【0001】[0001]
【発明の属する技術分野】本発明は光変調素子およびそ
れを用いた表示装置に関する。かかる表示装置は光演算
処理装置や光の色を時間的に変化させることができるカ
ラー照明装置等の構成部品として、もしくは各種メータ
ーのインジケーター、各種コンピューター、携帯情報端
末等のモニター等の用途に好適に用いることができる。[0001] 1. Field of the Invention [0002] The present invention relates to a light modulation device and a display device using the same. Such a display device is suitable as a component such as an optical processing device or a color lighting device capable of changing the color of light with time, or as an indicator for various meters, various computers, and a monitor for a personal digital assistant. Can be used.
【0002】[0002]
【従来の技術】近年パソコンその他各種機器のモニター
として液晶表示装置が広く用いられるようになってきて
いる。しかしながらこれらの液晶表示装置は偏光板によ
る光の吸収という問題があり、明るい表示が得られにく
いといった問題がある。2. Description of the Related Art In recent years, liquid crystal display devices have been widely used as monitors for personal computers and other various devices. However, these liquid crystal display devices have a problem that light is absorbed by a polarizing plate, and a problem that it is difficult to obtain a bright display.
【0003】[0003]
【発明の解決しようとする課題】本発明は前述した問題
点を解決するために、偏光板を用いない新規な光変調素
子および表示装置を供給することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a novel light modulation element and a display device which do not use a polarizing plate in order to solve the above-mentioned problems.
【0004】[0004]
【課題を解決するための手段】本発明は、少なくとも一
枚が透明な対向配置された二枚の基板と、両基板を支持
するための支持構造とからなり、厚さが0.05〜20
μmの空隙層を有するセルと、該空隙層の厚みを変化さ
せ得る外的手段とを有し、空隙層と両基板との二界面で
の反射光の干渉効果に基づきセルを透過もしくは反射す
る光のスペクトルパターンを変化させることを特徴とす
る光変調素子であり、更にはこのセルを一次元のアレー
状もしくは二次元のマトリクス状に配列させ、各セルの
空隙層の厚みを個別に変化させる外的手段を用いて各種
情報の表示を行う表示装置である。SUMMARY OF THE INVENTION The present invention comprises at least one transparent two opposed substrates and a supporting structure for supporting both substrates, and has a thickness of 0.05 to 20 mm.
a cell having a gap layer of μm, and external means capable of changing the thickness of the gap layer, and transmitting or reflecting through the cell based on the interference effect of reflected light at two interfaces between the gap layer and both substrates. A light modulating element characterized by changing the spectrum pattern of light, and further arranging the cells in a one-dimensional array or a two-dimensional matrix, and individually changing the thickness of the gap layer of each cell. This is a display device that displays various information using external means.
【0005】本発明の光変調素子は、空隙層を有するセ
ルおよび該空隙層の厚みを変化させ得る外的手段とを有
する。そしてかかるセルは、対向配置された少なくとも
一枚が透明な二枚の基板と両基板を対向支持するための
支持構造とから構成される。The light modulation device of the present invention has a cell having a gap layer and external means for changing the thickness of the gap layer. And such cell is composed of at least one disposed opposite the two substrates and the substrates a transparentand a support structure for facing supporting.
【0006】本発明において、空隙層は、空気もしくは
窒素、アルゴン等の不活性な気体が封入された層、もし
くは真空層である事が好ましい。前述のセル構造におい
てこの空隙層の厚みが非常に薄い場合には、被変調光が
自然光や蛍光ランプの照明光等であっても基板と空隙層
の二つの界面の反射光の間で強い光干渉が起こり、観測
光には光強度の極大、極小ピーク(以下干渉ピークと記
す)を有するスペクトルパターンがはっきりと観察され
る。In the present invention, the void layer is preferably a layer in which air or an inert gas such as nitrogen or argon is sealed, or a vacuum layer. In the above-described cell structure, when the thickness of the gap layer is very small, even if the modulated light is natural light, illumination light of a fluorescent lamp, or the like, strong light is generated between the reflected light at the two interfaces between the substrate and the gap layer. Interference occurs, and a spectrum pattern having a maximum and a minimum peak of light intensity (hereinafter referred to as an interference peak) is clearly observed in the observation light.
【0007】一般に空隙層の厚みがあまり厚くなると二
つの界面反射光の光干渉性が低下してしまい、また逆に
薄すぎても光変調効率が低下するため、空隙層の厚みは
およそ0.05〜20μmの範囲において変化させるこ
とが好ましい。In general, if the thickness of the gap layer is too large, the optical coherence of the two interfacial reflected lights is reduced, and if the thickness is too small, the light modulation efficiency is reduced. It is preferable to change in the range of 05 to 20 μm.
【0008】ところで前述の光干渉によるスペクトルパ
ターンは空隙層の屈折率と厚みの条件により変化するこ
とから、外的な手段を用いて空隙層の厚みを変化させる
ことによりセルを透過もしくは反射する光のスペクトル
パターンおよび色相を変化させることができ、またレー
ザー光等の単一波長の光もしくは色フィルター等により
選択された特定波長領域の光の強度を変化させることが
できる。Since the spectrum pattern due to the above-mentioned light interference changes depending on the conditions of the refractive index and the thickness of the gap layer, the light transmitted or reflected through the cell is changed by changing the thickness of the gap layer using external means. Can be changed, and the intensity of light of a single wavelength such as laser light or light of a specific wavelength region selected by a color filter or the like can be changed.
【0009】本発明の光変調素子において、空隙層の厚
みを変化させる外的手段の方法としては、たとえば直流
電源、交流電源等の電荷供給源と、トランジスタおよび
トランジスタアレー等によるスイッチング回路、各種C
PU、メモリー等を組み合わせてなるプログラム信号発
生装置等の電荷供給装置により、対向基板間に静電気力
や静磁気力を働かせて引力、斥力を発生させる方法、も
しくはマグネット、電磁コイル、圧電素子、電歪素子、
磁歪素子、歪抵抗線等を同様の方法で駆動することによ
り基板を変位させる方法、もしくは空隙層を熱的に膨
張、収縮させる方法等が挙げられる。In the light modulation device of the present invention, the external means for changing the thickness of the air gap layer may be, for example, a charge supply source such as a DC power supply or an AC power supply, a switching circuit including a transistor and a transistor array, various C
A method of generating attraction or repulsion by applying an electrostatic force or a static magnetic force between opposing substrates by using a charge supply device such as a program signal generation device that combines a PU and a memory, or a magnet, an electromagnetic coil, a piezoelectric element, Strain element,
A method in which the substrate is displaced by driving a magnetostrictive element, a strain resistance wire, or the like in the same manner, or a method in which the gap layer is thermally expanded and contracted, is exemplified.
【0010】これらの方法においては空隙層の厚みの変
化は基板のたわみ変形もしくは支持構造の膜厚方向の変
形およびこれらの弾性回復によってもたらされる。すな
わち基板が軟質で変形しやすく支持構造が硬質で変形し
にくいように設計した場合、空隙層の厚み変化は主に基
板のたわみ変形による事になりり、基板が硬質で変形し
にくいものを用い支持構造に軟質で変形しやすいように
設計した場合には、主に支持構造の膜厚方向の厚み変化
による事になる。ここで前者の基板の変形を用いる場合
には支持構造はセルの周囲部分にのみ形成される事が好
ましく(図1、図2に例示)、後者の支持構造の変形を
用いる場合には支持構造が基板全面に適度な密度で分散
形成されていることが好ましい。In these methods, the change in the thickness of the gap layer is caused by the bending deformation of the substrate or the deformation of the support structure in the thickness direction and their elastic recovery. In other words, if the substrate is designed to be soft and easily deformed and the support structure is hard and hard to deform, the thickness change of the gap layer is mainly due to the bending deformation of the substrate, and a substrate that is hard and hard to deform is used. When the support structure is designed to be soft and easily deformed, it is mainly due to a thickness change in the thickness direction of the support structure. Here, when the former deformation of the substrate is used, the support structure is preferably formed only on the periphery of the cell (illustrated in FIGS. 1 and 2), and when the latter deformation is used, the support structure is used. Are preferably dispersed and formed at an appropriate density over the entire surface of the substrate.
【0011】尚、前者の場合には支持構造が形成された
部分もしくはその周囲の部分が光変調に関与しないデッ
トスペースになる事から、これらの部分に光吸収層を形
成したり、これらのデッドスペースに光が入射しないよ
うに設計したマイクロレンズ等を基板上に設けるといっ
た方法も好ましい。In the former case, since the portion where the support structure is formed or its surrounding portion becomes a dead space not involved in light modulation, a light absorbing layer is formed in these portions or these dead spaces are formed. A method in which a microlens or the like designed to prevent light from entering the space is provided on the substrate is also preferable.
【0012】支持構造を形成する材料に関しては特に限
定されないが、エラストマーを含む熱可塑性樹脂、熱硬
化樹脂、紫外線硬化樹脂、セラミック材料、金属材料等
各種のものが挙げられ、前述のようにセルの設計により
軟質、硬質の選択が為される。これら支持構造のパター
ニング方法としては印刷法やホトリソグラフィー法、レ
ーザーエッチング法、プラズマエッチング法等の方法の
適用が可能であるが、特に熱可塑性樹脂を用いる場合に
は、熱可塑性高分子フィルムを打ち抜いてパターンを形
成した後に基板上にラミネートする方法等も用いる事が
できる。尚、前述の印刷法を用いた場合、粒径のそろっ
た真球状のシリカ、プラスチックビーズ等のスペーサー
材料をマトリクス中に分散させることにより、空隙層の
厚みの微調整が可能である。The material for forming the support structure is not particularly limited, but includes various materials such as thermoplastic resin containing elastomer, thermosetting resin, ultraviolet curable resin, ceramic material, metal material and the like. Soft and hard choices are made by design. As a patterning method of these support structures, a printing method, a photolithography method, a laser etching method, a method such as a plasma etching method can be applied, but particularly when a thermoplastic resin is used, a thermoplastic polymer film is punched out. Alternatively, a method of laminating a pattern on a substrate after forming a pattern can be used. When the above-mentioned printing method is used, fine adjustment of the thickness of the void layer is possible by dispersing a spacer material such as silica or plastic beads having a uniform particle diameter in a matrix.
【0013】又、前述のように本発明の光変調素子は、
光変調の原理として光干渉効果を用いていることから、
より効果的な光変調を行うために光変調を行う波長域で
の基板と空隙層界面の反射率をある程度高く設計するこ
とが好ましい。Further, as described above, the light modulation device of the present invention
Since the light interference effect is used as the principle of light modulation,
In order to perform more effective light modulation, it is preferable to design the reflectivity at the interface between the substrate and the gap layer in the wavelength region where the light modulation is performed to be somewhat high.
【0014】このためには、例えば光学膜厚値(膜厚×
屈折率)を前記波長域にあわせて適切に設定した高屈折
率層を基板上に一層形成する方法を用いることができる
が、さらに高い反射率を得るためには、例えば最表面層
を高屈折率層として高屈折率層と低屈折率層を交互に積
層する方法(図6に例示)等を用いることができる。For this purpose, for example, the optical film thickness value (film thickness × film thickness)
A method of forming a single high-refractive-index layer on the substrate with an appropriate refractive index (refractive index) set in accordance with the wavelength range can be used. As the refractive index layer, a method of alternately laminating a high refractive index layer and a low refractive index layer (illustrated in FIG. 6) or the like can be used.
【0015】このような高屈折率層としては、たとえば
酸化チタン、酸化ジルコニウム、酸化タンタル、酸化イ
ンジウム、酸化錫、酸化パラジウム、インジウム錫酸化
物(以下ITOと記す)等が挙げられ、低屈折率層とし
ては酸化珪素、酸化アルミニウム等の金属酸化物層等が
挙げられる。これらの層は、真空蒸着、スパッタリン
グ、イオンプレーティング、CVD等の真空プロセスも
しくはゾルゲル法等の湿式プロセス等により形成するこ
とができる。Examples of such a high refractive index layer include titanium oxide, zirconium oxide, tantalum oxide, indium oxide, tin oxide, palladium oxide, indium tin oxide (hereinafter referred to as ITO) and the like. Examples of the layer include a metal oxide layer such as silicon oxide and aluminum oxide. These layers can be formed by a vacuum process such as vacuum deposition, sputtering, ion plating, or CVD, or a wet process such as a sol-gel method.
【0016】本発明の光変調素子を構成する基板は2枚
が対向に配置されている。かかる基板としてはガラス、
プラスチック等の各種の材料を用いることができる。か
かる素子を透過型として用いる場合には二枚の基板の透
明性が高いことが好ましいが、反射型として用いる場合
は観察側から見て背面側の基板(以下背面基板と記す)
にはむしろ透明性の低い基板を用いることが好ましい。Two substrates constituting the light modulation element of the present invention are arranged to face each other. Such substrates include glass,
Various materials such as plastic can be used. When such an element is used as a transmissive type, it is preferable that the two substrates have high transparency. However, when used as a reflective type, a substrate on the rear side as viewed from the observation side (hereinafter referred to as a rear substrate).
It is preferable to use a substrate with low transparency.
【0017】このような透明性の低い基板の例としては
例えば色ガラスのように各種色素、顔料、カーボンブラ
ック等を高分子、セラミック等のバインダ中に分散した
ものを成形したり、適当な基体上にコーティングしてな
る光吸収性基板、アルミニウム、銀、クロム、ニッケル
その他の金属を成形したり、適当な基体上にコーティン
グしてなる光反射性基板、ならびに各種の光散乱性基板
等が挙げられる。尚、該素子を半透過型で用いる場合に
は背面基板の光吸収性、光反射性、光散乱性を若干弱め
ることにより光がある程度透過することができるように
すれば良い。Examples of such low-transparency substrates include, for example, those obtained by dispersing various dyes, pigments, carbon black, and the like in a binder such as a polymer or ceramic, such as colored glass, or forming an appropriate substrate. Light-absorbing substrates coated on top, aluminum, silver, chromium, nickel and other metals are molded, or light-reflective substrates coated on appropriate substrates, as well as various light-scattering substrates. Can be When the element is used in a semi-transmissive type, the light absorption, light reflection and light scattering properties of the rear substrate may be slightly reduced so that light can be transmitted to some extent.
【0018】またかかる素子を透過型で用いる場合に
は、観察側から見て表示部の背面に適当な照明装置を設
けることが好ましい。このような照明装置としては一般
の蛍光ランプ、エレクトロルミネセンス(EL)ラン
プ、LED等が挙げられるが、面状の照明が必要となる
場合には面状の導光板とその端部に配置されたエッジラ
ンプおよび光拡散板等からなるバックライトシステム等
も好ましく用いられる。In the case where such an element is used in a transmission type, it is preferable to provide an appropriate illumination device on the back of the display unit when viewed from the observation side. Examples of such an illuminating device include a general fluorescent lamp, an electroluminescent (EL) lamp, and an LED. When planar illumination is required, the illumination device is disposed on a planar light guide plate and an end thereof. A backlight system comprising an edge lamp, a light diffusion plate and the like is also preferably used.
【0019】またかかる素子の光出射側の最表面には外
部光の表面反射を防ぐ反射防止処理を行う事も好ましく
行われる。このような反射防止処理としては、例えば最
表面に屈折率の異なる薄膜層を積層して光干渉により反
射を減じる方法や最表面を粗面化して適度に光を散乱さ
せる等の方法等が挙げられる。It is also preferable to carry out an antireflection treatment for preventing the surface reflection of external light on the outermost surface on the light emission side of such an element. Examples of such an anti-reflection treatment include a method of laminating a thin film layer having a different refractive index on the outermost surface to reduce reflection by light interference, a method of roughening the outermost surface and appropriately scattering light, and the like. Can be
【0020】ところで本発明の光変調素子において、光
変調方法として静電気力を利用する場合には、基板上に
蓄積する電荷量を自由にコントロールできるような電荷
蓄積可能な基板を用いる必要がある。このため少なくと
も基板は導電性を有することが好ましく、導電性の基板
もしくは導電層が表面に形成された基板が好ましく用い
られる。これらの基板としてはアルミニウム、銀、クロ
ム、ニッケル等の金属を成形もしくはコーティングした
基板、金属、カーボン等の導電性微粒子をバインダ中に
分散して成形もしくはコーティングした基板等が挙げら
れるが、かかる素子においては二枚の基板のうち少なく
とも一方は透明である必要があり、これにはITO層等
の透明電極層を真空蒸着、スパッタリング等の方法でコ
ーティングした基板を好ましく用いることができる。
尚、前述のように基板と空隙層の界面の反射率を高める
目的で、透明導電層を少なくとも一層の高屈折率層とし
て含み、最表面層を高屈折率層として高屈折率層と低屈
折率層を交互に重ね合わせた積層体がコーティングされ
た基板(図6に例示)を用いることも好ましい。In the light modulation device of the present invention, when electrostatic force is used as a light modulation method, it is necessary to use a substrate capable of accumulating charges so that the amount of charges accumulated on the substrate can be freely controlled. For this reason, at least the substrate preferably has conductivity, and a conductive substrate or a substrate having a conductive layer formed on the surface is preferably used. Examples of these substrates include substrates molded or coated with metals such as aluminum, silver, chromium, and nickel, and substrates molded or coated by dispersing conductive fine particles such as metals and carbon in a binder. In, at least one of the two substrates needs to be transparent. For this, a substrate in which a transparent electrode layer such as an ITO layer is coated by a method such as vacuum deposition or sputtering can be preferably used.
As described above, in order to increase the reflectance at the interface between the substrate and the void layer, the transparent conductive layer is included as at least one high refractive index layer, and the outermost layer is used as the high refractive index layer, and the high refractive index layer and the low refractive index layer are used. It is also preferable to use a substrate (illustrated in FIG. 6) coated with a laminate in which the rate layers are alternately stacked.
【0021】尚、前記において電極がコーティングされ
た基板を用いる場合には、電極面が形成されている側の
基板面が空隙層に接するようにしてセルを作成すること
が好ましいが、基板が厚み数ミクロン以下の薄いもので
ある場合には必ずしも電極面は空隙層に接していなくと
も良い。When a substrate coated with an electrode is used in the above, it is preferable to form the cell such that the substrate surface on which the electrode surface is formed is in contact with the gap layer. In the case of a thin film having a thickness of several microns or less, the electrode surface does not necessarily have to be in contact with the gap layer.
【0022】ここで外部電気回路によりセルに適当な直
流電圧を印可した場合には両基板上に異なる極性の電荷
が蓄積されるため基板間に静電引力が発生し、逆に両基
板に同極性の電荷を蓄積させた場合には静電斥力が発生
する結果、前者の場合空隙層の厚みの減少、後者の場合
厚みの増加が発生する。Here, when an appropriate DC voltage is applied to the cell by an external electric circuit, charges of different polarities are accumulated on both substrates, so that an electrostatic attractive force is generated between the substrates, and conversely, the same is applied to both substrates. When polar charges are accumulated, an electrostatic repulsion is generated. As a result, in the former case, the thickness of the gap layer decreases, and in the latter case, the thickness increases.
【0023】尚、前記セルにおいては両電極の短絡防止
の目的で一方もしくは両方の電極上に薄い透明な絶縁層
を形成(図3に例示)したり、絶縁性のスペーサーを分
散すること(図4に例示)も必要に応じて行われる。In the above cell, a thin transparent insulating layer is formed on one or both electrodes (illustrated in FIG. 3) or an insulating spacer is dispersed (see FIG. 3) for the purpose of preventing a short circuit between the two electrodes. 4) is performed as needed.
【0024】透明絶縁層としては、酸化チタン、チタン
酸バリウム、酸化タンタル等の屈折率の高い金属酸化物
層等が好ましく用いられ、絶縁性のスペーサーとしては
前述の支持構造を形成する材料として例示した各種材料
のうちで所定の絶縁性を有するものが使用できる。As the transparent insulating layer, a metal oxide layer having a high refractive index such as titanium oxide, barium titanate, or tantalum oxide is preferably used, and the insulating spacer is exemplified as a material for forming the above-mentioned supporting structure. Among the various materials, those having a predetermined insulating property can be used.
【0025】また本発明の光変調素子の光変調方法に関
して圧電素子による基板の変位を用いる場合のセル構造
については、例えば図7に示す構造や図8に示す構造等
が挙げられる。前者は、両面に電極層が形成された圧電
性を有する層(以下まとめて圧電駆動部と記す)がセル
を構成する一方の基板の片面に形成されており、他方の
基板と圧電駆動部との間に空隙層を有するような構造に
なっている。後者は圧電駆動部がセルの支持構造となっ
ており、セルの二枚の基板間に空隙層を有する構造であ
る。The cell structure in the case of using the displacement of the substrate by the piezoelectric element in the light modulation method of the light modulation element of the present invention includes, for example, the structure shown in FIG. 7 and the structure shown in FIG. In the former, a layer having piezoelectricity in which electrode layers are formed on both surfaces (hereinafter collectively referred to as a piezoelectric driving unit) is formed on one side of one substrate constituting a cell, and the other substrate and the piezoelectric driving unit It has a structure having a void layer between them. The latter has a structure in which the piezoelectric driving section has a support structure for the cell, and has a gap layer between two substrates of the cell.
【0026】両者とも電圧印加時に厚み方向の変位を生
じるような圧電駆動部が用いられ、外部からの電圧印加
により圧電駆動部の厚みを変化させる事により空隙層の
厚みを変化させる事ができる。ここで圧電性を有する層
は、例えばチタン酸バリウム、ニオブ酸リチウム等の無
機系の圧電材料やポリフッ化ビニリデン等の有機系の圧
電材料により作成することができる。In both cases, a piezoelectric driving unit that causes displacement in the thickness direction when a voltage is applied is used, and the thickness of the gap layer can be changed by changing the thickness of the piezoelectric driving unit by applying an external voltage. Here, the layer having piezoelectricity can be made of, for example, an inorganic piezoelectric material such as barium titanate or lithium niobate or an organic piezoelectric material such as polyvinylidene fluoride.
【0027】なお圧電駆動部は適当な接着剤を用いて基
板と強く接着させることが好ましいが、これらの構造で
は圧電駆動層や接着層の厚みで空隙層の厚みが決定され
てしまう事から、場合によっては図8に示すような空隙
層の厚みを最適な値に調整するための層を基板上に設け
る等の方法が好ましく用いられる。It is preferable that the piezoelectric drive unit is strongly adhered to the substrate using an appropriate adhesive. However, in these structures, the thickness of the gap layer is determined by the thickness of the piezoelectric drive layer and the adhesive layer. In some cases, a method such as providing a layer for adjusting the thickness of the gap layer to an optimum value on the substrate as shown in FIG. 8 is preferably used.
【0028】ところで前述の静電気力や圧電変位により
空隙層の厚みの変化を引き起こす方法を用いる場合に
は、空隙層の厚みが印加電圧の絶対値に追随して変化す
ることから、様々な電圧駆動波形での光変調が可能であ
る。In the case of using the above-described method of causing a change in the thickness of the gap layer due to the electrostatic force or the piezoelectric displacement, since the thickness of the gap layer changes following the absolute value of the applied voltage, various voltage driving methods are used. Optical modulation with a waveform is possible.
【0029】本発明における光変調素子において、各セ
ルを個別に駆動する方法に関しては、単位セルが基本的
にキャパシタンス構造を有していることから、セグメン
ト(スタチック)駆動方式もしくはアクティブマトリク
ス駆動方式等の適用が好ましい。In the light modulation element according to the present invention, the method of individually driving each cell is based on a segment (static) driving method or an active matrix driving method since the unit cell basically has a capacitance structure. Is preferred.
【0030】ここでセグメント駆動を行う場合には、光
変調駆動に人間の可聴音域未満の周波数の波形(以下光
変調信号と記す)を用い、この駆動波形に可聴音域の周
波数の波形(以下音響信号と記す)を重畳することによ
り、本装置は光変調機能と音源としての機能の両方を兼
ねることができる。When segment driving is performed, a waveform having a frequency lower than the human audible sound range (hereinafter, referred to as an optical modulation signal) is used for optical modulation driving, and a waveform having a frequency in the audible sound range (hereinafter, acoustic) is used as the driving waveform. The signal can be used as both a light modulation function and a sound source function.
【0031】ただしこの場合、あらかじめ光変調の1周
期あたりの音響信号の平均実効電圧を算出しておき、そ
の電圧値を逆バイアスした光変調信号をかける必要があ
る。In this case, however, it is necessary to calculate the average effective voltage of the acoustic signal per one cycle of the optical modulation in advance and apply an optical modulation signal in which the voltage value is reverse-biased.
【0032】本発明の光変調素子は、該素子を構成する
セルを一次元のアレー状もしくは二次元のマトリクス状
に配列して表示部とし、各セルの空隙層の厚みを個別に
変化させ得る上記の如き外的手段を付与して、各種情報
の表示を行う表示装置に利用することができる。あるい
はかかる光変調素子を一次元のアレー状もしくは二次元
のマトリクス状に配列することにより各種情報の表示を
行う表示装置として有用である。In the light modulating element of the present invention, the cells constituting the element can be arranged in a one-dimensional array or a two-dimensional matrix to form a display section, and the thickness of the void layer of each cell can be individually changed. The present invention can be applied to a display device that displays various kinds of information by adding the above-described external means. Alternatively, it is useful as a display device for displaying various information by arranging such light modulation elements in a one-dimensional array or a two-dimensional matrix.
【0033】かかる表示装置は光演算処理装置や光の色
を時間的に変化させることができるカラー照明装置等の
構成部品として、もしくは各種メーターのインジケータ
ー、各種コンピューター、携帯情報端末等のモニター等
の用途に好適に用いることができる。Such a display device can be used as a component of an optical processing device or a color lighting device capable of changing the color of light with time, or as an indicator of various meters, a monitor of various computers, a portable information terminal or the like. It can be suitably used for applications.
【0034】[0034]
【実施例】以下、本発明を更に詳しく説明するために実
施例を記すが、本発明はこの実施例に限定されるもので
はなく、当業者であれば容易に類推てきる様々な形態で
の実施が可能である。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it should be understood that the present invention is not limited to these Examples. Implementation is possible.
【0035】なお以下の光学的測定に関しては日立製分
光光度計U−3500の直達透過率測定モードを用いて
行ったものである。The following optical measurements were made using a direct transmittance measurement mode of a spectrophotometer U-3500 manufactured by Hitachi.
【0036】[実施例1]0.7mm厚の2枚のガラス
基板上にインジウム/錫=95:5重量比のITOター
ゲットを使用して約30nm厚、面積抵抗約150オー
ム/□のITO層をスパッタリングにより形成した。続
いて両基板のITO層上に市販の感光性レジストをスピ
ンコーターにより塗布した後、公知の方法を用いてIT
O層のパターニングを行い、10mm角の電極部と配線
部からなる3×3の電極パターン(図1に図示)を形成
した。Example 1 An ITO layer having a thickness of about 30 nm and an area resistance of about 150 ohm / square using two ITO substrates having a weight ratio of indium / tin of 95: 5 on two glass substrates having a thickness of 0.7 mm. Was formed by sputtering. Subsequently, a commercially available photosensitive resist is applied on the ITO layers of both substrates by a spin coater, and then the IT is formed by a known method.
The O layer was patterned to form a 3 × 3 electrode pattern (shown in FIG. 1) including a 10 mm square electrode portion and a wiring portion.
【0037】つぎにこの一方の基板上のITO電極部の
周囲に図1に図示したようなパターンで、4ミクロンの
粒径の真球プラスチックビーズ(積水ファインケミカル
社製商品名ミクロパールMP204)を2重量%分散し
たエポキシ系樹脂とアミン系硬化触媒からなる樹脂材料
をスクリーン印刷した後、二つの基板がそれぞれの電極
部が対向して重なり合うような配置で貼り合わせ、両面
を金属板で押さえつけながら80℃で30分の熱処理を
行った後、130℃で1時間の熱処理を行い印刷層を硬
化させて支持構造を形成し、単位セルが3×3のマトリ
クス状に配列した透明電極セルを作成した。Next, two spherical plastic beads (Micropearl MP204, trade name, manufactured by Sekisui Fine Chemical Co., Ltd.) having a particle diameter of 4 μm are formed around the ITO electrode portion on the one substrate in a pattern as shown in FIG. After screen-printing a resin material composed of an epoxy resin and an amine-based curing catalyst dispersed by weight, the two substrates are bonded together in such a manner that their respective electrode portions face each other and overlap each other. After performing a heat treatment at 30 ° C. for 30 minutes, a heat treatment was performed at 130 ° C. for 1 hour to cure the printed layer to form a support structure, thereby producing a transparent electrode cell in which unit cells were arranged in a 3 × 3 matrix. .
【0038】こうして作成した透明電極セルを構成する
一つの単位セルを選択し、その空隙層(空気層)の厚み
を光干渉法により測定したところ3.98ミクロンであ
った。One unit cell constituting the transparent electrode cell thus prepared was selected, and the thickness of the void layer (air layer) was measured by an optical interference method to be 3.98 microns.
【0039】引き続いてこのセルの両電極間に70Vの
直流電圧を印可したところ、空隙層の厚みは3.85ミ
クロンに減少し、セルの光透過スペクトルのパターンが
大きく変化した(図10に図示)。尚この時波長550
nmにおける光透過率は電圧無印可時には約67.8%
であったが、電圧印可時には約81.0%と大きく変化
した。Subsequently, when a DC voltage of 70 V was applied between both electrodes of the cell, the thickness of the void layer was reduced to 3.85 μm, and the pattern of the light transmission spectrum of the cell was largely changed (shown in FIG. 10). ). At this time, the wavelength is 550.
The light transmittance at nm is about 67.8% when no voltage is applied.
However, when the voltage was applied, the value greatly changed to about 81.0%.
【0040】[0040]
【発明の効果】本発明によれば、偏光板を用いない新規
な表示装置を供給することが可能となり、本分野の発展
に貢献するところ大である。According to the present invention, it is possible to supply a novel display device which does not use a polarizing plate, which greatly contributes to the development of this field.
【図1】本発明の実施例に用いたITO層ならびに支持
構造がパターン状に形成された基板面の模式図である。FIG. 1 is a schematic view of a substrate surface on which an ITO layer and a support structure used in an embodiment of the present invention are formed in a pattern.
【図2】本発明において静電気力を用いるセルの単位構
造の一例で、実施例に用いた透明電極セルの単位構造を
示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of a unit structure of a cell using an electrostatic force in the present invention, showing a unit structure of a transparent electrode cell used in an example.
【図3】本発明における静電気力を用いるセルの単位構
造の一例を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an example of a unit structure of a cell using electrostatic force in the present invention.
【図4】本発明における静電気力を用いるセルの単位構
造の一例を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing an example of a unit structure of a cell using electrostatic force in the present invention.
【図5】本発明における静電気力を用いるセルの単位構
造の一例を示す断面模式図であり、反射型の画像表示装
置に好適なセル構造である。FIG. 5 is a schematic cross-sectional view showing an example of a unit structure of a cell using electrostatic force according to the present invention, which is a cell structure suitable for a reflective image display device.
【図6】本発明において基板表面の反射率を高める場合
に用いられる積層体構造の一例を示す断面模式図であ
る。FIG. 6 is a schematic cross-sectional view showing one example of a laminate structure used to increase the reflectance of the substrate surface in the present invention.
【図7】本発明における圧電素子を用いたセルの単位構
造の一例を示す断面模式図である。FIG. 7 is a schematic sectional view showing an example of a unit structure of a cell using a piezoelectric element according to the present invention.
【図8】本発明における圧電素子を用いたセルの単位構
造の一例を示す断面模式図である。FIG. 8 is a schematic sectional view showing an example of a unit structure of a cell using a piezoelectric element according to the present invention.
【図9】本発明において色フィルターを用いたセルの単
位構造の一例を示す断面模式図である。FIG. 9 is a schematic sectional view showing an example of a unit structure of a cell using a color filter in the present invention.
【図10】本発明の実施例におけるセルの光透過スペク
トルパターンである。FIG. 10 is a light transmission spectrum pattern of a cell in an example of the present invention.
1a 透明導電層電極部 1b 透明導電層配線部 2 透明基板 3 支持構造 4 絶縁層 5 絶縁スペーサー 6 光吸収性を有する基板 7 低屈折率層 8 高屈折率層 9 電極層 10 圧電性を有する層 11 空隙厚み調整層 12 色フィルター 13 70Vの電圧を印加した場合のセルの光透過スペ
クトルパターン 14 電圧を印加しない場合のセルの光透過スペクトル
パターンDESCRIPTION OF SYMBOLS 1a Transparent conductive layer electrode part 1b Transparent conductive layer wiring part 2 Transparent substrate 3 Support structure 4 Insulating layer 5 Insulating spacer 6 Light absorbing substrate 7 Low refractive index layer 8 High refractive index layer 9 Electrode layer 10 Piezoelectric layer Reference Signs List 11 gap thickness adjusting layer 12 color filter 13 light transmission spectrum pattern of cell when voltage of 70 V is applied 14 light transmission spectrum pattern of cell when voltage is not applied
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1552098AJPH11211999A (en) | 1998-01-28 | 1998-01-28 | Optical modulating element and display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1552098AJPH11211999A (en) | 1998-01-28 | 1998-01-28 | Optical modulating element and display device |
| Publication Number | Publication Date |
|---|---|
| JPH11211999Atrue JPH11211999A (en) | 1999-08-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1552098APendingJPH11211999A (en) | 1998-01-28 | 1998-01-28 | Optical modulating element and display device |
| Country | Link |
|---|---|
| JP (1) | JPH11211999A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002023068A (en)* | 2000-07-03 | 2002-01-23 | Sony Corp | Optical multilayered structure, optical switching element and image display device |
| JP2002040238A (en)* | 2000-07-19 | 2002-02-06 | Sony Corp | Optical multilayered structural body, optical switching device and image display device |
| JP2002328313A (en)* | 2001-05-01 | 2002-11-15 | Sony Corp | Optical switching element, method for manufacturing the same, and image display device |
| WO2003007050A1 (en)* | 2001-07-12 | 2003-01-23 | Sony Corporation | Optical multilayer structure and its production method, optical switching device, and image display |
| JP2003057571A (en)* | 2001-08-16 | 2003-02-26 | Sony Corp | Optical multilayer structure, optical switching element, and image display device |
| JP2003057567A (en)* | 2001-08-16 | 2003-02-26 | Sony Corp | Optical multilayer structure, optical switching element, method for manufacturing the same, and image display device |
| JP2004233994A (en)* | 2003-01-29 | 2004-08-19 | Genta Kagi Kogyo Kofun Yugenkoshi | Optical interference display panel and method of manufacturing the same |
| EP1170618A3 (en)* | 2000-07-03 | 2004-11-17 | Sony Corporation | Optical multilayer structure, optical switching device, and image display |
| JP2005078067A (en)* | 2003-08-29 | 2005-03-24 | Prime View Internatl Co Ltd | Interference type modulate pixel and method for manufacturing the same |
| JP2005534048A (en)* | 2002-06-11 | 2005-11-10 | リフレクティヴィティー, インク. | Method for depositing, separating and packaging a microelectromechanical device on a wafer substrate |
| WO2006014929A1 (en)* | 2004-07-29 | 2006-02-09 | Idc, Llc | System and method for micro-electromechanical operating of an interferometric modulator |
| EP1640763A1 (en)* | 2004-09-27 | 2006-03-29 | Idc, Llc | Method and device for multi-state interferometric light modulation |
| WO2006036904A1 (en)* | 2004-09-27 | 2006-04-06 | Idc, Llc | Interferometric modulator with reduced slippage between structures and method of making the interferometric modulator |
| JP2006525554A (en)* | 2003-04-30 | 2006-11-09 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Self-packaged optical interference display device having adsorption prevention bump, integrated microlens, and reflection / absorption layer |
| US7172915B2 (en) | 2003-01-29 | 2007-02-06 | Qualcomm Mems Technologies Co., Ltd. | Optical-interference type display panel and method for making the same |
| US7236284B2 (en) | 1995-05-01 | 2007-06-26 | Idc, Llc | Photonic MEMS and structures |
| JP2007520759A (en)* | 2004-02-03 | 2007-07-26 | アイディーシー、エルエルシー | Spatial light modulator with integrated optical correction structure |
| US7250315B2 (en) | 2002-02-12 | 2007-07-31 | Idc, Llc | Method for fabricating a structure for a microelectromechanical system (MEMS) device |
| JP2007527036A (en)* | 2004-03-05 | 2007-09-20 | アイディーシー、エルエルシー | Integrated modulator lighting |
| JP2007272247A (en)* | 2007-06-04 | 2007-10-18 | Sharp Corp | Interferometric modulator and display device |
| US7289259B2 (en) | 2004-09-27 | 2007-10-30 | Idc, Llc | Conductive bus structure for interferometric modulator array |
| US7291921B2 (en) | 2003-09-30 | 2007-11-06 | Qualcomm Mems Technologies, Inc. | Structure of a micro electro mechanical system and the manufacturing method thereof |
| US7297471B1 (en) | 2003-04-15 | 2007-11-20 | Idc, Llc | Method for manufacturing an array of interferometric modulators |
| US7302157B2 (en) | 2004-09-27 | 2007-11-27 | Idc, Llc | System and method for multi-level brightness in interferometric modulation |
| US7304784B2 (en) | 2004-09-27 | 2007-12-04 | Idc, Llc | Reflective display device having viewable display on both sides |
| CN100360982C (en)* | 2005-01-13 | 2008-01-09 | 友达光电股份有限公司 | Microelectromechanical optical display assembly |
| US7321457B2 (en) | 2006-06-01 | 2008-01-22 | Qualcomm Incorporated | Process and structure for fabrication of MEMS device having isolated edge posts |
| US7321456B2 (en) | 2004-09-27 | 2008-01-22 | Idc, Llc | Method and device for corner interferometric modulation |
| US7327510B2 (en) | 2004-09-27 | 2008-02-05 | Idc, Llc | Process for modifying offset voltage characteristics of an interferometric modulator |
| WO2007142978A3 (en)* | 2006-06-01 | 2008-03-20 | Light Resonance Technologies L | Light filter/modulator and array of filters/modulators |
| US7349139B2 (en) | 2004-09-27 | 2008-03-25 | Idc, Llc | System and method of illuminating interferometric modulators using backlighting |
| US7349136B2 (en) | 2004-09-27 | 2008-03-25 | Idc, Llc | Method and device for a display having transparent components integrated therein |
| US7369292B2 (en) | 2006-05-03 | 2008-05-06 | Qualcomm Mems Technologies, Inc. | Electrode and interconnect materials for MEMS devices |
| US7369296B2 (en) | 2004-09-27 | 2008-05-06 | Idc, Llc | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
| US7372619B2 (en) | 1994-05-05 | 2008-05-13 | Idc, Llc | Display device having a movable structure for modulating light and method thereof |
| US7373026B2 (en) | 2004-09-27 | 2008-05-13 | Idc, Llc | MEMS device fabricated on a pre-patterned substrate |
| JP2008517303A (en)* | 2004-09-27 | 2008-05-22 | アイディーシー、エルエルシー | Display element having a filter material diffused into the substrate of the display element |
| JP2008517324A (en)* | 2004-10-15 | 2008-05-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Charge control circuit for microelectromechanical devices |
| US7382515B2 (en) | 2006-01-18 | 2008-06-03 | Qualcomm Mems Technologies, Inc. | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
| US7385762B2 (en) | 2004-09-27 | 2008-06-10 | Idc, Llc | Methods and devices for inhibiting tilting of a mirror in an interferometric modulator |
| US7385744B2 (en) | 2006-06-28 | 2008-06-10 | Qualcomm Mems Technologies, Inc. | Support structure for free-standing MEMS device and methods for forming the same |
| US7405861B2 (en) | 2004-09-27 | 2008-07-29 | Idc, Llc | Method and device for protecting interferometric modulators from electrostatic discharge |
| US7405863B2 (en) | 2006-06-01 | 2008-07-29 | Qualcomm Mems Technologies, Inc. | Patterning of mechanical layer in MEMS to reduce stresses at supports |
| US7417784B2 (en) | 2006-04-19 | 2008-08-26 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing a porous surface |
| US7417783B2 (en) | 2004-09-27 | 2008-08-26 | Idc, Llc | Mirror and mirror layer for optical modulator and method |
| US7420725B2 (en) | 2004-09-27 | 2008-09-02 | Idc, Llc | Device having a conductive light absorbing mask and method for fabricating same |
| US7420728B2 (en) | 2004-09-27 | 2008-09-02 | Idc, Llc | Methods of fabricating interferometric modulators by selectively removing a material |
| US7450295B2 (en) | 2006-03-02 | 2008-11-11 | Qualcomm Mems Technologies, Inc. | Methods for producing MEMS with protective coatings using multi-component sacrificial layers |
| US7463421B2 (en) | 1994-05-05 | 2008-12-09 | Idc, Llc | Method and device for modulating light |
| US7471442B2 (en) | 2006-06-15 | 2008-12-30 | Qualcomm Mems Technologies, Inc. | Method and apparatus for low range bit depth enhancements for MEMS display architectures |
| US7476327B2 (en) | 2004-05-04 | 2009-01-13 | Idc, Llc | Method of manufacture for microelectromechanical devices |
| US7485236B2 (en) | 2003-08-26 | 2009-02-03 | Qualcomm Mems Technologies, Inc. | Interference display cell and fabrication method thereof |
| US7492502B2 (en) | 2004-09-27 | 2009-02-17 | Idc, Llc | Method of fabricating a free-standing microstructure |
| US7527998B2 (en) | 2006-06-30 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
| US7527995B2 (en) | 2004-09-27 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Method of making prestructure for MEMS systems |
| US7527996B2 (en) | 2006-04-19 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Non-planar surface structures and process for microelectromechanical systems |
| US7532377B2 (en) | 1998-04-08 | 2009-05-12 | Idc, Llc | Movable micro-electromechanical device |
| US7534640B2 (en) | 2005-07-22 | 2009-05-19 | Qualcomm Mems Technologies, Inc. | Support structure for MEMS device and methods therefor |
| US7547568B2 (en) | 2006-02-22 | 2009-06-16 | Qualcomm Mems Technologies, Inc. | Electrical conditioning of MEMS device and insulating layer thereof |
| US7547565B2 (en) | 2005-02-04 | 2009-06-16 | Qualcomm Mems Technologies, Inc. | Method of manufacturing optical interference color display |
| US7550794B2 (en) | 2002-09-20 | 2009-06-23 | Idc, Llc | Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer |
| US7550810B2 (en) | 2006-02-23 | 2009-06-23 | Qualcomm Mems Technologies, Inc. | MEMS device having a layer movable at asymmetric rates |
| US7553684B2 (en) | 2004-09-27 | 2009-06-30 | Idc, Llc | Method of fabricating interferometric devices using lift-off processing techniques |
| US7554714B2 (en) | 2004-09-27 | 2009-06-30 | Idc, Llc | Device and method for manipulation of thermal response in a modulator |
| US7554711B2 (en) | 1998-04-08 | 2009-06-30 | Idc, Llc. | MEMS devices with stiction bumps |
| US7564612B2 (en) | 2004-09-27 | 2009-07-21 | Idc, Llc | Photonic MEMS and structures |
| US7566664B2 (en) | 2006-08-02 | 2009-07-28 | Qualcomm Mems Technologies, Inc. | Selective etching of MEMS using gaseous halides and reactive co-etchants |
| US7612933B2 (en) | 2008-03-27 | 2009-11-03 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with spacing layer |
| US7616369B2 (en) | 2003-06-24 | 2009-11-10 | Idc, Llc | Film stack for manufacturing micro-electromechanical systems (MEMS) devices |
| US7623287B2 (en) | 2006-04-19 | 2009-11-24 | Qualcomm Mems Technologies, Inc. | Non-planar surface structures and process for microelectromechanical systems |
| US7630114B2 (en) | 2005-10-28 | 2009-12-08 | Idc, Llc | Diffusion barrier layer for MEMS devices |
| US7629197B2 (en) | 2006-10-18 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Spatial light modulator |
| US7643199B2 (en) | 2007-06-19 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | High aperture-ratio top-reflective AM-iMod displays |
| US7643202B2 (en) | 2007-05-09 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Microelectromechanical system having a dielectric movable membrane and a mirror |
| US7643203B2 (en) | 2006-04-10 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Interferometric optical display system with broadband characteristics |
| JP2010008644A (en)* | 2008-06-26 | 2010-01-14 | Seiko Epson Corp | Optical filter, method of manufacturing the same, and optical filter device module |
| US7649671B2 (en) | 2006-06-01 | 2010-01-19 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device with electrostatic actuation and release |
| US7684104B2 (en) | 2004-09-27 | 2010-03-23 | Idc, Llc | MEMS using filler material and method |
| US7706044B2 (en) | 2003-05-26 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Optical interference display cell and method of making the same |
| US7711239B2 (en) | 2006-04-19 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing nanoparticles |
| US7719500B2 (en) | 2004-09-27 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | Reflective display pixels arranged in non-rectangular arrays |
| US7738158B2 (en) | 2007-06-29 | 2010-06-15 | Qualcomm Mems Technologies, Inc. | Electromechanical device treatment with water vapor |
| US7763546B2 (en) | 2006-08-02 | 2010-07-27 | Qualcomm Mems Technologies, Inc. | Methods for reducing surface charges during the manufacture of microelectromechanical systems devices |
| US7781850B2 (en) | 2002-09-20 | 2010-08-24 | Qualcomm Mems Technologies, Inc. | Controlling electromechanical behavior of structures within a microelectromechanical systems device |
| US7795061B2 (en) | 2005-12-29 | 2010-09-14 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
| JP2011504243A (en)* | 2007-10-23 | 2011-02-03 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Adjustable transmissive MEMS-based device |
| USRE42119E1 (en) | 2002-02-27 | 2011-02-08 | Qualcomm Mems Technologies, Inc. | Microelectrochemical systems device and method for fabricating same |
| US7893919B2 (en) | 2004-09-27 | 2011-02-22 | Qualcomm Mems Technologies, Inc. | Display region architectures |
| US7916980B2 (en) | 2006-01-13 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
| US7936497B2 (en) | 2004-09-27 | 2011-05-03 | Qualcomm Mems Technologies, Inc. | MEMS device having deformable membrane characterized by mechanical persistence |
| US7948672B2 (en) | 2008-03-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | System and methods for tiling display panels |
| US8008736B2 (en) | 2004-09-27 | 2011-08-30 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device |
| US8013831B2 (en) | 2004-09-27 | 2011-09-06 | Qualcomm Mems Technologies, Inc. | Methods and devices for lighting displays |
| US8184358B2 (en) | 2004-09-27 | 2012-05-22 | Qualcomm Mems Technologies, Inc. | Systems and methods using interferometric optical modulators and diffusers |
| JP2012226122A (en)* | 2011-04-20 | 2012-11-15 | Seiko Epson Corp | Wavelength variable interference filter, optical module and electronic apparatus |
| US8373821B2 (en) | 2007-04-30 | 2013-02-12 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
| US8437070B2 (en) | 2004-09-27 | 2013-05-07 | Qualcomm Mems Technologies, Inc. | Interferometric modulator with dielectric layer |
| JP2013545117A (en)* | 2010-09-03 | 2013-12-19 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Interference display device |
| US8643936B2 (en) | 2011-05-04 | 2014-02-04 | Qualcomm Mems Technologies, Inc. | Devices and methods for achieving non-contacting white state in interferometric modulators |
| US8693084B2 (en) | 2008-03-07 | 2014-04-08 | Qualcomm Mems Technologies, Inc. | Interferometric modulator in transmission mode |
| US8810528B2 (en) | 2009-12-29 | 2014-08-19 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
| US8848294B2 (en) | 2010-05-20 | 2014-09-30 | Qualcomm Mems Technologies, Inc. | Method and structure capable of changing color saturation |
| US8861071B2 (en) | 2004-09-27 | 2014-10-14 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
| US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
| US8885244B2 (en) | 2004-09-27 | 2014-11-11 | Qualcomm Mems Technologies, Inc. | Display device |
| US8902484B2 (en) | 2010-12-15 | 2014-12-02 | Qualcomm Mems Technologies, Inc. | Holographic brightness enhancement film |
| US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
| US8941631B2 (en) | 2007-11-16 | 2015-01-27 | Qualcomm Mems Technologies, Inc. | Simultaneous light collection and illumination on an active display |
| US8963159B2 (en) | 2011-04-04 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
| US8970767B2 (en) | 2011-06-21 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Imaging method and system with angle-discrimination layer |
| US8979349B2 (en) | 2009-05-29 | 2015-03-17 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
| US9001412B2 (en) | 2004-09-27 | 2015-04-07 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
| US9019240B2 (en) | 2011-09-29 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical touch device with pixilated light-turning features |
| US9019183B2 (en) | 2006-10-06 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
| US9025235B2 (en) | 2002-12-25 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Optical interference type of color display having optical diffusion layer between substrate and electrode |
| US9057872B2 (en) | 2010-08-31 | 2015-06-16 | Qualcomm Mems Technologies, Inc. | Dielectric enhanced mirror for IMOD display |
| US9081188B2 (en) | 2011-11-04 | 2015-07-14 | Qualcomm Mems Technologies, Inc. | Matching layer thin-films for an electromechanical systems reflective display device |
| US9134527B2 (en) | 2011-04-04 | 2015-09-15 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
| US9183812B2 (en) | 2013-01-29 | 2015-11-10 | Pixtronix, Inc. | Ambient light aware display apparatus |
| CN110867136A (en)* | 2019-11-22 | 2020-03-06 | 维沃移动通信有限公司 | Pole screen and electronic equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8054532B2 (en) | 1994-05-05 | 2011-11-08 | Qualcomm Mems Technologies, Inc. | Method and device for providing illumination to interferometric modulators |
| US7463421B2 (en) | 1994-05-05 | 2008-12-09 | Idc, Llc | Method and device for modulating light |
| US7372619B2 (en) | 1994-05-05 | 2008-05-13 | Idc, Llc | Display device having a movable structure for modulating light and method thereof |
| US7236284B2 (en) | 1995-05-01 | 2007-06-26 | Idc, Llc | Photonic MEMS and structures |
| US7554711B2 (en) | 1998-04-08 | 2009-06-30 | Idc, Llc. | MEMS devices with stiction bumps |
| US7532377B2 (en) | 1998-04-08 | 2009-05-12 | Idc, Llc | Movable micro-electromechanical device |
| US9110289B2 (en) | 1998-04-08 | 2015-08-18 | Qualcomm Mems Technologies, Inc. | Device for modulating light with multiple electrodes |
| US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
| US8643935B2 (en) | 1999-10-05 | 2014-02-04 | Qualcomm Mems Technologies, Inc. | Photonic MEMS and structures |
| JP2002023068A (en)* | 2000-07-03 | 2002-01-23 | Sony Corp | Optical multilayered structure, optical switching element and image display device |
| US7027208B2 (en) | 2000-07-03 | 2006-04-11 | Sony Corp | Optical multilayer structure, optical switching device, and image display |
| EP1720347A1 (en)* | 2000-07-03 | 2006-11-08 | Sony Corporation | Optical multilayer structure, optical switching device, and image display |
| US6940631B2 (en) | 2000-07-03 | 2005-09-06 | Sony Corporation | Optical multilayer structure, optical switching device, and image display |
| US7012734B2 (en) | 2000-07-03 | 2006-03-14 | Sony Corporation | Optical multilayer structure, optical switching device, and image display |
| EP1170618A3 (en)* | 2000-07-03 | 2004-11-17 | Sony Corporation | Optical multilayer structure, optical switching device, and image display |
| JP2002040238A (en)* | 2000-07-19 | 2002-02-06 | Sony Corp | Optical multilayered structural body, optical switching device and image display device |
| JP2002328313A (en)* | 2001-05-01 | 2002-11-15 | Sony Corp | Optical switching element, method for manufacturing the same, and image display device |
| US6850365B2 (en) | 2001-07-12 | 2005-02-01 | Sony Corporation | Optical multilayer structure and its production method, optical switching device, and image display |
| WO2003007050A1 (en)* | 2001-07-12 | 2003-01-23 | Sony Corporation | Optical multilayer structure and its production method, optical switching device, and image display |
| JP2003057567A (en)* | 2001-08-16 | 2003-02-26 | Sony Corp | Optical multilayer structure, optical switching element, method for manufacturing the same, and image display device |
| JP2003057571A (en)* | 2001-08-16 | 2003-02-26 | Sony Corp | Optical multilayer structure, optical switching element, and image display device |
| US7642110B2 (en) | 2002-02-12 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
| US7250315B2 (en) | 2002-02-12 | 2007-07-31 | Idc, Llc | Method for fabricating a structure for a microelectromechanical system (MEMS) device |
| USRE42119E1 (en) | 2002-02-27 | 2011-02-08 | Qualcomm Mems Technologies, Inc. | Microelectrochemical systems device and method for fabricating same |
| JP2005534048A (en)* | 2002-06-11 | 2005-11-10 | リフレクティヴィティー, インク. | Method for depositing, separating and packaging a microelectromechanical device on a wafer substrate |
| US7781850B2 (en) | 2002-09-20 | 2010-08-24 | Qualcomm Mems Technologies, Inc. | Controlling electromechanical behavior of structures within a microelectromechanical systems device |
| US7550794B2 (en) | 2002-09-20 | 2009-06-23 | Idc, Llc | Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer |
| US9025235B2 (en) | 2002-12-25 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Optical interference type of color display having optical diffusion layer between substrate and electrode |
| US7172915B2 (en) | 2003-01-29 | 2007-02-06 | Qualcomm Mems Technologies Co., Ltd. | Optical-interference type display panel and method for making the same |
| JP2004233994A (en)* | 2003-01-29 | 2004-08-19 | Genta Kagi Kogyo Kofun Yugenkoshi | Optical interference display panel and method of manufacturing the same |
| US7297471B1 (en) | 2003-04-15 | 2007-11-20 | Idc, Llc | Method for manufacturing an array of interferometric modulators |
| JP2006525554A (en)* | 2003-04-30 | 2006-11-09 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Self-packaged optical interference display device having adsorption prevention bump, integrated microlens, and reflection / absorption layer |
| US7706044B2 (en) | 2003-05-26 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Optical interference display cell and method of making the same |
| US7616369B2 (en) | 2003-06-24 | 2009-11-10 | Idc, Llc | Film stack for manufacturing micro-electromechanical systems (MEMS) devices |
| US7485236B2 (en) | 2003-08-26 | 2009-02-03 | Qualcomm Mems Technologies, Inc. | Interference display cell and fabrication method thereof |
| JP2005078067A (en)* | 2003-08-29 | 2005-03-24 | Prime View Internatl Co Ltd | Interference type modulate pixel and method for manufacturing the same |
| US7291921B2 (en) | 2003-09-30 | 2007-11-06 | Qualcomm Mems Technologies, Inc. | Structure of a micro electro mechanical system and the manufacturing method thereof |
| JP2012198528A (en)* | 2004-02-03 | 2012-10-18 | Qualcomm Mems Technologies Inc | Spatial light modulator with integrated optical compensation structure |
| JP2007520759A (en)* | 2004-02-03 | 2007-07-26 | アイディーシー、エルエルシー | Spatial light modulator with integrated optical correction structure |
| JP2011175261A (en)* | 2004-02-03 | 2011-09-08 | Qualcomm Mems Technologies Inc | Spatial light modulator with integrated optical compensation structure |
| US9019590B2 (en) | 2004-02-03 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
| JP2014089457A (en)* | 2004-02-03 | 2014-05-15 | Qualcomm Mems Technologies Inc | Spatial light modulator with integrated optical compensation structure |
| JP2010156979A (en)* | 2004-03-05 | 2010-07-15 | Idc Llc | Integrated modulator illumination |
| JP2007527036A (en)* | 2004-03-05 | 2007-09-20 | アイディーシー、エルエルシー | Integrated modulator lighting |
| JP2012027477A (en)* | 2004-03-05 | 2012-02-09 | Qualcomm Mems Technologies Inc | Integrated modulator illumination |
| US8169689B2 (en) | 2004-03-05 | 2012-05-01 | Qualcomm Mems Technologies, Inc. | Integrated modulator illumination |
| US7476327B2 (en) | 2004-05-04 | 2009-01-13 | Idc, Llc | Method of manufacture for microelectromechanical devices |
| US7567373B2 (en) | 2004-07-29 | 2009-07-28 | Idc, Llc | System and method for micro-electromechanical operation of an interferometric modulator |
| WO2006014929A1 (en)* | 2004-07-29 | 2006-02-09 | Idc, Llc | System and method for micro-electromechanical operating of an interferometric modulator |
| EP2246726A3 (en)* | 2004-07-29 | 2010-12-01 | QUALCOMM MEMS Technologies, Inc. | System and method for micro-electromechanical operating of an interferometric modulator |
| EP1855142A3 (en)* | 2004-07-29 | 2008-07-30 | Idc, Llc | System and method for micro-electromechanical operating of an interferometric modulator |
| US7564612B2 (en) | 2004-09-27 | 2009-07-21 | Idc, Llc | Photonic MEMS and structures |
| US7719500B2 (en) | 2004-09-27 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | Reflective display pixels arranged in non-rectangular arrays |
| US7420725B2 (en) | 2004-09-27 | 2008-09-02 | Idc, Llc | Device having a conductive light absorbing mask and method for fabricating same |
| US7420728B2 (en) | 2004-09-27 | 2008-09-02 | Idc, Llc | Methods of fabricating interferometric modulators by selectively removing a material |
| US7429334B2 (en) | 2004-09-27 | 2008-09-30 | Idc, Llc | Methods of fabricating interferometric modulators by selectively removing a material |
| EP1640763A1 (en)* | 2004-09-27 | 2006-03-29 | Idc, Llc | Method and device for multi-state interferometric light modulation |
| US9097885B2 (en) | 2004-09-27 | 2015-08-04 | Qualcomm Mems Technologies, Inc. | Device having a conductive light absorbing mask and method for fabricating same |
| US9086564B2 (en) | 2004-09-27 | 2015-07-21 | Qualcomm Mems Technologies, Inc. | Conductive bus structure for interferometric modulator array |
| WO2006036904A1 (en)* | 2004-09-27 | 2006-04-06 | Idc, Llc | Interferometric modulator with reduced slippage between structures and method of making the interferometric modulator |
| US7405861B2 (en) | 2004-09-27 | 2008-07-29 | Idc, Llc | Method and device for protecting interferometric modulators from electrostatic discharge |
| US7492503B2 (en) | 2004-09-27 | 2009-02-17 | Idc, Llc | System and method for multi-level brightness in interferometric modulation |
| US7492502B2 (en) | 2004-09-27 | 2009-02-17 | Idc, Llc | Method of fabricating a free-standing microstructure |
| US7515327B2 (en) | 2004-09-27 | 2009-04-07 | Idc, Llc | Method and device for corner interferometric modulation |
| US9001412B2 (en) | 2004-09-27 | 2015-04-07 | Qualcomm Mems Technologies, Inc. | Electromechanical device with optical function separated from mechanical and electrical function |
| US7527995B2 (en) | 2004-09-27 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Method of making prestructure for MEMS systems |
| US8970939B2 (en) | 2004-09-27 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Method and device for multistate interferometric light modulation |
| US7532386B2 (en) | 2004-09-27 | 2009-05-12 | Idc, Llc | Process for modifying offset voltage characteristics of an interferometric modulator |
| US7289259B2 (en) | 2004-09-27 | 2007-10-30 | Idc, Llc | Conductive bus structure for interferometric modulator array |
| US8885244B2 (en) | 2004-09-27 | 2014-11-11 | Qualcomm Mems Technologies, Inc. | Display device |
| US7542198B2 (en) | 2004-09-27 | 2009-06-02 | Idc, Llc | Device having a conductive light absorbing mask and method for fabricating same |
| US8861071B2 (en) | 2004-09-27 | 2014-10-14 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
| US7302157B2 (en) | 2004-09-27 | 2007-11-27 | Idc, Llc | System and method for multi-level brightness in interferometric modulation |
| US7385762B2 (en) | 2004-09-27 | 2008-06-10 | Idc, Llc | Methods and devices for inhibiting tilting of a mirror in an interferometric modulator |
| US7304784B2 (en) | 2004-09-27 | 2007-12-04 | Idc, Llc | Reflective display device having viewable display on both sides |
| US7553684B2 (en) | 2004-09-27 | 2009-06-30 | Idc, Llc | Method of fabricating interferometric devices using lift-off processing techniques |
| US7554714B2 (en) | 2004-09-27 | 2009-06-30 | Idc, Llc | Device and method for manipulation of thermal response in a modulator |
| US8437070B2 (en) | 2004-09-27 | 2013-05-07 | Qualcomm Mems Technologies, Inc. | Interferometric modulator with dielectric layer |
| US8411026B2 (en) | 2004-09-27 | 2013-04-02 | Qualcomm Mems Technologies, Inc. | Methods and devices for lighting displays |
| US7417783B2 (en) | 2004-09-27 | 2008-08-26 | Idc, Llc | Mirror and mirror layer for optical modulator and method |
| JP2008517303A (en)* | 2004-09-27 | 2008-05-22 | アイディーシー、エルエルシー | Display element having a filter material diffused into the substrate of the display element |
| US8184358B2 (en) | 2004-09-27 | 2012-05-22 | Qualcomm Mems Technologies, Inc. | Systems and methods using interferometric optical modulators and diffusers |
| US7321456B2 (en) | 2004-09-27 | 2008-01-22 | Idc, Llc | Method and device for corner interferometric modulation |
| US7373026B2 (en) | 2004-09-27 | 2008-05-13 | Idc, Llc | MEMS device fabricated on a pre-patterned substrate |
| US7327510B2 (en) | 2004-09-27 | 2008-02-05 | Idc, Llc | Process for modifying offset voltage characteristics of an interferometric modulator |
| US7630119B2 (en) | 2004-09-27 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing slippage between structures in an interferometric modulator |
| US8013831B2 (en) | 2004-09-27 | 2011-09-06 | Qualcomm Mems Technologies, Inc. | Methods and devices for lighting displays |
| US8008736B2 (en) | 2004-09-27 | 2011-08-30 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device |
| US7936497B2 (en) | 2004-09-27 | 2011-05-03 | Qualcomm Mems Technologies, Inc. | MEMS device having deformable membrane characterized by mechanical persistence |
| US7893919B2 (en) | 2004-09-27 | 2011-02-22 | Qualcomm Mems Technologies, Inc. | Display region architectures |
| US7349139B2 (en) | 2004-09-27 | 2008-03-25 | Idc, Llc | System and method of illuminating interferometric modulators using backlighting |
| US7372613B2 (en) | 2004-09-27 | 2008-05-13 | Idc, Llc | Method and device for multistate interferometric light modulation |
| US7349136B2 (en) | 2004-09-27 | 2008-03-25 | Idc, Llc | Method and device for a display having transparent components integrated therein |
| US7355780B2 (en) | 2004-09-27 | 2008-04-08 | Idc, Llc | System and method of illuminating interferometric modulators using backlighting |
| US7684104B2 (en) | 2004-09-27 | 2010-03-23 | Idc, Llc | MEMS using filler material and method |
| US7369296B2 (en) | 2004-09-27 | 2008-05-06 | Idc, Llc | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
| JP2008517324A (en)* | 2004-10-15 | 2008-05-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Charge control circuit for microelectromechanical devices |
| CN100360982C (en)* | 2005-01-13 | 2008-01-09 | 友达光电股份有限公司 | Microelectromechanical optical display assembly |
| US7547565B2 (en) | 2005-02-04 | 2009-06-16 | Qualcomm Mems Technologies, Inc. | Method of manufacturing optical interference color display |
| US7534640B2 (en) | 2005-07-22 | 2009-05-19 | Qualcomm Mems Technologies, Inc. | Support structure for MEMS device and methods therefor |
| US7630114B2 (en) | 2005-10-28 | 2009-12-08 | Idc, Llc | Diffusion barrier layer for MEMS devices |
| US8394656B2 (en) | 2005-12-29 | 2013-03-12 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
| US7795061B2 (en) | 2005-12-29 | 2010-09-14 | Qualcomm Mems Technologies, Inc. | Method of creating MEMS device cavities by a non-etching process |
| US8971675B2 (en) | 2006-01-13 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
| US7916980B2 (en) | 2006-01-13 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
| US7382515B2 (en) | 2006-01-18 | 2008-06-03 | Qualcomm Mems Technologies, Inc. | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
| US7547568B2 (en) | 2006-02-22 | 2009-06-16 | Qualcomm Mems Technologies, Inc. | Electrical conditioning of MEMS device and insulating layer thereof |
| US7550810B2 (en) | 2006-02-23 | 2009-06-23 | Qualcomm Mems Technologies, Inc. | MEMS device having a layer movable at asymmetric rates |
| US7450295B2 (en) | 2006-03-02 | 2008-11-11 | Qualcomm Mems Technologies, Inc. | Methods for producing MEMS with protective coatings using multi-component sacrificial layers |
| US7643203B2 (en) | 2006-04-10 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Interferometric optical display system with broadband characteristics |
| US7527996B2 (en) | 2006-04-19 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Non-planar surface structures and process for microelectromechanical systems |
| US7417784B2 (en) | 2006-04-19 | 2008-08-26 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing a porous surface |
| US7564613B2 (en) | 2006-04-19 | 2009-07-21 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing a porous surface |
| US7711239B2 (en) | 2006-04-19 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing nanoparticles |
| US7623287B2 (en) | 2006-04-19 | 2009-11-24 | Qualcomm Mems Technologies, Inc. | Non-planar surface structures and process for microelectromechanical systems |
| US7369292B2 (en) | 2006-05-03 | 2008-05-06 | Qualcomm Mems Technologies, Inc. | Electrode and interconnect materials for MEMS devices |
| WO2007142978A3 (en)* | 2006-06-01 | 2008-03-20 | Light Resonance Technologies L | Light filter/modulator and array of filters/modulators |
| US7321457B2 (en) | 2006-06-01 | 2008-01-22 | Qualcomm Incorporated | Process and structure for fabrication of MEMS device having isolated edge posts |
| US7649671B2 (en) | 2006-06-01 | 2010-01-19 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device with electrostatic actuation and release |
| US7773291B2 (en) | 2006-06-01 | 2010-08-10 | Light Resonance Technologies, Llc. | Light filter/modulator and array of filters/modulators |
| US7405863B2 (en) | 2006-06-01 | 2008-07-29 | Qualcomm Mems Technologies, Inc. | Patterning of mechanical layer in MEMS to reduce stresses at supports |
| US7471442B2 (en) | 2006-06-15 | 2008-12-30 | Qualcomm Mems Technologies, Inc. | Method and apparatus for low range bit depth enhancements for MEMS display architectures |
| US7385744B2 (en) | 2006-06-28 | 2008-06-10 | Qualcomm Mems Technologies, Inc. | Support structure for free-standing MEMS device and methods for forming the same |
| US7527998B2 (en) | 2006-06-30 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
| US8964280B2 (en) | 2006-06-30 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Method of manufacturing MEMS devices providing air gap control |
| US7763546B2 (en) | 2006-08-02 | 2010-07-27 | Qualcomm Mems Technologies, Inc. | Methods for reducing surface charges during the manufacture of microelectromechanical systems devices |
| US7566664B2 (en) | 2006-08-02 | 2009-07-28 | Qualcomm Mems Technologies, Inc. | Selective etching of MEMS using gaseous halides and reactive co-etchants |
| US9019183B2 (en) | 2006-10-06 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
| US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
| US7629197B2 (en) | 2006-10-18 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Spatial light modulator |
| US8373821B2 (en) | 2007-04-30 | 2013-02-12 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
| US7643202B2 (en) | 2007-05-09 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Microelectromechanical system having a dielectric movable membrane and a mirror |
| JP2007272247A (en)* | 2007-06-04 | 2007-10-18 | Sharp Corp | Interferometric modulator and display device |
| US7643199B2 (en) | 2007-06-19 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | High aperture-ratio top-reflective AM-iMod displays |
| US7738158B2 (en) | 2007-06-29 | 2010-06-15 | Qualcomm Mems Technologies, Inc. | Electromechanical device treatment with water vapor |
| JP2011504243A (en)* | 2007-10-23 | 2011-02-03 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Adjustable transmissive MEMS-based device |
| US8941631B2 (en) | 2007-11-16 | 2015-01-27 | Qualcomm Mems Technologies, Inc. | Simultaneous light collection and illumination on an active display |
| US7948672B2 (en) | 2008-03-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | System and methods for tiling display panels |
| US8693084B2 (en) | 2008-03-07 | 2014-04-08 | Qualcomm Mems Technologies, Inc. | Interferometric modulator in transmission mode |
| US7612933B2 (en) | 2008-03-27 | 2009-11-03 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device with spacing layer |
| JP2010008644A (en)* | 2008-06-26 | 2010-01-14 | Seiko Epson Corp | Optical filter, method of manufacturing the same, and optical filter device module |
| US9121979B2 (en) | 2009-05-29 | 2015-09-01 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
| US8979349B2 (en) | 2009-05-29 | 2015-03-17 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
| US9817534B2 (en) | 2009-12-29 | 2017-11-14 | Snaptrack, Inc. | Illumination device with metalized light-turning features |
| US8866757B2 (en) | 2009-12-29 | 2014-10-21 | Qualcomm Mems Technologies, Inc. | Coated light-turning feature with auxiliary structure |
| US9182851B2 (en) | 2009-12-29 | 2015-11-10 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
| US8810528B2 (en) | 2009-12-29 | 2014-08-19 | Qualcomm Mems Technologies, Inc. | Illumination device with metalized light-turning features |
| US8848294B2 (en) | 2010-05-20 | 2014-09-30 | Qualcomm Mems Technologies, Inc. | Method and structure capable of changing color saturation |
| US9057872B2 (en) | 2010-08-31 | 2015-06-16 | Qualcomm Mems Technologies, Inc. | Dielectric enhanced mirror for IMOD display |
| JP2013545117A (en)* | 2010-09-03 | 2013-12-19 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Interference display device |
| US8902484B2 (en) | 2010-12-15 | 2014-12-02 | Qualcomm Mems Technologies, Inc. | Holographic brightness enhancement film |
| US9134527B2 (en) | 2011-04-04 | 2015-09-15 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
| US8963159B2 (en) | 2011-04-04 | 2015-02-24 | Qualcomm Mems Technologies, Inc. | Pixel via and methods of forming the same |
| JP2012226122A (en)* | 2011-04-20 | 2012-11-15 | Seiko Epson Corp | Wavelength variable interference filter, optical module and electronic apparatus |
| US8643936B2 (en) | 2011-05-04 | 2014-02-04 | Qualcomm Mems Technologies, Inc. | Devices and methods for achieving non-contacting white state in interferometric modulators |
| US8970767B2 (en) | 2011-06-21 | 2015-03-03 | Qualcomm Mems Technologies, Inc. | Imaging method and system with angle-discrimination layer |
| US9019240B2 (en) | 2011-09-29 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical touch device with pixilated light-turning features |
| US9081188B2 (en) | 2011-11-04 | 2015-07-14 | Qualcomm Mems Technologies, Inc. | Matching layer thin-films for an electromechanical systems reflective display device |
| US9183812B2 (en) | 2013-01-29 | 2015-11-10 | Pixtronix, Inc. | Ambient light aware display apparatus |
| CN110867136A (en)* | 2019-11-22 | 2020-03-06 | 维沃移动通信有限公司 | Pole screen and electronic equipment |
| Publication | Publication Date | Title |
|---|---|---|
| JPH11211999A (en) | Optical modulating element and display device | |
| US9304354B2 (en) | Light-emitting modules and lighting modules | |
| CN100395607C (en) | Semi-transmissive reflective liquid crystal display device | |
| TW200521524A (en) | Transflector and transflective display | |
| CN113156732B (en) | Reflective display panel and manufacturing method thereof, and display device | |
| CN101910985B (en) | Touch panel and touch panel display device | |
| TW200838698A (en) | Multi-layer sheet for use in electro-optic displays | |
| TWI795334B (en) | Method for producing a display and method of integrating electrophoretic displays | |
| CN102032508A (en) | Light-emitting device and display | |
| KR100291917B1 (en) | Reflective liquid crystal display | |
| JPH08234176A (en) | High polymer-liquid crystal combined display element | |
| WO2023065876A1 (en) | Rear cover, electronic device, and preparation method for rear cover | |
| JP2000171614A (en) | Semitransmitting reflection body | |
| KR100897742B1 (en) | Touch panel integrated image display device and manufacturing method thereof | |
| CN112799247A (en) | A liquid crystal display assembly and preparation method thereof, and liquid crystal display | |
| JPH05142515A (en) | Liquid crystal display | |
| JPH0534730A (en) | Liquid crystal display | |
| CN223092266U (en) | Controllable peep-proof device and peep-proof display device | |
| JP3313936B2 (en) | Optical writing type spatial light modulator and projection display device | |
| JPH08114797A (en) | Reflective liquid crystal display device and manufacturing method thereof | |
| CN116469990B (en) | Display device and display apparatus | |
| TW201024838A (en) | Color filter film substrate and application thereof | |
| KR100623842B1 (en) | Manufacturing Method Of Liquid Crystal Display | |
| CN119002142A (en) | Controllable peep-proof device, preparation method and peep-proof display device | |
| KR20120134812A (en) | Color electronic paper display device and manufacturing method thereof |