG. 4 is a diagram showing the overall configuration of the magnetic bearing of the present invention. 2...Shaft, 5...Bias electromagnet, 6...
control electromagnet. Agent Patent Attorney Toshiyuki Usuda 1 Figure 5 Figure 4 Figure 6 &
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56206919AJPS58109719A (en) | 1981-12-23 | 1981-12-23 | Magnetic bearing |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56206919AJPS58109719A (en) | 1981-12-23 | 1981-12-23 | Magnetic bearing |
| Publication Number | Publication Date |
|---|---|
| JPS58109719Atrue JPS58109719A (en) | 1983-06-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP56206919APendingJPS58109719A (en) | 1981-12-23 | 1981-12-23 | Magnetic bearing |
| Country | Link |
|---|---|
| JP (1) | JPS58109719A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2612266A1 (en)* | 1987-03-13 | 1988-09-16 | Aerospatiale | MAGNETIC BEARING FOR ACTIVE CENTERING, ACCORDING TO AT LEAST ONE AXIS, OF A MOBILE BODY ACCORDING TO ANOTHER BODY |
| WO1998032973A1 (en)* | 1997-01-28 | 1998-07-30 | Magnetal Ab | Magnetically suspended high velocity vacuum pump |
| US6118199A (en)* | 1997-01-28 | 2000-09-12 | Magnetal Ab | Magnetic bearings |
| CN113187815A (en)* | 2021-07-05 | 2021-07-30 | 山东天瑞重工有限公司 | Radial decoupling hybrid magnetic bearing |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2612266A1 (en)* | 1987-03-13 | 1988-09-16 | Aerospatiale | MAGNETIC BEARING FOR ACTIVE CENTERING, ACCORDING TO AT LEAST ONE AXIS, OF A MOBILE BODY ACCORDING TO ANOTHER BODY |
| WO1998032973A1 (en)* | 1997-01-28 | 1998-07-30 | Magnetal Ab | Magnetically suspended high velocity vacuum pump |
| US6118199A (en)* | 1997-01-28 | 2000-09-12 | Magnetal Ab | Magnetic bearings |
| CN113187815A (en)* | 2021-07-05 | 2021-07-30 | 山东天瑞重工有限公司 | Radial decoupling hybrid magnetic bearing |
| Publication | Publication Date | Title |
|---|---|---|
| US6359357B1 (en) | Combination radial and thrust magnetic bearing | |
| US4920291A (en) | Magnetic thrust bearing with high force modulation capability | |
| US6727617B2 (en) | Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack | |
| US4285553A (en) | Magnetic suspension momentum device | |
| JP2002354767A (en) | Magnetic levitation motor | |
| JPS6014931B2 (en) | Axial electromagnetic bearing for large diameter smooth shaft | |
| JPH09509465A (en) | Magnetic bearing cell having a rotor and a stator | |
| CA2099979A1 (en) | Magnetic-bearing cell | |
| JPS6223350A (en) | Synchronous electric motor | |
| US6770995B1 (en) | Passive radial magnetic bearing | |
| US4455499A (en) | Two-phase stepping motor | |
| JP2886891B2 (en) | Axial magnetic bearing assembly | |
| JPS58109719A (en) | Magnetic bearing | |
| CN111043156B (en) | Novel structure crossed tooth quadrupole hybrid magnetic bearing | |
| JPH0226310A (en) | Magnetic thrust bearing | |
| JPS6211218B2 (en) | ||
| CN112065855A (en) | Four-pole dual-stator hybrid magnetic bearing controlled by outer winding | |
| JPH1047348A (en) | Radial magnetic bearing stator | |
| JP2004316756A (en) | 5-axis control magnetic bearing | |
| CN117366103B (en) | Asymmetric suspension force four-degree-of-freedom hybrid magnetic bearing and design method thereof | |
| CN118462719B (en) | A three-pole AC homopolar hybrid magnetic bearing | |
| JPS63206143A (en) | permanent magnet generator | |
| JPS5888222A (en) | Yoke for magnetic bearing | |
| JP2000087968A (en) | Radial magnetic bearing device | |
| JPS598010Y2 (en) | magnetic bearing |