【0001】[0001]
【発明の属する技術分野】本発明は、都市ガスや水道な
どを供給する管路系で、振動を測定して相互相関関数を
算出し、漏洩位置などを特定するための相関法を用いる
管路系の振動測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipeline system for supplying city gas, water, etc., which measures vibration to calculate a cross-correlation function and uses a correlation method for specifying a leak position and the like. The present invention relates to a method for measuring vibration of a system.
【0002】[0002]
【従来の技術】図7は、従来から行われている相関法を
用いる管路系の漏洩位置特定方法の概要を示す。導管1
は、たとえば都市ガスなどの気体、あるいは水道水や地
域冷暖房システムの温水や冷水などの液体を輸送するた
めに、地表面2よりも下方の地中に埋設されている。導
管1に対しては、軸線方向に間隔をあけてプロテクタ3
が設けられ、バルブの操作等が可能である。導管1が何
らかの原因で損傷を受け、内部に流通している流体が漏
洩すると、導管1の軸線方向に間隔をあけて設けられて
いるプロテクタ3a,3bを利用し、振動センサ4a,
4bを設置する。漏洩位置5では、導管1内を流通する
流体が地中に漏洩する際に漏洩音が発生し、導管1を伝
播して振動センサ4a,4bによって測定される。振動
センサ4a,4bの測定結果は、測定装置6によって相
関法による漏洩位置5の特定が行われる。2. Description of the Related Art FIG. 7 shows an outline of a conventional method for specifying a leak position in a pipeline system using a correlation method. Conduit 1
Is buried in the ground below the ground surface 2 for transporting a gas such as city gas or a liquid such as tap water or hot or cold water of a district cooling / heating system. The protector 3 is spaced apart from the conduit 1 in the axial direction.
Is provided, and operation of a valve and the like are possible. If the conduit 1 is damaged for some reason and the fluid flowing inside leaks, the vibration sensors 4a, 3b are provided using protectors 3a, 3b provided at intervals in the axial direction of the conduit 1.
4b is installed. At the leak position 5, when the fluid flowing through the conduit 1 leaks into the ground, a leak sound is generated, which propagates through the conduit 1 and is measured by the vibration sensors 4a and 4b. From the measurement results of the vibration sensors 4a and 4b, the leak position 5 is specified by the measuring device 6 by the correlation method.
【0003】振動センサ4a,4bの測定結果に相関法
を適用し、相互相関関数を算出すると、漏洩位置5から
振動センサ4a,4bまでの距離La,Lbの差に基づ
いて、漏洩音の到達に時間差τが生じる。導管1内の振
動の伝播速度をVとすると、振動センサ4aは振動セン
サ4bよりもτ×Vだけ漏洩位置5から離れている。し
たがって、漏洩位置5から振動センサ4a,4bまでの
設置位置は、次の第1式および第2式によってそれぞれ
求められる。[0003] When a correlation method is applied to the measurement results of the vibration sensors 4a and 4b to calculate a cross-correlation function, the arrival of the leakage sound is determined based on the difference between the distances La and Lb from the leakage position 5 to the vibration sensors 4a and 4b. Causes a time difference τ. Assuming that the propagation speed of the vibration in the conduit 1 is V, the vibration sensor 4a is farther from the leakage position 5 by τ × V than the vibration sensor 4b. Therefore, the installation positions from the leak position 5 to the vibration sensors 4a and 4b are obtained by the following first and second equations, respectively.
【0004】 La = (L+τ×V)/2 …(1) Lb = (L−τ×V)/2 …(2) 図8は、図7の測定装置6によって、相互相関関数処理
を行い、振動センサ4a,4b間の到達時間差τを求め
るための構成を示す。振動センサ4a,4bがそれぞれ
測定する振動音は信号x(t)およびy(t)として測
定装置6に入力される。振動センサ4bが測定する信号
y(t)は、遅延回路7に一旦入力された後、掛算回路
8に信号x(t)とともに入力され、掛算演算が行われ
る。掛算回路8の出力は、加算回路9に入力され、次の
第3式に示すような演算によって、相互相関関数が算出
される。La = (L + τ × V) / 2 (1) Lb = (L−τ × V) / 2 (2) FIG. 8 shows a cross-correlation function process performed by the measuring device 6 of FIG. The configuration for obtaining the arrival time difference τ between the vibration sensors 4a and 4b is shown. The vibration sounds measured by the vibration sensors 4a and 4b are input to the measuring device 6 as signals x (t) and y (t). The signal y (t) measured by the vibration sensor 4b is once input to the delay circuit 7 and then input to the multiplication circuit 8 together with the signal x (t), and a multiplication operation is performed. The output of the multiplying circuit 8 is input to the adding circuit 9, and a cross-correlation function is calculated by an operation represented by the following third equation.
【0005】[0005]
【数1】(Equation 1)
【0006】図8に示す相互相関関数処理は、デジタル
演算で行われ、そのサンプル時間Δtはたとえば100
μsecである。第3式は、原信号x(t)と異なる信
号y(t)とを、遅延時間τ=0からτまでずらせたと
きの総和平均を示す。相互相関関数で漏洩音の到達時間
差を求めることができるのは、漏洩音が不規則な雑音で
あり、瞬間的な信号波形が時間的に異なるからである。
同一の振動源からの振動を測定する振動センサ4a,4
bの測定結果は、瞬間的には振動源の特徴をそれぞれ示
すので、振動センサ4a,4bで同等な特徴を示す部分
間の時間差を算出すれば、到達時間差が求められる。不
規則な波形の瞬間的な特徴を統計的に比較して時間差を
算出するために、相互相関関数が用いられている。The cross-correlation function processing shown in FIG. 8 is performed by digital operation, and its sample time Δt is, for example, 100
μsec. The third expression indicates the sum total average when the original signal x (t) and the signal y (t) different from each other are shifted from the delay time τ = 0 to τ. The reason why the arrival time difference of the leaked sound can be obtained by the cross-correlation function is that the leaked sound is irregular noise and the instantaneous signal waveform is different in time.
Vibration sensors 4a, 4 that measure vibration from the same vibration source
Since the measurement result of b instantaneously indicates the characteristic of the vibration source, the arrival time difference can be obtained by calculating the time difference between the parts exhibiting the same characteristic by the vibration sensors 4a and 4b. A cross-correlation function is used to calculate the time difference by statistically comparing the instantaneous features of the irregular waveform.
【0007】図7に示すような相関法を用いる漏洩位置
の特定の際には、振動センサ4a,4b間の距離Lは地
表面2で容易に測定することができる。しかしながら、
導管1に沿う伝播速度Vを求める必要がある。導管1の
種類に応じて、予め実験などによって伝播速度Vが求め
られていることもある。実際の導管1で伝播速度Vを測
定する方法としては、導管1に加振器を用いて振動を加
え、振動センサ4a,4bで加振器からの振動を測定し
て、到達時間差Δτと距離Lとから、次の第4式に従っ
て伝播速度Vを求めることもできる。[0007] When specifying a leak position using a correlation method as shown in FIG. 7, the distance L between the vibration sensors 4 a and 4 b can be easily measured on the ground surface 2. However,
It is necessary to determine the propagation velocity V along the conduit 1. Depending on the type of the conduit 1, the propagation velocity V may be determined in advance by experiments or the like. As a method of measuring the propagation velocity V in the actual conduit 1, a vibration is applied to the conduit 1 using an exciter, and the vibrations from the exciter are measured by the vibration sensors 4a and 4b, and the arrival time difference Δτ and the distance are measured. From L, the propagation velocity V can also be obtained according to the following fourth equation.
【0008】 V = L / Δτ …(4)V = L / Δτ (4)
【0009】[0009]
【発明が解決しようとする課題】図7に示すような相関
法を用いる漏洩位置の特定では、導管1によって流体を
輸送する配管系の対象区間の両端にそれぞれ振動センサ
4a,4bを設置して振動を測定しているけれども、振
動センサ4a,4bの設置位置での配管状況によって
は、相互相関関数処理によって得られるピークの判別が
困難な場合がある。また、導管1に沿う振動の伝播速度
を算出するために、加振器を導管1を配管系の対象区間
の外側に設置するときにも、加振器を設置する位置の配
管状況によっては、振動センサ4a,4bの測定結果か
ら得られる相互相関関数ピークの判別が困難な場合が生
じる。相互相関関数処理によるピークが判別困難である
と、振動センサ4a,4b間の到達時間差を求めること
ができず、到達時間差に基づく漏洩位置5の特定もでき
ない。また、漏洩位置5からの漏洩音に関する到達時間
差は求めることができても、加振音に基づく到達時間差
を求めることができないときには、伝播速度を求めるこ
とができず、予めデータとして与えられている伝播速度
を使用しない限り、漏洩音の到達時間差に基づく漏洩位
置5の特定を行うことができない。In specifying a leak position using a correlation method as shown in FIG. 7, vibration sensors 4a and 4b are installed at both ends of a target section of a piping system for transporting a fluid by a conduit 1. Although the vibration is measured, it may be difficult to determine the peak obtained by the cross-correlation function processing depending on the piping condition at the installation position of the vibration sensors 4a and 4b. In addition, in order to calculate the propagation speed of the vibration along the conduit 1, when the vibrator is installed outside the target section of the piping system, depending on the piping condition at the position where the vibrator is installed, In some cases, it is difficult to determine the cross-correlation function peak obtained from the measurement results of the vibration sensors 4a and 4b. If it is difficult to determine the peak by the cross-correlation function processing, the arrival time difference between the vibration sensors 4a and 4b cannot be obtained, and the leak position 5 cannot be specified based on the arrival time difference. When the arrival time difference relating to the leaked sound from the leakage position 5 can be obtained, but when the arrival time difference based on the excitation sound cannot be obtained, the propagation velocity cannot be obtained, and is given as data in advance. Unless the propagation speed is used, it is not possible to specify the leakage position 5 based on the arrival time difference of the leakage sound.
【0010】本発明の目的は、管路系の配管状態等によ
る影響を免れて、相互相関関数処理で判別容易なピーク
を確実に得ることができる相関法を用いる管路系の振動
測定方法を提供することである。An object of the present invention is to provide a method for measuring vibration in a pipeline system using a correlation method which can reliably obtain a peak which can be easily determined by cross-correlation function processing while avoiding the influence of the piping state of the pipeline system. To provide.
【0011】[0011]
【課題を解決するための手段】本発明は、管路の軸線方
向に間隔をあけて2つの振動センサを設置し、振動の検
出信号間の相互相関関数処理によって、振動源から各振
動センサまで振動が伝播される時間差を測定する方法に
おいて、管路系に振動源として加振器を設置し、加振器
の設置位置を管路系の軸線方向に複数回ずらせて、各回
毎に2つの振動センサによる振動の検出信号間の相互相
関関数処理を行い、複数回の処理結果に基づいて2つの
振動センサへ加振器からの振動が到達する時間差を算出
し、2つの振動センサ間の距離と時間差とから管路の軸
線方向についての振動の伝播速度を算出することを特徴
とする相関法を用いる管路系の振動測定方法である。SUMMARY OF THE INVENTION According to the present invention, two vibration sensors are installed at intervals in the axial direction of a pipeline, and a process from a vibration source to each vibration sensor is performed by cross-correlation function processing between vibration detection signals. In a method for measuring a time difference in which vibration is propagated, a vibrator is installed as a vibration source in a pipeline system, and the installation position of the vibrator is shifted a plurality of times in the axial direction of the pipeline system. Performs a cross-correlation function process between the vibration detection signals by the vibration sensor, calculates a time difference between the vibrations from the vibrator reaching the two vibration sensors based on a plurality of processing results, and calculates a distance between the two vibration sensors. This is a vibration measurement method for a pipeline system using a correlation method, wherein a propagation speed of vibration in the axial direction of the pipeline is calculated from a time difference and a time difference.
【0012】本発明に従えば、管路系に振動源として加
振器を設置し、管路の軸線方向に間隔をあけて設置され
る2つの振動センサによって振動源から伝播される振動
の到達時間差を測定する。2つの振動センサ間の距離が
判明していれば、振動の到達時間差から管路に沿う振動
の伝播速度を算出することができる。振動の到達時間差
は、各振動センサによる検出信号間の相互相関関数処理
によって得られるピークから求める。加振器を設置する
位置の配管状況などによっては、2つの振動センサの検
出信号間の相互相関関数処理で判り易いピークが得られ
ず、到達時間差を求めることができない可能性もあり得
るけれども、加振器の設置位置を管路系の軸線方向に複
数回ずらせて各回毎に2つの振動センサによる振動の検
出信号間の相互相関関数処理を行い、複数回の処理結果
に基づいて2つの振動センサへ加振器からの振動が到達
する時間差を算出するので、1つでも判別可能なピーク
が得られれば、確実に到達時間差に基づく伝播速度の測
定を行うことができる。According to the present invention, a vibrator is installed as a vibration source in a pipeline system, and the arrival of vibration propagated from the vibration source by two vibration sensors installed at an interval in the axial direction of the pipeline. Measure the time difference. If the distance between the two vibration sensors is known, the propagation speed of the vibration along the pipeline can be calculated from the difference in the arrival time of the vibration. The arrival time difference of the vibration is obtained from the peak obtained by the cross-correlation function processing between the detection signals of the respective vibration sensors. Depending on the piping condition at the position where the vibrator is installed, it is possible that an intelligible peak cannot be obtained by the cross-correlation function processing between the detection signals of the two vibration sensors, and the arrival time difference may not be obtained. The position of the vibrator is shifted a plurality of times in the axial direction of the pipeline system, a cross-correlation function process is performed between the vibration detection signals by the two vibration sensors each time, and two vibrations are generated based on the processing results of the plurality of times. Since the time difference at which the vibration from the vibrator reaches the sensor is calculated, the propagation velocity can be reliably measured based on the arrival time difference if at least one discernable peak is obtained.
【0013】さらに本発明は、管路の軸線方向に間隔を
あけて2つの振動センサを設置し、振動の検出信号間の
相互相関関数処理によって、振動源から各振動センサま
で振動が伝播される時間差を測定する方法において、管
路系からの流体の漏洩音を振動源として、2つの振動セ
ンサのうちの少なくとも一方の設置位置を管路系の軸線
方向に複数回ずらせて、各回毎に2つの振動センサによ
る振動の検出信号間の相互相関関数処理を行い、複数回
の処理結果に基づいて2つの振動センサへ漏洩位置から
の振動が到達する時間差を算出し、その時間差と管路系
の軸線方向への振動の伝播速度とに基づいて、漏洩位置
を特定することを特徴とする相関法を用いる管路系の振
動測定方法である。Further, according to the present invention, two vibration sensors are installed at an interval in the axial direction of the pipeline, and the vibration is propagated from the vibration source to each vibration sensor by a cross-correlation function processing between the vibration detection signals. In the method for measuring the time difference, at least one of the two vibration sensors is displaced a plurality of times in the axial direction of the pipeline system by using the sound of fluid leaking from the pipeline system as a vibration source, and each time, two times. Cross-correlation function processing between the vibration detection signals by the two vibration sensors is performed, and based on the results of the processing performed a plurality of times, the time difference at which the vibration from the leakage position reaches the two vibration sensors is calculated. This is a vibration measurement method for a pipeline system using a correlation method characterized by specifying a leakage position based on the propagation speed of vibration in the axial direction.
【0014】本発明に従えば、管路系から流体が漏洩す
る漏洩音を2つの振動センサで検出し、検出信号間の相
互相関関数処理によって得られるピークから漏洩音に基
づく振動の2つの振動センサへの到達時間差を求め、管
路系に沿う振動の伝播速度とともに演算して漏洩位置を
算出することができる。振動センサの設置位置の配管状
況等によっては、検出信号間の相互相関関数処理で判明
性のよいピークが得られないこともあるけれども、少な
くとも一方の振動センサの設置位置を管路の軸線に沿っ
て複数回変化させ、各回毎に相互相関関数処理を行うの
で、全体的には判別性のよいピークを得ることができ、
漏洩位置の特定も行うことができる。According to the present invention, two vibration sensors detect a leakage sound of fluid leaking from the pipeline system, and two vibrations based on the leakage sound from the peak obtained by the cross-correlation function processing between the detection signals. The leakage position can be calculated by calculating the difference in arrival time at the sensor and calculating the difference with the propagation speed of the vibration along the pipeline system. Depending on the piping conditions at the installation position of the vibration sensor, etc., a peak with good clarity may not be obtained by the cross-correlation function processing between the detection signals, but the installation position of at least one vibration sensor is set along the axis of the pipeline. And a cross-correlation function process is performed each time, so that a peak with good discrimination can be obtained as a whole,
The location of the leak can also be specified.
【0015】また本発明で前記複数回の測定で得られる
複数の相互相関関数ピークのうち、判別が最も容易なピ
ークを選定して、前記時間差を測定することを特徴とす
る。Further, the present invention is characterized in that, of the plurality of cross-correlation function peaks obtained by the plurality of measurements, a peak which is easiest to discriminate is selected and the time difference is measured.
【0016】本発明に従えば、複数回の設置位置の変更
と、各回毎の相互相関関数処理によるピークで、判別が
最も容易なピークを選定して到達時間差を測定するの
で、振動センサ間の到達時間差を容易に算出して相関法
による漏洩位置の特定や振動の伝播速度の測定を精度よ
く行うことができる。According to the present invention, the peak which is the easiest to discriminate is selected from the plurality of changes in the installation position and the peak obtained by the cross-correlation function processing for each time, and the arrival time difference is measured. The arrival time difference can be easily calculated, and the leakage position can be specified by the correlation method and the vibration propagation velocity can be measured with high accuracy.
【0017】また本発明で前記複数の相互相関関数ピー
クのうち、ピークとしての判別は容易でも、予想される
時間差に比較して予め定める範囲内となるピークは選定
対象から除外することを特徴とする。Further, according to the present invention, among the plurality of cross-correlation function peaks, peaks which are easy to determine as peaks but fall within a predetermined range in comparison with an expected time difference are excluded from selection. I do.
【0018】本発明に従えば、複数回の相互相関関数処
理で得られるピークのうちに、ピークとしての判別は容
易でも、予想される時間差に比較して予め定める範囲内
となるピークがある場合には、選定対象から除外する。
管路に沿う振動の伝播速度や振動センサ間の距離などは
予め解っているので、到達時間差も或る程度の範囲で予
測することができるる。相互相関関数ピークから得られ
る到達時間差が、予想される時間差に比較して予め定め
る範囲外となるような場合には、判り易いピークでも選
定対象から除外するので、精度の高い測定を行うことが
できる。According to the present invention, when peaks obtained by a plurality of cross-correlation function processes are easily distinguished as peaks, but there are peaks that fall within a predetermined range compared to an expected time difference. Are excluded from the selection.
Since the propagation speed of the vibration along the pipeline and the distance between the vibration sensors are known in advance, the arrival time difference can be predicted within a certain range. If the arrival time difference obtained from the cross-correlation function peak is out of the predetermined range as compared with the expected time difference, even the easy-to-understand peak is excluded from the selection target, so that highly accurate measurement can be performed. it can.
【0019】[0019]
【発明の実施の形態】図1は、本発明の実施の一形態と
して、地中に埋設されている導管11から流体が漏洩す
る位置を特定するために、2つの振動センサへの振動の
到達時間差を測定し、到達時間差に基づいて漏洩位置を
特定するために加振器を用いて振動の伝播速度を測定す
る考え方を示す。導管11は、たとえば都市ガスや水道
水、あるいは地域冷暖房システムの熱供給媒体などの流
体を輸送するために地表面12の下方の地中に埋設され
る。導管11の軸線方向に沿って、間隔をあけて地表面
12から導管11のバルブなどを操作可能なように、プ
ロテクタ13a,13bが設置されている。導管11か
ら流体の漏洩が生じると、2つの振動センサ14a,1
4bを、漏洩位置15が存在すると推定される検知対象
区間の両端のプロテクタ13a,13bなどを利用して
導管11の表面に設置する。振動センサ14a,14b
間の距離はL、振動センサ14a,14bと漏洩位置1
5との距離はそれぞれLa,Lbとする。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention in which vibration reaches two vibration sensors in order to identify a position where fluid leaks from a conduit 11 buried underground. The concept of measuring the time difference and measuring the propagation speed of the vibration by using a vibrator to specify the leak position based on the arrival time difference will be described. The conduit 11 is buried in the ground below the ground surface 12 for transporting a fluid such as, for example, city gas or tap water, or a heat supply medium for a district heating and cooling system. Protectors 13a and 13b are installed along the axial direction of the conduit 11 so that valves and the like of the conduit 11 can be operated from the ground surface 12 at intervals. When fluid leaks from the conduit 11, the two vibration sensors 14a, 1
4b is installed on the surface of the conduit 11 using the protectors 13a and 13b at both ends of the detection target section where the leakage position 15 is presumed to exist. Vibration sensors 14a, 14b
The distance between them is L, and the vibration sensors 14a and 14b and the leakage position 1
The distances to 5 are respectively La and Lb.
【0020】導管11の軸線方向に振動が伝播する速度
は、振動センサ14a,14b間の検知対象区間外に、
たとえば地表面12から立坑16を掘削し、1つの加振
器の設置位置をn回軸線方向にずらしながら、等価的に
複数の位置が異なる加振器21〜2nを設置して導管1
1に振動を加え、2つの振動センサ14a,14bで検
出する信号間の相互相関関数処理で得られるピークから
到達時間差を求め、地表面12で容易に測定可能な振動
センサ14a,14b間の距離に基づいて振動の伝播速
度Vを算出する。加振器21〜2nと、振動センサ13
bとの設置位置間の距離は、L1〜Lnとする。The speed at which the vibration propagates in the axial direction of the conduit 11 is set outside the detection target section between the vibration sensors 14a and 14b.
For example, while excavating the shaft 16 from the ground surface 12 and shifting the installation position of one exciter n times in the axial direction, the exciters 21 to 2n having a plurality of equivalently different positions are installed and the conduit 1
1, vibration is applied to 1 and the arrival time difference is determined from the peak obtained by the cross-correlation function processing between the signals detected by the two vibration sensors 14a and 14b, and the distance between the vibration sensors 14a and 14b that can be easily measured on the ground surface 12 Is calculated based on the following equation. Exciters 21 to 2n and vibration sensor 13
The distance between the position b and the installation position is L1 to Ln.
【0021】図2は、図1の振動センサ14a,14b
によって得られる検出信号に対して相互相関関数処理を
行うための概略的な電気的構成を示す。振動センサ14
a,14bの検出信号は、測定装置30で相互相関関数
処理によるピークが求められて、振動センサ14a,1
4b間の到達時間差が算出される。振動センサ14a,
14bの設置位置は、一般にかなりの距離があるので、
検出信号は録音装置31で一旦記録媒体32に記録さ
れ、記録媒体32の記録内容を測定装置30で再生して
相互相関関数処理が行われる。録音装置31としては、
たとえばDATと略称されるデジタル・オーディオ・テ
ープやMDと略称されるミニ・ディスクなどの低雑音か
つ高忠実度を有する録音機器を用いることが好ましい。
振動センサ14a,14bの検出信号を、有線または無
線で直接測定装置30に伝送して、リアルタイムで測定
を行うこともできる。FIG. 2 shows the vibration sensors 14a and 14b of FIG.
1 shows a schematic electrical configuration for performing cross-correlation function processing on a detection signal obtained by the above method. Vibration sensor 14
The peaks of the detection signals a and 14b are obtained by the cross-correlation function processing in the measuring device 30, and the vibration sensors 14a and 1b
The arrival time difference between 4b is calculated. The vibration sensor 14a,
Since the installation position of 14b is generally a considerable distance,
The detection signal is temporarily recorded on the recording medium 32 by the recording device 31, and the recorded content of the recording medium 32 is reproduced by the measuring device 30 to perform the cross-correlation function processing. As the recording device 31,
For example, it is preferable to use a recording device having low noise and high fidelity, such as a digital audio tape abbreviated as DAT or a mini disk abbreviated as MD.
The detection signals of the vibration sensors 14a and 14b can be transmitted directly to the measuring device 30 by wire or wirelessly to perform real-time measurement.
【0022】記録媒体32から再生される検出信号は、
前処理としてバンドパスフィルタ(以下「BPF」と略
称する)33で帯域濾波され、相互相関関数処理手段3
4によってデジタル演算処理される。処理結果はCRT
と略称される陰極線管などの表示手段35で画像表示さ
れる。本実施形態では、n個所に加振器21〜2nを設
置し、それぞれの相互相関関数処理結果を表示手段35
で表示して比較する。その中で最も判別し易いピークを
選定し、その際の設置位置に対応する相互相関関数演算
処理結果を選択手段36を用いて選択し、演算手段37
で到達時間差を求める。なお、複数の加振器設置位置で
ピークが得られるときは、平均値をとることもできる。The detection signal reproduced from the recording medium 32 is
As a pre-process, band-pass filtering is performed by a band-pass filter (hereinafter abbreviated as “BPF”) 33, and the cross-correlation function processing means 3
4 is digitally processed. Processing result is CRT
An image is displayed on a display means 35 such as a cathode ray tube, which is abbreviated as "CRT". In the present embodiment, the vibrators 21 to 2n are installed at n places, and the respective cross-correlation function processing results are displayed on the display means 35.
Display with and compare. Among them, the peak which is most easily distinguished is selected, and the result of the cross-correlation function calculation processing corresponding to the installation position at that time is selected using the selection means 36, and the calculation means 37
To find the arrival time difference. When peaks are obtained at a plurality of exciter installation positions, an average value can be taken.
【0023】図3は、本実施形態で漏洩位置の特定を行
う手順を示す。ステップa1から手順を開始し、ステッ
プa2では振動センサ14a,14bを導管11に設け
られるプロテクタ13a,13bなどに設置する。ステ
ップa3では、1回目の加振器21の設置を行う。ステ
ップa4では各振動センサ14a,14bの検出信号の
録音を行う。ステップa5では、加振器がn回の移動を
完了しているか否かを判断する。移動回数がn回に達し
ていないときにはステップa3からステップa4の手順
を繰返す。ステップa5でn回の移動が終了していると
判断されるときには、録音された記録媒体32から再生
される検出信号を測定装置30のBPF33で帯域濾波
する前処理を行う。ステップa7では、バンドパスフィ
ルタ16の濾波出力を、相互相関関数処理手段34で相
関演算し、ステップa8で演算結果を表示手段35で画
像表示しながら、最も判り易い相関ピークを選定する。
本実施形態では、漏洩位置15での漏洩音と、加振器2
1〜2nによる加振音とが振動として導管11を伝播す
る。一般に、漏洩音と加振音との到達時間差は異なるの
で、相関ピークは両方からのピークが得られることもあ
る。そのような場合には、加振音を停止させれば、漏洩
音のみのピークが残る。加振音の測定の際には、漏洩音
も同時に測定することになる。FIG. 3 shows a procedure for specifying a leakage position in the present embodiment. The procedure starts from step a1, and in step a2, the vibration sensors 14a and 14b are installed on the protectors 13a and 13b provided on the conduit 11. In step a3, the first installation of the vibrator 21 is performed. In step a4, the detection signals of the vibration sensors 14a and 14b are recorded. In step a5, it is determined whether or not the exciter has completed n times of movement. When the number of times of movement has not reached n times, the procedure from step a3 to step a4 is repeated. When it is determined in step a5 that the movement has been completed n times, preprocessing for band-pass filtering the detection signal reproduced from the recorded recording medium 32 by the BPF 33 of the measuring device 30 is performed. At step a7, the filtered output of the band-pass filter 16 is subjected to a correlation operation by the cross-correlation function processing means 34, and at step a8, the operation result is displayed on the display means 35 as an image, and the correlation peak which is most recognizable is selected.
In the present embodiment, the leakage sound at the leakage position 15 and the vibration
The vibration sound generated by 1 to 2n propagates through the conduit 11 as vibration. Generally, since the arrival time difference between the leaked sound and the excitation sound is different, peaks from both may be obtained as the correlation peak. In such a case, if the excitation sound is stopped, a peak of only the leakage sound remains. When measuring the excitation sound, the leakage sound is also measured at the same time.
【0024】ステップa9では、漏洩音または加振音の
それぞれに対応する相関ピークから得られる到達時間差
をそれぞれ確認し、加振音に基づく到達時間差と振動セ
ンサ14a,14b間の距離とからステップa10で伝
播速度の計算を行う。ステップa11では、計算された
伝播速度と漏洩音に対する相関ピークから求められる到
達時間差と振動センサ14a,14b間の距離とから、
漏洩位置15を求める計算を行う。この計算は、前述の
第1式および第2式のように行う。このときの伝播速度
Vは、前述の第4式に従って求める。ステップa12で
測定手順を終了する。In step a9, the arrival time difference obtained from the correlation peak corresponding to each of the leaked sound and the excitation sound is checked, and the arrival time difference based on the excitation sound and the distance between the vibration sensors 14a and 14b are checked. Is used to calculate the propagation speed. In step a11, from the calculated propagation speed and the arrival time difference obtained from the correlation peak for the leaked sound and the distance between the vibration sensors 14a and 14b,
A calculation for determining the leak position 15 is performed. This calculation is performed as in the above-described first and second equations. The propagation speed V at this time is obtained according to the above-described fourth equation. At step a12, the measurement procedure ends.
【0025】相関法による漏洩位置15の特定や伝播速
度Vの測定は、種々の要因に左右されて、必ずしも相関
ピークが明瞭に得られるとは限らない。図4は、図2の
BPF33の周波数選択帯域幅を、0〜5000Hzの
周波数帯域幅内を5分割した周波数帯域として設定し、
それぞれの濾波出力について相互相関関数処理して得ら
れるピークを示す。図4(a)は、0〜1000Hz、
図4(b)は1000〜2000Hz、図4(c)は2
000〜3000Hz、図4(d)は3000〜400
0Hz、図4(e)は4000〜5000Hzでそれぞ
れ記録媒体32から再生される検出信号を帯域濾波して
得られる相互相関関数ピークを示す。この例では、図4
(d)に示すBPFの中間周波数帯域が3000〜40
00Hzのときに判別が容易な相関ピークが得られてい
る。ただし、漏洩音に対する判別が容易な相関ピーク
は、図4(e)で得られ、加振音と漏洩音とは、異なる
通過周波数帯域のBPF33で帯域濾波する前処理を行
う方が好ましいことになる。しかしながら、設置位置な
どの配管状態に応じて、同一の通過周波数帯域で前処理
した方が判り易いピークが得られる場合もあり得る。ま
た、図4(e)でも、加振音に対する判別容易なピーク
が得られているように見える。ただし、伝播速度Vはあ
る程度までは予想可能であり、したがってピークの位置
も予想される範囲がある。この範囲外の相関ピークは除
外した方が、信頼性が向上する。The identification of the leak position 15 and the measurement of the propagation velocity V by the correlation method depend on various factors, and the correlation peak is not always obtained clearly. FIG. 4 sets the frequency selection bandwidth of the BPF 33 of FIG. 2 as a frequency band obtained by dividing the frequency bandwidth of 0 to 5000 Hz into five,
The peak obtained by performing the cross-correlation function processing on each of the filtered outputs is shown. FIG. 4A shows 0 to 1000 Hz,
4 (b) is 1000 to 2000 Hz, and FIG.
000 to 3000 Hz, and FIG.
FIG. 4E shows a cross-correlation function peak obtained by band-pass filtering a detection signal reproduced from the recording medium 32 at 4000 Hz to 5000 Hz. In this example, FIG.
The intermediate frequency band of the BPF shown in FIG.
At 00 Hz, a correlation peak that is easy to determine is obtained. However, the correlation peak that makes it easy to discriminate the leaked sound is obtained in FIG. 4 (e), and it is preferable that the excitation sound and the leaked sound be pre-processed by band-pass filtering with the BPF 33 having different pass frequency bands. Become. However, depending on the piping condition such as the installation position, there may be a case where a peak that is easier to understand is obtained by performing the pre-processing in the same pass frequency band. Also, in FIG. 4 (e), it seems that a peak that can be easily distinguished from the excitation sound is obtained. However, the propagation speed V can be predicted to some extent, and therefore, the position of the peak also has an expected range. Excluding correlation peaks outside this range improves reliability.
【0026】次の表1は、本実施形態で複数個所の加振
器21〜2nで伝播速度算出のための加振を行う効果を
示す。The following Table 1 shows the effect of performing vibration for calculating the propagation velocity by the vibrators 21 to 2n at a plurality of locations in the present embodiment.
【0027】[0027]
【表1】[Table 1]
【0028】図4では、加振音についての相関ピークの
判別性が最も良い前処理の通過周波数帯域である200
0〜3000Hzであっても、表1から、加振器と振動
センサとの間の距離が適切でないときには、判り易い相
関ピークを得ることができないことが判る。また、加振
器と振動センサとの間の距離が適切であっても、BPF
33の通過周波数帯域の選定次第で、必ずしもピークの
判別性が良くなるとは限らないことも判る。BPF33
による前処理を行わないで、たとえば0〜5000Hz
の帯域幅の検出信号をそのまま相互相関関数処理の対象
とすると、相関ピークの判別が容易ではなく、伝播速度
を正確に求めることが困難である。FIG. 4 shows a pass frequency band 200 of the pre-processing in which the discrimination of the correlation peak for the excitation sound is the best.
Even from 0 to 3000 Hz, it can be seen from Table 1 that when the distance between the vibrator and the vibration sensor is not appropriate, an easy-to-understand correlation peak cannot be obtained. Also, even if the distance between the exciter and the vibration sensor is appropriate, the BPF
It can also be seen that the discriminability of the peak is not always improved depending on the selection of the 33 pass frequency bands. BPF33
Without pre-processing, for example, 0 to 5000 Hz
If the detection signal of the bandwidth of (1) is directly subjected to the cross-correlation function processing, it is not easy to determine the correlation peak, and it is difficult to accurately determine the propagation speed.
【0029】図5は、本発明の実施の他の形態として、
振動センサの設置位置を変えながら漏洩位置を特定する
ための測定を行う状態を示す。本実施形態では、導管4
1が地表面42の下方に埋設されているときに、漏洩位
置45から流体が漏洩している場合を想定する。漏洩位
置45を含んで導管41の軸線方向に検知対象区間を設
け、検知対象区間よりも外側の複数個所で、少なくとも
一方の振動センサ51a〜5naをn回軸線方向にずら
しながら設置して漏洩音の測定を行う。他方の振動セン
サ51b〜5nbについても同時に軸線方向に設置位置
をずらすこともできる。FIG. 5 shows another embodiment of the present invention.
This shows a state in which measurement for specifying a leakage position is performed while changing the installation position of the vibration sensor. In the present embodiment, the conduit 4
It is assumed that the fluid is leaking from the leak position 45 when 1 is buried below the ground surface 42. A detection target section is provided in the axial direction of the conduit 41 including the leak position 45, and at least a plurality of vibration sensors 51a to 5na are installed at a plurality of locations outside the detection target section while being displaced n times in the axial direction, so that the leakage sound is generated. Measurement. The installation positions of the other vibration sensors 51b to 5nb can be simultaneously shifted in the axial direction.
【0030】図6は、図5の実施形態で漏洩位置45の
特定のための測定を行う手順を示す。ステップb1から
手順を開始し、ステップb2では振動センサ51a,5
1bを検知対象区間を挟む両端の位置にそれぞれ設置す
る。ステップb3では、振動センサ51a,51bの検
出信号を記録媒体32に録音する。ステップb4で、振
動センサ51a,51bの移動を伴うn回の測定を完了
しているか否かを判断する。完了していないと判断され
るときは、ステップb2に戻り、52a,52b、…、
5na,5nbまで、順次移動して測定することを繰返
す。ステップb4でn回の移動が完了したと判断される
ときには、ステップb5で図2に示すBPF33による
バンドパスフィルタの濾波を前処理として行う。ステッ
プb6では、相互相関関数処理手段34による相関演算
を行う。ステップb7では、相互相関関数処理手段34
の処理結果を表示手段35に表示して、相関ピークのう
ちで最も判り易いものを選定する。ステップb8では、
選定された相関ピークに基づいて、2つの振動センサ間
の到達時間差を確認し、ステップb9で前述の第1式お
よび第2式に基づく漏洩位置の計算を行い、ステップb
10で手順を終了する。ステップb9での漏洩の計算の
際に用いる伝播速度Vは、図1の実施形態と同様に加振
音から求めることもでき、あるいは導管41の物性値と
して予め求めておくこともできる。なお、複数の設置位
置に対して、明瞭なピークが得られるときは、平均値を
用いることもできる。FIG. 6 shows a procedure for performing a measurement for specifying the leak position 45 in the embodiment of FIG. The procedure starts from step b1, and in step b2, the vibration sensors 51a, 5a
1b are installed at both ends of the detection target section. In step b3, the detection signals of the vibration sensors 51a and 51b are recorded on the recording medium 32. In step b4, it is determined whether or not n measurements involving the movement of the vibration sensors 51a and 51b have been completed. If it is determined that the processing has not been completed, the process returns to step b2 and 52a, 52b,.
The measurement is repeated by sequentially moving up to 5na and 5nb. When it is determined in Step b4 that the movement has been completed n times, the filtering of the bandpass filter by the BPF 33 shown in FIG. 2 is performed as preprocessing in Step b5. In step b6, a correlation operation is performed by the cross-correlation function processing means 34. In step b7, the cross-correlation function processing means 34
Is displayed on the display means 35, and the correlation peak that is most easily recognized is selected. In step b8,
Based on the selected correlation peak, the arrival time difference between the two vibration sensors is confirmed, and in step b9, the leak position is calculated based on the above-described first and second equations, and step b9 is performed.
At 10, the procedure ends. The propagation velocity V used in the calculation of the leakage in step b9 can be obtained from the excitation sound, as in the embodiment of FIG. 1, or can be obtained in advance as the physical property value of the conduit 41. When a clear peak is obtained for a plurality of installation positions, an average value can be used.
【0031】[0031]
【発明の効果】以上のように本発明によれば、加振器の
設置位置を複数回変えて、各回毎に検出信号間の相互相
関関数処理を行うので、全体的には確実に振動の到達時
間差を算出し、相互相関関数処理によるピークを得るこ
とができ、ピークに基づいて求められる到達時間差から
管路系の振動の伝播速度を算出することができる。As described above, according to the present invention, the installation position of the vibrator is changed a plurality of times, and the cross-correlation function processing between the detection signals is performed each time. It is possible to calculate the arrival time difference, obtain a peak by the cross-correlation function processing, and calculate the propagation speed of the vibration of the pipeline system from the arrival time difference obtained based on the peak.
【0032】さらに本発明によれば、管路からの流体の
漏洩位置を、2つの振動センサによって検出する振動間
の相互相関関数処理に基づく到達時間差から特定する際
に、少なくとも一方の振動センサの設置位置を複数回管
路の軸線方向にずらすので、振動センサの設置位置の配
管状態などに基づいて相互相関関数処理によるピークが
明瞭に得られないことがあっても、全体としては相互相
関関数処理によるピークを得ることができ、ピークに基
づいて到達時間差を求め、漏洩位置を特定することがで
きる。Further, according to the present invention, when specifying the leakage position of the fluid from the pipeline from the arrival time difference based on the cross-correlation function processing between the vibrations detected by the two vibration sensors, at least one of the vibration sensors Since the installation position is shifted several times in the axial direction of the pipeline, even if peaks due to cross-correlation function processing may not be clearly obtained based on the piping conditions at the installation position of the vibration sensor, the overall cross-correlation function A peak due to the processing can be obtained, the arrival time difference can be obtained based on the peak, and the leakage position can be specified.
【0033】また本発明によれば、設置位置の変更を複
数回行って、振動の検出信号間の相互相関関数処理によ
るピークのうちで、最も判明が容易なピークを選定し
て、振動センサ間の到達時間差を求めるので、精度の高
い測定を行うことができる。Further, according to the present invention, the installation position is changed a plurality of times, and the peak which is the easiest to find among the peaks obtained by the cross-correlation function processing between the vibration detection signals is selected. , The highly accurate measurement can be performed.
【0034】また本発明によれば、振動センサまたは加
振器の設置位置を複数回代えながら相互相関関数処理を
行って得られるピークから求められる到達時間差が、予
め予想される範囲内とならないときには、選定の対象か
ら除外するので、何らかの原因によって誤差が大きくな
っているデータは用いないで、精度よく振動測定を行う
ことができる。According to the present invention, when the arrival time difference obtained from the peak obtained by performing the cross-correlation function processing while changing the installation position of the vibration sensor or the vibrator a plurality of times does not fall within the range expected in advance. , Is excluded from the selection, so that the vibration measurement can be performed with high accuracy without using data in which the error is increased due to some cause.
【図1】本発明の実施の一形態の振動音の測定状態を示
す概略的な断面図である。FIG. 1 is a schematic cross-sectional view showing a measurement state of a vibration sound according to an embodiment of the present invention.
【図2】図1で測定される振動音を相互相関関数処理す
る測定装置30の概略的な電気的構成を示すブロック図
である。FIG. 2 is a block diagram showing a schematic electrical configuration of a measuring device 30 that performs a cross-correlation function process on the vibration sound measured in FIG.
【図3】図1の実施形態で漏洩位置を特定するまでの手
順を示すフローチャートである。FIG. 3 is a flowchart showing a procedure until a leakage position is specified in the embodiment of FIG.
【図4】図2のBPF33の通過周波数帯域の違いによ
る相関ピークの変化を示すグラフである。FIG. 4 is a graph showing a change in a correlation peak due to a difference in a pass frequency band of the BPF 33 in FIG. 2;
【図5】本発明の実施の他の形態での振動音測定状態を
示す簡略化した断面図である。FIG. 5 is a simplified cross-sectional view showing a vibration sound measurement state according to another embodiment of the present invention.
【図6】図5に示す実施形態での漏洩位置特定までの手
順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure up to the identification of a leakage position in the embodiment shown in FIG. 5;
【図7】従来からの相関法を用いる管路系の漏洩位置特
定方法を示す簡略化した断面図である。FIG. 7 is a simplified cross-sectional view showing a conventional method of specifying a leak position in a pipeline system using a correlation method.
【図8】図7の振動センサの検出信号に対して相互相関
関数処理を行うための概略的な電気的構成を示すブロッ
ク図である。8 is a block diagram showing a schematic electrical configuration for performing a cross-correlation function process on a detection signal of the vibration sensor of FIG. 7;
11,41 導管 12,42 地表面 13a,13b プロテクタ 14a,14b,51a〜5na,51b〜5nb 振
動センサ 15,45 漏洩位置 21〜2n 加振器 30 測定装置 33 BPF 34 相互相関関数処理手段 35 表示手段 36 選択手段 37 演算手段11, 41 Conduit 12, 42 Ground surface 13a, 13b Protector 14a, 14b, 51a to 5na, 51b to 5nb Vibration sensor 15, 45 Leakage position 21 to 2n Vibrator 30 Measurement device 33 BPF 34 Cross-correlation function processing means 35 Display Means 36 Selection means 37 Calculation means
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP748398AJPH11201858A (en) | 1998-01-19 | 1998-01-19 | Method using correlation for measuring vibration of conduit system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP748398AJPH11201858A (en) | 1998-01-19 | 1998-01-19 | Method using correlation for measuring vibration of conduit system |
| Publication Number | Publication Date |
|---|---|
| JPH11201858Atrue JPH11201858A (en) | 1999-07-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP748398APendingJPH11201858A (en) | 1998-01-19 | 1998-01-19 | Method using correlation for measuring vibration of conduit system |
| Country | Link |
|---|---|
| JP (1) | JPH11201858A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000292302A (en)* | 1999-02-01 | 2000-10-20 | Mitsubishi Electric Corp | Abnormal location detector |
| JP3186707U (en)* | 2013-05-27 | 2013-10-24 | 株式会社日本ウォーターソリューション | Leak checker with recording function |
| JP2014134051A (en)* | 2013-01-11 | 2014-07-24 | Kajima Corp | Method for measuring air content of grout material subjected to upward construction |
| CN104747912A (en)* | 2015-04-23 | 2015-07-01 | 重庆邮电大学 | Fluid conveying pipe leakage acoustic emission time-frequency positioning method |
| WO2015141129A1 (en)* | 2014-03-17 | 2015-09-24 | 日本電気株式会社 | Speed-of-sound calculation device, speed-of-sound calculation method, and speed-of-sound calculation program |
| JP2016024023A (en)* | 2014-07-18 | 2016-02-08 | 積水化学工業株式会社 | Method of identifying abnormal sound generation position |
| JP2016148617A (en)* | 2015-02-13 | 2016-08-18 | 積水化学工業株式会社 | Analysis data creation method, water leakage position detection device, and method for specifying water leakage position |
| WO2016152143A1 (en)* | 2015-03-24 | 2016-09-29 | 日本電気株式会社 | Defect analysis device, defect analysis system, defect analysis method, and computer readable recording medium |
| JP2017187337A (en)* | 2016-04-04 | 2017-10-12 | 積水化学工業株式会社 | Water leakage investigation method |
| WO2019069616A1 (en)* | 2017-10-02 | 2019-04-11 | パナソニックIpマネジメント株式会社 | Sensor device and gas monitoring system |
| JP2019095292A (en)* | 2017-11-22 | 2019-06-20 | 株式会社日立製作所 | Water leakage detection system and water leakage detection method |
| KR102038689B1 (en) | 2018-06-14 | 2019-10-30 | 한국원자력연구원 | Apparatus for sensing leakage of pipe using distance-difference frequency analysis and method thereof |
| WO2019240231A1 (en) | 2018-06-15 | 2019-12-19 | 日本電気株式会社 | Leakage inspection device, leakage inspection method, and recording medium |
| CN110645484A (en)* | 2019-10-10 | 2020-01-03 | 杭州绿洁环境科技股份有限公司 | Transport pipeline monitoring system and method |
| CN119594345A (en)* | 2023-09-11 | 2025-03-11 | 中国石油化工股份有限公司 | A system and method for monitoring external abnormal movement of gas field gathering and transportation pipeline |
| WO2025195382A1 (en)* | 2024-03-19 | 2025-09-25 | 中国华能集团清洁能源技术研究院有限公司 | In-pipe fluid flow measurement method and apparatus, electronic device and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000292302A (en)* | 1999-02-01 | 2000-10-20 | Mitsubishi Electric Corp | Abnormal location detector |
| JP2014134051A (en)* | 2013-01-11 | 2014-07-24 | Kajima Corp | Method for measuring air content of grout material subjected to upward construction |
| JP3186707U (en)* | 2013-05-27 | 2013-10-24 | 株式会社日本ウォーターソリューション | Leak checker with recording function |
| WO2015141129A1 (en)* | 2014-03-17 | 2015-09-24 | 日本電気株式会社 | Speed-of-sound calculation device, speed-of-sound calculation method, and speed-of-sound calculation program |
| JP2016024023A (en)* | 2014-07-18 | 2016-02-08 | 積水化学工業株式会社 | Method of identifying abnormal sound generation position |
| JP2016148617A (en)* | 2015-02-13 | 2016-08-18 | 積水化学工業株式会社 | Analysis data creation method, water leakage position detection device, and method for specifying water leakage position |
| WO2016152143A1 (en)* | 2015-03-24 | 2016-09-29 | 日本電気株式会社 | Defect analysis device, defect analysis system, defect analysis method, and computer readable recording medium |
| GB2552108A (en)* | 2015-03-24 | 2018-01-10 | Nec Corp | Defect analysis device, defect analysis system, efect analysis method, and computer readable recording medium |
| CN104747912A (en)* | 2015-04-23 | 2015-07-01 | 重庆邮电大学 | Fluid conveying pipe leakage acoustic emission time-frequency positioning method |
| JP2017187337A (en)* | 2016-04-04 | 2017-10-12 | 積水化学工業株式会社 | Water leakage investigation method |
| WO2019069616A1 (en)* | 2017-10-02 | 2019-04-11 | パナソニックIpマネジメント株式会社 | Sensor device and gas monitoring system |
| JPWO2019069616A1 (en)* | 2017-10-02 | 2020-09-10 | パナソニックセミコンダクターソリューションズ株式会社 | Sensor device and gas monitoring system |
| US11788999B2 (en) | 2017-10-02 | 2023-10-17 | Nuvoton Technology Corporation Japan | Sensor device and gas monitoring system |
| JP2019095292A (en)* | 2017-11-22 | 2019-06-20 | 株式会社日立製作所 | Water leakage detection system and water leakage detection method |
| KR102038689B1 (en) | 2018-06-14 | 2019-10-30 | 한국원자력연구원 | Apparatus for sensing leakage of pipe using distance-difference frequency analysis and method thereof |
| US10634578B2 (en) | 2018-06-14 | 2020-04-28 | Korea Atomic Energy Research Institute | Apparatus and method of detecting leakage of pipe by using distance difference-frequency analysis |
| WO2019240231A1 (en) | 2018-06-15 | 2019-12-19 | 日本電気株式会社 | Leakage inspection device, leakage inspection method, and recording medium |
| US11402290B2 (en) | 2018-06-15 | 2022-08-02 | Nec Corporation | Leakage inspection device, leakage inspection method, and storage medium |
| CN110645484A (en)* | 2019-10-10 | 2020-01-03 | 杭州绿洁环境科技股份有限公司 | Transport pipeline monitoring system and method |
| CN110645484B (en)* | 2019-10-10 | 2021-09-21 | 杭州绿洁环境科技股份有限公司 | Transport pipeline monitoring system and method |
| CN119594345A (en)* | 2023-09-11 | 2025-03-11 | 中国石油化工股份有限公司 | A system and method for monitoring external abnormal movement of gas field gathering and transportation pipeline |
| WO2025195382A1 (en)* | 2024-03-19 | 2025-09-25 | 中国华能集团清洁能源技术研究院有限公司 | In-pipe fluid flow measurement method and apparatus, electronic device and storage medium |
| Publication | Publication Date | Title |
|---|---|---|
| KR102189240B1 (en) | Fuel leakage monitoring apparatus and method in pipe line | |
| US6561032B1 (en) | Non-destructive measurement of pipe wall thickness | |
| JPH11201858A (en) | Method using correlation for measuring vibration of conduit system | |
| JP2878804B2 (en) | Piping abnormality monitoring device | |
| US6453247B1 (en) | PC multimedia-based leak detection system for water transmission and distribution pipes | |
| US5531099A (en) | Underground conduit defect localization | |
| CA1303204C (en) | Acoustic emission leak source location | |
| JP6806816B2 (en) | Distance difference-Piping leak detectors and methods using frequency analysis | |
| EP1080349B1 (en) | Fluid temperature measurement | |
| WO2003048713A1 (en) | Remote pipeline acoustic inspection | |
| JP2008134267A (en) | Ultrasonic flow measurement method | |
| KR101956160B1 (en) | Leak detecting apparatus | |
| JP4306409B2 (en) | Piping leakage position detection method and apparatus | |
| JPH11210999A (en) | Method for specifying leakage position of pipe line system by correlation method | |
| KR20110060632A (en) | Acoustic vibration complex sensing unit for defect detection of industrial equipment and defect diagnosis system of high pressure piping using the same | |
| RU2010227C1 (en) | Method of fixing location of acoustic emission sources in pipe-lines | |
| JPWO2016152143A1 (en) | Defect analysis apparatus, defect analysis system, defect analysis method, and computer-readable recording medium | |
| JP2019100729A (en) | Information presentation system, information presentation method, and program | |
| JPH1164152A (en) | Gas pipe leak position locating method and apparatus | |
| US4372151A (en) | Automatic fault locating apparatus for a pressurized pipeline | |
| US20180136173A1 (en) | Condition assessment device, condition assessment method, program recording medium | |
| JPH0587669A (en) | Pipe-leakage inspecting method | |
| JPH1172409A (en) | Piping leak detection method | |
| JPH11201812A (en) | Sound velocity measurement method in fluid piping | |
| CA1153100A (en) | Leak location detecting apparatus for a pressurized pipeline |