Movatterモバイル変換


[0]ホーム

URL:


JPH11195415A - Nonaqueous electrolyte battery and its manufacture - Google Patents

Nonaqueous electrolyte battery and its manufacture

Info

Publication number
JPH11195415A
JPH11195415AJP10127124AJP12712498AJPH11195415AJP H11195415 AJPH11195415 AJP H11195415AJP 10127124 AJP10127124 AJP 10127124AJP 12712498 AJP12712498 AJP 12712498AJP H11195415 AJPH11195415 AJP H11195415A
Authority
JP
Japan
Prior art keywords
metal foil
alkali metal
foil
hole
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10127124A
Other languages
Japanese (ja)
Inventor
Toru Matsui
徹 松井
Yasushi Nakagiri
康司 中桐
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co LtdfiledCriticalMatsushita Electric Industrial Co Ltd
Priority to JP10127124ApriorityCriticalpatent/JPH11195415A/en
Publication of JPH11195415ApublicationCriticalpatent/JPH11195415A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

PROBLEM TO BE SOLVED: To keep the uniformity of electrode reaction when charge and discharge are repeated, and suppress the growth of dendrite precipitated in a negative electrode by mechanically biting a metal foil having through-holes to an alkali metal active material, and press fitting a negative electrode active material into the opening part of the metal foil. SOLUTION: An alkali metal has a passive state film on the surface, and the passive state film is physically broken to stick metal foil used for a negative electrode current collector into the alkali metal, whereby satisfactory current collecting property can be ensured. Particularly, the sharply cut edge parts on the circumference of pores on the metal foil surface is stuck into the alkali metal, whereby the passive state film can be broken. The pores in the metal foil are formed so as to have a diameter of 0.05 mm or more and a rate of hole area of 10-90%, the thickness of the metal oil is set to 2-50 μm, and the arrangement of pores is set to zigzag, whereby current collecting property can be enhanced to promote the uniform electrode reaction. Thus, formation of dendrite on an electrode having alkali metal as active material can be suppressed.

Description

Translated fromJapanese
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質電池、
特に負極集電性の改良に関する。
The present invention relates to a non-aqueous electrolyte battery,
In particular, it relates to the improvement of the negative electrode current collecting property.

【0002】[0002]

【従来の技術】今日、負極活物質にリチウム等のアルカ
リ金属を用い、プロピレンカーボネート,γ−ブチロラ
クトン,ジメトキシエタン,テトラヒドロフラン,ジオ
キソラン等の有機溶媒に、LiClO4,LiBF4,L
iAsF6,LiPF6,LiCF3SO3等の溶質を溶解
させた電解液と組み合わせた非水電解質電池は、高エネ
ルギー密度を有することから、電子時計,カメラをはじ
めとする小型電子機器に広く用いられている。
2. Description of the Related Art At present, an alkali metal such as lithium is used as a negative electrode active material, and LiClO4 , LiBF4 , L
Non-aqueous electrolyte batteries combined with electrolytes in which solutes such as iAsF6 , LiPF6 , and LiCF3 SO3 are dissolved have a high energy density and are widely used in electronic devices such as electronic watches and cameras. Have been.

【0003】この種の電池を充電すると、負極表面上に
樹枝状,フィブリル状,針状形態のアルカリ金属、いわ
ゆるデンドライトが析出する。これは、アルカリ金属負
極上に不動態皮膜が存在し、この皮膜の化学的組成や構
造が局所的に異なり、結果として電極全体で不均一な反
応が進行するためである。
When a battery of this type is charged, dendrites, dendrites, fibrils, and needles of alkali metal, so-called dendrites, precipitate on the surface of the negative electrode. This is because a passivation film exists on the alkali metal negative electrode, and the chemical composition and structure of the film are locally different, and as a result, a non-uniform reaction proceeds throughout the electrode.

【0004】このようなデンドライトが生成し、さらに
は成長することにより、負極と正極の間の内部短絡とい
う問題がが生じる。また、次の放電過程では、デンドラ
イトが局所的に溶解して寸断され、充電中に析出させた
すべてのアルカリ金属を溶解させることができなくな
り、結果として充放電効率が著しく低下するといった問
題もある。
[0004] The generation and further growth of such dendrite causes a problem of an internal short circuit between the negative electrode and the positive electrode. Further, in the next discharging process, there is a problem that the dendrite is locally melted and cut, so that all the alkali metals deposited during charging cannot be dissolved, and as a result, the charging and discharging efficiency is significantly reduced. .

【0005】アルカリ金属を活物質とする負極上でのデ
ンドライトを抑制するためには、負極表面上での不動態
皮膜の均一性を向上させればよい。例えば、アルカリ金
属に圧着する集電体として金属箔を用いれば、アルカリ
金属表面の凹凸性は減少し、均一な厚みの皮膜ができる
ことになる。しかし、通常の金属箔を用いると、金属箔
自体に存在する酸化皮膜によって、リチウム等のアルカ
リ金属との接着強度が低下し、析出溶解過程での不均一
な電流分布が起き、デンドライトが形成しやすくなる。
In order to suppress dendrite on a negative electrode using an alkali metal as an active material, it is necessary to improve the uniformity of a passive film on the surface of the negative electrode. For example, when a metal foil is used as a current collector to be pressed against an alkali metal, the unevenness of the surface of the alkali metal is reduced, and a film having a uniform thickness can be formed. However, when a normal metal foil is used, the oxide film present on the metal foil itself reduces the adhesive strength with an alkali metal such as lithium, causing a non-uniform current distribution during the deposition and dissolution process, and the formation of dendrites. It will be easier.

【0006】このような金属箔とアルカリ金属活物質と
の接着性を高める手段として、貫通孔を有する金属箔を
集電体として用い、その両面にアルカリ金属活物質を圧
延し、さらに、250 ℃で2時間真空下で加熱(融解)処
理することによって、貫通孔を通してアルカリ金属を互
いに一体化させる構造の電極が提案されている(特開平
5−290853)。
As means for improving the adhesion between such a metal foil and an alkali metal active material, a metal foil having a through hole is used as a current collector, and the alkali metal active material is rolled on both surfaces thereof. There has been proposed an electrode having a structure in which alkali metals are integrated with each other through a through-hole by heating (melting) treatment under vacuum for 2 hours (Japanese Patent Laid-Open No. 5-290853).

【0007】[0007]

【発明が解決しようとする課題】しかし、上記のような
方法で、貫通孔を有する金属箔とアルカリ金属を一体化
させても、大きい電流密度での充電過程では、負極上で
のデンドライト形成を抑制することは困難であった。こ
れは、以下の理由による。すなわち、アルカリ金属を加
熱すると、たとえ真空下ではあっても、アルカリ金属の
激しい反応活性のために、アルカリ金属表面での不動態
皮膜は雰囲気中の不純物ガスによって、ますますその厚
みを増す。集電体に用いる金属箔自体にも酸化皮膜が存
在するので、見かけ上、アルカリ金属と貫通孔を有する
金属箔が一体化されても、電気的な接触が十分ではな
い。
However, even when a metal foil having a through hole and an alkali metal are integrated by the above-described method, the formation of dendrites on the negative electrode during charging at a large current density is not possible. It was difficult to control. This is for the following reason. That is, when the alkali metal is heated, the passivation film on the alkali metal surface becomes more and more thick due to the impurity gas in the atmosphere due to the intense reaction activity of the alkali metal, even under vacuum. Since the metal foil used for the current collector itself also has an oxide film, even if the alkali metal and the metal foil having the through-hole are integrated, electrical contact is not sufficient.

【0008】本発明は、このような従来の課題を解決す
るものであり、充放電サイクルを繰り返しても電極反応
の均一性が保たれることによりデンドライトの成長が抑
制される負極を提供し、この負極を用いることによっ
て、充放電サイクル寿命の長い、信頼性の大きい非水電
解質二次電池を提供することを目的とする。
The present invention is to solve such a conventional problem, and provides a negative electrode in which the growth of dendrite is suppressed by maintaining the uniformity of the electrode reaction even after repeated charge / discharge cycles. By using this negative electrode, an object is to provide a highly reliable nonaqueous electrolyte secondary battery having a long charge / discharge cycle life.

【0009】[0009]

【課題を解決するための手段】本発明では、貫通孔を有
する金属箔を、機械的に、アルカリ金属活物質に食い込
ませるとともに、負極活物質を金属箔の開孔部に圧入す
る。さらに、貫通孔を有する金属箔のアルカリ金属が配
置されている側とは反対側に、金属箔や金属板を設置す
る。
In the present invention, a metal foil having a through hole is mechanically bitten into an alkali metal active material, and a negative electrode active material is press-fitted into an opening of the metal foil. Further, a metal foil or a metal plate is provided on the side of the metal foil having the through holes opposite to the side on which the alkali metal is disposed.

【0010】即ち、本発明は、正極と、アルカリイオン
伝導性電解質と、アルカリ金属を活物質とする負極と、
複数個の貫通孔を有する金属箔よりなる前記負極用集電
体とを構成要素とし、前記金属箔を前記アルカリ金属に
食い込ませ、かつ前記アルカリ金属を前記金属箔の貫通
孔開孔部に圧入したことを特徴とする非水電解質電池で
ある。
That is, the present invention provides a positive electrode, an alkali ion conductive electrolyte, and a negative electrode using an alkali metal as an active material.
The negative electrode current collector made of a metal foil having a plurality of through-holes as constituent elements, the metal foil being cut into the alkali metal, and the alkali metal being pressed into a through-hole opening of the metal foil. A non-aqueous electrolyte battery characterized by the following.

【0011】この時、金属箔の貫通孔の直径が、0.0
5mm以上でかつ1mm以下であることが有効である。
At this time, the diameter of the through hole of the metal foil is 0.0
It is effective that it is 5 mm or more and 1 mm or less.

【0012】また、貫通孔を有する金属箔の開孔率が、
10%以上でかつ90%以下であることが有効である。
Further, the opening ratio of the metal foil having a through hole is as follows:
It is effective that it is 10% or more and 90% or less.

【0013】また、貫通孔を有する金属箔の厚みが、2
μm 以上で50μm 以下であることが有効である。
Further, the thickness of the metal foil having the through hole is 2
It is effective that it is not less than μm and not more than 50 μm.

【0014】更に、金属箔上の貫通孔の配列は、千鳥格
子状であることが有効である。また、貫通孔を有する金
属箔が、パンチング箔であることが有効である。
Further, it is effective that the arrangement of the through holes on the metal foil is a staggered lattice. Further, it is effective that the metal foil having the through holes is a punching foil.

【0015】また、貫通孔を有する金属箔の一方の面に
アルカリ金属活物質を正極が対向するように配置し、他
の面に、アルカリ金属箔または板,アルカリ金属以外の
金属箔または板のいずれかを配置することが効果的であ
る。
Further, an alkali metal active material is disposed on one side of a metal foil having a through hole so that the positive electrode faces the other side, and an alkali metal foil or plate, or a metal foil or plate other than the alkali metal is disposed on the other surface. Arranging any of them is effective.

【0016】また、本発明の製造方法は、アルカリ金属
活物質に貫通孔を有する金属箔を配置する工程が、平板
型加圧治具または回転ローラーを用いて前記アルカリ金
属活物質と貫通孔を有する金属箔を加圧する工程と、前
記加圧工程により圧着した一体化物を平板型加圧治具ま
たは回転ローラーに対して回転する工程と、前記回転工
程を経た前記一体化物を再度加圧治具により加圧する工
程とを有することを特徴とする。
In the production method of the present invention, the step of arranging a metal foil having a through hole in the alkali metal active material includes the step of connecting the through hole with the alkali metal active material by using a flat pressing jig or a rotating roller. Pressurizing the metal foil having the pressing process, rotating the integrated product pressed by the pressing process with respect to a flat-plate-type pressing jig or a rotating roller, and pressing the integrated product after the rotating process again into a pressing jig. And pressurizing by a pressure.

【0017】[0017]

【発明の実施の形態】アルカリ金属表面には不動態皮膜
があり、この皮膜を物理的に破って金属集電体をアルカ
リ金属内にめり込ませることで、初めて、良好な集電性
が確保される。特に、金属箔表面での孔の外周の切り立
ったエッジ部分をアルカリ金属内にめり込ませること
で、不動態皮膜を破壊することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A passivation film is provided on the surface of an alkali metal, and good current collecting properties can be obtained only by physically breaking the film and dipping the metal current collector into the alkali metal. Secured. In particular, the passivation film can be broken by indenting the steep edge portion of the outer periphery of the hole on the surface of the metal foil into the alkali metal.

【0018】金属箔中の孔の径としては、0.05mm以上が
好ましく、これ以下では、アルカリ金属の孔内への圧入
が困難になるためである。
The diameter of the hole in the metal foil is preferably 0.05 mm or more. If the diameter is less than 0.05 mm, it becomes difficult to press the alkali metal into the hole.

【0019】また、貫通孔を有する金属箔の開孔率とし
ては、10%以上、90%以下であることが望ましく、開孔
率を増加させることによって、孔のエッジの総延長の長
さを大きくすることができる。
The opening ratio of the metal foil having the through holes is preferably 10% or more and 90% or less. By increasing the opening ratio, the total length of the edge of the hole can be reduced. Can be bigger.

【0020】さらに、貫通孔を有する金属箔の厚みで
は、2μm 以上、50μm 以下であることが望ましく、極
端に薄い場合にはアルカリ金属の表面皮膜を破壊するこ
とができず、また、厚い場合には、孔内に深く圧入され
たアルカリ金属の利用率が低下する。
Further, the thickness of the metal foil having a through hole is desirably not less than 2 μm and not more than 50 μm. If it is extremely thin, the surface film of the alkali metal cannot be destroyed. In the method, the utilization rate of the alkali metal deeply pressed into the hole is reduced.

【0021】金属箔上での孔の配列を千鳥格子(即ち、
隣り合う行と列では、孔を互い違いの位置に配置する)
にすると、集電性がさらに良好になる。これは、金属箔
上で孔の数を最密に増加することによって、孔のエッジ
の総延長の長さを大きくすることができるからである。
The arrangement of the holes on the metal foil is a staggered grid (ie,
In adjacent rows and columns, stagger holes
In this case, the current collecting property is further improved. This is because the closest extension of the number of holes on the metal foil can increase the total length of the edges of the holes.

【0022】また、貫通孔を有する金属箔としては、パ
ンチング箔が望ましい。電解メッキ法によって貫通孔を
作製する場合、メッキ浴によって、孔のエッジ部分が酸
化され、集電性が低下するためである。
Further, as the metal foil having a through hole, a punching foil is desirable. This is because, when the through-hole is formed by the electrolytic plating method, the edge portion of the hole is oxidized by the plating bath, and the current collecting property is reduced.

【0023】貫通孔を有する金属箔では、集電は孔のエ
ッジ部分および箔部分で起きるので、孔内に圧入された
アルカリ金属活物質の利用率が低くなることを避けるた
め、貫通孔部分にも金属箔または板を設置することで、
貫通孔部分の集電性が向上し、より均一な電極反応が促
進される。
In a metal foil having a through hole, current collection occurs at the edge portion and the foil portion of the hole. Therefore, in order to avoid a reduction in the utilization rate of the alkali metal active material pressed into the hole, the current is collected at the through hole portion. By installing metal foil or plate,
The current collecting property of the through-hole portion is improved, and a more uniform electrode reaction is promoted.

【0024】以上のような集電性の向上により、アルカ
リ金属を活物質とする電極上でのデンドライトの形成が
抑制される。
By the improvement of the current collecting property as described above, the formation of dendrites on the electrode using an alkali metal as an active material is suppressed.

【0025】以下、本発明の実施の形態を具体的実施例
により説明する。実施例では、電池の組み立てをすべて
アルゴンガス雰囲気下において行った。また、アルカリ
金属としてリチウムを用いたが、他のアルカリ金属やア
ルカリ金属を主成分とする合金、例えば、リチウム−ア
ルミニウム合金を使用しても同様の効果を得ることがで
きた。
Hereinafter, embodiments of the present invention will be described with reference to specific examples. In the examples, all the batteries were assembled in an argon gas atmosphere. In addition, although lithium was used as the alkali metal, similar effects could be obtained by using another alkali metal or an alloy mainly containing an alkali metal, for example, a lithium-aluminum alloy.

【0026】[0026]

【実施例】(実施例1)貫通孔を有する金属箔として、
図1に示した銅パンチング箔を用いた。この銅パンチン
グ箔を直径19mmの円形に切り取り、その上に、厚さ
100μm,直径16.8mmのリチウム金属箔を、平
滑性のあるクランプ治具で1回圧着した。このリチウム
金属箔を圧着した銅パンチング箔を負極として、図2に
示した扁平型電池を組み立てた。電解液には、エチレン
カーボネートとジメチルカーボネートを1:1の体積比
で混合した溶媒に、LiClO4を1モル/リットルの
割合で溶解したものを用いた。
(Example 1) As a metal foil having a through hole,
The copper punched foil shown in FIG. 1 was used. This copper punched foil was cut into a circular shape having a diameter of 19 mm, and a lithium metal foil having a thickness of 100 μm and a diameter of 16.8 mm was pressed once thereon with a smooth jig. The flat battery shown in FIG. 2 was assembled using the copper punched foil obtained by pressing the lithium metal foil as a negative electrode. As the electrolytic solution, a solution obtained by dissolving LiClO4 at a ratio of 1 mol / liter in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 was used.

【0027】正極1は、LiMn24粉末、カーボンブ
ラック,および、四弗化ポリエチレン樹脂粉末を混合
し、チタンのエキスパンドメタルからなる集電体2をス
ポット溶接した正極缶3に加圧成型した。セパレータ4
には、ポリプロピレン製多孔質膜を用いた。次に、上記
で作製した負極をリチウム金属箔5が正極側に対向する
ように封口板6に置き、銅パンチング箔7の部分を封口
板にスポット溶接した。そして、貫通孔上にあるリチウ
ム金属箔が直接封口板に接着するように、負極を平面性
のある治具で押さえた。電池の組み立ては、セパレータ
と負極を配置した封口板を転地した後、上記の電解液を
150μl注入し、次に、ガスケット8を介して正極缶
をかぶせ、正極缶の周縁部を封口板にかしめる手順で行
った。
The positive electrode 1 was prepared by mixing LiMn2 O4 powder, carbon black, and polyethylene tetrafluoride resin powder, and press-forming into a positive electrode can 3 in which a current collector 2 made of expanded metal of titanium was spot-welded. . Separator 4
, A polypropylene porous membrane was used. Next, the negative electrode produced above was placed on the sealing plate 6 so that the lithium metal foil 5 was opposed to the positive electrode side, and the portion of the copper punched foil 7 was spot-welded to the sealing plate. Then, the negative electrode was pressed with a flat jig so that the lithium metal foil on the through hole was directly bonded to the sealing plate. To assemble the battery, after the sealing plate on which the separator and the negative electrode are arranged is transferred, 150 μl of the above-described electrolyte is injected, and then the positive electrode can is covered with the gasket 8, and the periphery of the positive electrode can is covered with the sealing plate. The procedure was as follows.

【0028】(比較例1)厚さ50μm,直径16.8
mm のリチウム金属箔を2枚用意し、実施例1と同じ
直径19mmの円形に切り取った銅パンチング箔の両側
に、リチウム金属箔を圧着した。次に、この一体化物を
250 ℃で2時間、真空下で熱処理した。このように作製
したものを比較例の負極として、図3に示した扁平型電
池を実施例1と同様に組み立てた。
(Comparative Example 1) thickness 50 μm, diameter 16.8
2 mm of lithium metal foil was prepared, and a lithium metal foil was pressure-bonded to both sides of a copper punched foil cut into a circle having a diameter of 19 mm as in Example 1. Next, this one
Heat treated under vacuum at 250 ° C. for 2 hours. The flat battery shown in FIG. 3 was assembled in the same manner as in Example 1 using the thus manufactured device as the negative electrode of the comparative example.

【0029】以上のように作製した実施例1と比較例1
の電池を用いて、3mA/cm2の電流密度で1時間放電し
た。そして、各電池を分解し、負極を取り出し、負極表
面での溶解反応の進行の様子を光学顕微鏡で観察した。
Example 1 and Comparative Example 1 produced as described above
Was discharged at a current density of 3 mA / cm2 for 1 hour. Each battery was disassembled, the negative electrode was taken out, and the progress of the dissolution reaction on the negative electrode surface was observed with an optical microscope.

【0030】図4は、実施例1の負極表面を観察したも
の、図5は比較例1の負極表面を観察したものである。
これらを比較すると、実施例1および比較例1の負極と
も、表面には数多くの孔食が起きているが、実施例1の
負極では、各孔の直径が小さくまた数が多いのに対し、
比較例1の負極では、各孔の直径が大きくまた数もまば
らに存在していることを見出した。
FIG. 4 is a view of the negative electrode surface of Example 1, and FIG. 5 is a view of the negative electrode surface of Comparative Example 1.
When these are compared, many pits occur on the surface of both the negative electrodes of Example 1 and Comparative Example 1. On the other hand, in the negative electrode of Example 1, the diameter of each hole is small and the number is large.
In the negative electrode of Comparative Example 1, it was found that the diameter of each hole was large and the number was sparse.

【0031】すなわち、実施例1の負極では、より均一
な電極反応が進行していることがわかる。これは、実施
例1の電池では銅パンチング箔の貫通孔のエッジ部分が
鋭くリチウム金属箔に食い込むことにより、集電性が良
好になっていると考えられ、また、封口板自体も銅箔の
貫通孔を通じて集電体の役割を果たしているからと考え
られる。
That is, it can be seen that a more uniform electrode reaction proceeds in the negative electrode of Example 1. This is considered to be due to the fact that the edge portion of the through hole of the copper punched foil sharply penetrates the lithium metal foil in the battery of Example 1, thereby improving the current collecting property. It is considered that it plays a role of a current collector through the through hole.

【0032】次に、実施例1と比較例1の電池を用い
て、種々の電流密度で2.0V まで放電を行った。図6
は、このときの各電池の放電容量をプロットしたもので
ある。図6より、本発明の電池では、高電流密度での放
電特性に優れることがわかる。これは、図4および5か
らも明らかなように、本発明の負極を用いると、電極全
体にわたってリチウム金属の溶解が可能となり、反応抵
抗が著しく減少するからである。
Next, the batteries of Example 1 and Comparative Example 1 were discharged to 2.0 V at various current densities. FIG.
Is a plot of the discharge capacity of each battery at this time. FIG. 6 shows that the battery of the present invention has excellent discharge characteristics at a high current density. This is because, as is clear from FIGS. 4 and 5, when the negative electrode of the present invention is used, lithium metal can be dissolved over the entire electrode, and the reaction resistance is significantly reduced.

【0033】(実施例2)幅30mm,長さ60mmの
銅パンチング箔を用意し、貫通孔ができる限り見えなく
なるように、二つ折りにした。この二つ折りの状態で銅
パンチング箔を直径19mmの円形に打ち抜いた。そし
て比較例1と同様に、厚さ50μm,直径16.8mm
のリチウム金属箔を2枚用意し、2枚重なった銅パンチ
ング箔の両側に、リチウム金属箔を圧着した。このよう
に作製した負極を用いて、比較例1と同様にして扁平型
電池を組み立てた。
(Example 2) A copper punched foil having a width of 30 mm and a length of 60 mm was prepared and folded in two so that the through-holes were as invisible as possible. In this folded state, the copper punched foil was punched into a circle having a diameter of 19 mm. Then, as in Comparative Example 1, the thickness was 50 μm and the diameter was 16.8 mm.
Were prepared, and the lithium metal foil was pressure-bonded to both sides of the copper punching foil which was overlapped with the two pieces. Using the negative electrode thus manufactured, a flat battery was assembled in the same manner as in Comparative Example 1.

【0034】以上のように作製した実施例2の電池に対
し、3mA/cm2の電流密度で1時間放電後、電池を分解
し、負極を取り出して、負極表面での溶解反応の進行の
様子を観察した。その結果、反応の進行の様子は、実施
例1と同様に均一な溶解が起きていることが認められ
た。
After discharging for 1 hour at a current density of 3 mA / cm2 with respect to the battery of Example 2 fabricated as described above, the battery was disassembled, the negative electrode was taken out, and the progress of the dissolution reaction on the negative electrode surface was observed. Was observed. As a result, the progress of the reaction was confirmed to be uniform, as in Example 1.

【0035】(実施例3)図1で示した、銅パンチング
箔を直径19mmの円形に切り取り、その上に、厚さ1
00μm,直径16.8mm のリチウム金属箔を置き、
平滑性のあるクランプ治具で圧着した。次に、リチウム
金属箔が圧着した銅パンチング箔を180度回転させ、
再び同じ治具(回転はしていない)を用いて、リチウム
金属箔が銅パンチング箔に密着するよう圧着した。この
ときのリチウム金属箔の表面状態は、下地の銅パンチン
グ箔の貫通孔の位置を反映して、全面に均一な模様(お
そらく、わずかな表面皮膜の違いによる干渉が原因)が
浮かび上がった。そして、このようにして作製した負極
を用いて、実施例1と同様な扁平型の非水電解質電池を
組み立てた。
Example 3 The copper punched foil shown in FIG. 1 was cut into a circular shape having a diameter of 19 mm, and a thickness of 1 mm was formed thereon.
Place a lithium metal foil of 00 μm and diameter of 16.8 mm,
It was crimped with a smooth clamping jig. Next, rotate the copper punching foil on which the lithium metal foil was pressed by 180 degrees,
Again, using the same jig (not rotated), the lithium metal foil was pressure-bonded to the copper punching foil. At this time, the surface state of the lithium metal foil reflected a position of the through hole of the underlying copper punching foil, and a uniform pattern (probably due to interference due to a slight difference in the surface film) appeared on the entire surface. Then, a flat nonaqueous electrolyte battery similar to that of Example 1 was assembled using the negative electrode thus manufactured.

【0036】以上のように作製した実施例3の電池を用
いて、1mA/cm2の電流密度で、2.0〜3.5Vの電圧
範囲で充放電を繰り返した。また、実施例1で組み立て
た電池を用いて、充放電を行った。なお、実施例1での
負極の表面状態は、1回だけの圧着であるので、下地の
銅パンチング箔の模様を均一に反映しておらず、一部分
は強く圧着されたために金属光沢,他の部分はやや白み
がかった光沢であった。図7は、以上のようにして作製
した電池での、各サイクルの放電容量をプロットしたも
のである。図7より、リチウム金属箔を均一に銅パンチ
ング箔に圧着することで、よりサイクル寿命の長い電池
が得られることがわかる。
Using the battery of Example 3 fabricated as described above, charging and discharging were repeated at a current density of 1 mA / cm2 and a voltage range of 2.0 to 3.5 V. Charge and discharge were performed using the battery assembled in Example 1. Since the surface condition of the negative electrode in Example 1 is a single pressure bonding, the pattern of the underlying copper punching foil is not uniformly reflected. The part had a slightly whitish luster. FIG. 7 is a plot of the discharge capacity of each cycle in the battery manufactured as described above. From FIG. 7, it can be seen that a battery having a longer cycle life can be obtained by uniformly pressing the lithium metal foil on the copper punching foil.

【0037】(実施例4)本実施例では、リチウム金属
箔を銅パンチング箔に圧着する際に、実施例3で用いた
クランプ治具の代わりに、小型の双ローラー(ナイロン
樹脂製)を用いた。直径19mmの円形に切り取りとっ
た銅パンチング箔の上に、厚さ100μm,直径16.
8mmのリチウム金属箔を置き、リチウム金属箔が著し
く楕円にならないように双ローラーを通した。続いて、
リチウム金属が圧着した銅パンチング箔の方向を変え
て、再び双ローラーに通し、リチウム金属箔と銅パンチ
ング箔の密着が均一になるように、この操作を繰り返
し、リチウム金属の表面に下地の模様が浮かび上がるよ
うにした。
(Embodiment 4) In this embodiment, a small twin roller (made of nylon resin) is used in place of the clamp jig used in Embodiment 3 when pressing a lithium metal foil onto a copper punching foil. Was. On a copper punched foil cut into a circle having a diameter of 19 mm, a thickness of 100 μm and a diameter of 16.
An 8 mm lithium metal foil was placed and passed through a twin roller so that the lithium metal foil did not become significantly elliptical. continue,
Change the direction of the copper punching foil on which the lithium metal is pressed, pass it through the twin rollers again, and repeat this operation so that the adhesion between the lithium metal foil and the copper punching foil is uniform, and the pattern of the base on the surface of the lithium metal is I made it stand out.

【0038】このようにして作製した負極を用いて、実
施例1および3と同様の扁平型電池を組み立て、1mA/c
m2の電流密度で、2.0〜3.5V の電圧範囲で充放電
を繰り返した。図8は、リチウム金属箔と銅パンチング
箔を双ローラーに通した回数に対して、電池のサイクル
寿命(容量が初期の半分になったサイクル数)をプロッ
トしたものである。図8より、双ローラーに通す回数が
多くなるほど、サイクル寿命は向上し、3回目でサイク
ル寿命の向上は、ほぼ最高に達することを見出した。
Using the thus prepared negative electrode, a flat battery similar to that of Examples 1 and 3 was assembled.
Charge and discharge were repeated at a current density of m2 and a voltage range of 2.0 to 3.5 V. FIG. 8 is a plot of the cycle life of the battery (the number of cycles in which the capacity has been reduced to half of the initial capacity) versus the number of times the lithium metal foil and the copper punching foil have been passed through the twin rollers. From FIG. 8, it was found that the cycle life was improved as the number of times of passing through the twin rollers was increased, and that the improvement of the cycle life reached almost the maximum at the third time.

【0039】(実施例5)銅パンチング箔での孔径を変
化させた以外は、実施例1と同様の金属箔を用い、扁平
型の電池を組み立てた。ここで、孔の配列は、図1に示
すような千鳥格子であり、開孔率は50%に固定した。表
1に、本実施例で用いたパンチング箔の詳細を示した。
Example 5 A flat battery was assembled using the same metal foil as in Example 1 except that the hole diameter in the copper punched foil was changed. Here, the arrangement of the holes was a staggered lattice as shown in FIG. 1, and the opening ratio was fixed at 50%. Table 1 shows details of the punching foil used in this example.

【0040】[0040]

【表1】[Table 1]

【0041】(比較例2)貫通孔のない銅箔を用いた他
は、実施例5と同様に扁平型電池を組み立てた。このよ
うに作製した実施例5および比較例2の電池を用いて、
1mA/cm2の電流密度で、2.0〜3.5V の電圧範囲で
充放電を繰り返した。そして、放電容量が1サイクル目
の半分になったサイクル数をサイクル寿命とした。
Comparative Example 2 A flat battery was assembled in the same manner as in Example 5 except that a copper foil having no through-hole was used. Using the batteries of Example 5 and Comparative Example 2 thus manufactured,
Charge / discharge was repeated at a current density of 1 mA / cm2 and a voltage range of 2.0 to 3.5 V. The number of cycles at which the discharge capacity became half of the first cycle was defined as the cycle life.

【0042】表1に、各電池のサイクル寿命をまとめ
た。表1より、本発明の実施例である銅パンチング箔を
負極集電体に使用した場合には、いずれも、比較例2の
電池よりサイクル寿命に優れることがわかる。しかし、
孔径が1.0mm よりも大きい場合には、貫通孔のない箔の
場合と同等のサイクル寿命となり、また、孔径が0.05mm
よりも小さい場合にも、サイクル寿命の大きな伸びは見
られない。これは、孔径が大きすぎると、孔のエッジ部
分が少なくなり集電性が低下するためであり、また、孔
径が小さすぎると、リチウム金属が孔内へめりこまなく
なるためである。
Table 1 summarizes the cycle life of each battery. Table 1 shows that when the copper punched foils of the examples of the present invention were used for the negative electrode current collector, all of them had better cycle life than the battery of Comparative Example 2. But,
When the hole diameter is larger than 1.0 mm, the cycle life is equivalent to that of a foil without through holes, and the hole diameter is 0.05 mm.
Even if it is smaller, no significant increase in cycle life is observed. This is because if the hole diameter is too large, the edge portion of the hole is reduced and the current collecting property is reduced, and if the hole diameter is too small, the lithium metal does not sink into the hole.

【0043】(実施例6)銅パンチング箔での開孔率を
変化させた以外は、実施例1と同様の金属箔を用い、扁
平型の電池を組み立てた。ここで、孔の配列は、図1に
示すような千鳥格子であり、孔径は0.3mm に固定した。
表2に、本実施例で用いたパンチング箔の詳細を示し
た。
(Example 6) A flat battery was assembled using the same metal foil as in Example 1 except that the porosity of the copper punched foil was changed. Here, the arrangement of the holes was a staggered lattice as shown in FIG. 1, and the hole diameter was fixed at 0.3 mm.
Table 2 shows details of the punching foil used in this example.

【0044】[0044]

【表2】[Table 2]

【0045】以上のように作製した実施例6の電池を用
いて、1mA/cm2の電流密度,2〜3.5Vの電圧範囲で
充放電を繰り返した。そして、放電容量が1サイクル目
の半分になったサイクル数をサイクル寿命とした。
Using the battery of Example 6 fabricated as described above, charging and discharging were repeated at a current density of 1 mA / cm2 and a voltage range of2 to 3.5 V. The number of cycles at which the discharge capacity became half of the first cycle was defined as the cycle life.

【0046】表2に、各電池のサイクル寿命をまとめ
た。表2より、本発明の実施例である銅パンチング箔を
負極集電体に使用した場合には、いずれも、比較例2の
電池よりサイクル寿命に優れることがわかる。ここで、
開孔率が90%になるとサイクル寿命が減少しているの
は、パンチング箔の強度が著しく低下し、リチウム金属
箔内にめりこませることが困難になったためと考えられ
る。また、開孔率が小さくなりすぎると寿命が短くなる
のは、貫通孔のエッジ部分の総延長の長さが短くなるた
めに集電性が低下するためと考えられる。
Table 2 summarizes the cycle life of each battery. Table 2 shows that when the copper punched foils of the examples of the present invention were used for the negative electrode current collector, all of them had better cycle life than the battery of Comparative Example 2. here,
It is considered that the reason why the cycle life is reduced when the porosity is 90% is that the strength of the punching foil has been remarkably reduced and it has become difficult to dig into the lithium metal foil. Further, the reason why the life is shortened when the opening ratio becomes too small is considered to be that the current collecting property is reduced because the total length of the edge portion of the through hole is shortened.

【0047】(実施例7)銅パンチング箔での厚みを変
化させた以外は、実施例1と同様の金属箔を用い、扁平
型の電池を組み立てた。ここで、孔の配列は、図1に示
すような千鳥格子であり、孔径は0.3mm ,開孔率は50%
に固定した。表3に、本実施例で用いたパンチング箔の
詳細を示した。
Example 7 A flat battery was assembled using the same metal foil as in Example 1 except that the thickness of the copper punched foil was changed. Here, the arrangement of the holes is a staggered lattice as shown in FIG. 1, the hole diameter is 0.3 mm, and the opening ratio is 50%.
Fixed to. Table 3 shows details of the punching foil used in this example.

【0048】[0048]

【表3】[Table 3]

【0049】以上のように作製した実施例7の電池を用
いて、1mA/cm2の電流密度,2〜3.5Vの電圧範囲で
充放電を繰り返した。そして、放電容量が1サイクル目
の半分になったサイクル数をサイクル寿命とした。
Using the battery of Example 7 manufactured as described above, charging and discharging were repeated at a current density of 1 mA / cm2 and a voltage range of2 to 3.5 V. The number of cycles at which the discharge capacity became half of the first cycle was defined as the cycle life.

【0050】表3に、各電池のサイクル寿命をまとめ
た。表3より、銅パンチング箔を負極集電体に使用した
場合、サイクル寿命を伸ばすためには、箔の厚みに最適
な範囲があることがわかる。すなわち、箔の厚みが50μ
m より厚くなると、孔内へ深く圧入されたリチウム金属
箔が充放電反応に寄与しなくなり、逆に、厚みが2μm
より薄くなると、箔がリチウム金属箔へめりこまないた
めにリチウム金属の表面を破壊できなくなることが原因
と考えられる。
Table 3 summarizes the cycle life of each battery. From Table 3, it can be seen that when using a copper punched foil for the negative electrode current collector, there is an optimum range for the foil thickness in order to extend the cycle life. That is, the thickness of the foil is 50μ
m, the lithium metal foil deeply pressed into the hole does not contribute to the charge / discharge reaction, and conversely, the thickness is 2 μm.
It is considered that when the thickness is smaller, the surface of the lithium metal cannot be destroyed because the foil does not sink into the lithium metal foil.

【0051】(実施例8)銅パンチング箔での孔の配列
を変化させた以外は、実施例1と同様の金属箔を用い、
扁平型の電池を組み立てた。ここで、パンチング箔の孔
径は0.3mm ,孔間の平均距離は0.404mm に固定した。孔
の配列は、表4に示したような、パターンとした。
Example 8 The same metal foil as in Example 1 was used except that the arrangement of holes in the copper punching foil was changed.
A flat battery was assembled. Here, the hole diameter of the punched foil was fixed at 0.3 mm, and the average distance between the holes was fixed at 0.404 mm. The arrangement of the holes was a pattern as shown in Table 4.

【0052】以上のように作製した実施例8の電池を用
いて、1mA/cm2の電流密度,2〜3.5Vの電圧範囲で
充放電を繰り返した。そして、放電容量が1サイクル目
の半分になったサイクル数をサイクル寿命とした。
Using the battery of Example 8 manufactured as described above, charging and discharging were repeated at a current density of 1 mA / cm2 and a voltage range of2 to 3.5 V. The number of cycles at which the discharge capacity became half of the first cycle was defined as the cycle life.

【0053】[0053]

【表4】[Table 4]

【0054】表4に、各電池のサイクル寿命をまとめ
た。表4より、銅パンチング箔中での貫通孔の配列が、
千鳥(正三角形)や変形千鳥(二等辺三角形)であるも
のを負極集電体に使用した場合、サイクル寿命が向上し
ていることがわかる。これは、配列を千鳥格子状にする
ことによって、孔の存在が最密になり、結果として箔の
開孔率や孔のエッジ部分の総延長の長さが大きくなった
ためである。
Table 4 summarizes the cycle life of each battery. From Table 4, the arrangement of through holes in the copper punching foil is
It can be seen that the cycle life is improved when a staggered (regular triangle) or modified staggered (isosceles triangle) is used for the negative electrode current collector. This is because, by forming the arrangement in a staggered lattice pattern, the existence of the holes becomes densest, and as a result, the opening ratio of the foil and the total length of the edge portion of the holes are increased.

【0055】[0055]

【発明の効果】以上のように、本発明によると、貫通孔
を有する金属箔とアルカリ金属活物質を互いに密着させ
ることによって、電極全体にわたって均一な電池反応が
起きる負極を得ることができる。したがって、充放電サ
イクルを繰り返してもデンドライトの生成が抑制され、
アルカリ金属活物質の電気化学的な失活が緩やかになる
ので、充放電サイクル寿命の長い、信頼性の大きい非水
電解質電池を得ることができる。
As described above, according to the present invention, by bringing a metal foil having a through hole and an alkali metal active material into close contact with each other, it is possible to obtain a negative electrode in which a uniform battery reaction occurs over the entire electrode. Therefore, even if the charge and discharge cycle is repeated, generation of dendrite is suppressed,
Since the electrochemical deactivation of the alkali metal active material is moderated, a highly reliable nonaqueous electrolyte battery having a long charge / discharge cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例と第1の比較例で用いた
金属パンチング箔の拡大模式図
FIG. 1 is an enlarged schematic view of a metal punching foil used in a first embodiment of the present invention and a first comparative example.

【図2】本発明の第1の実施例である偏平型電池の縦横
断面を示した図
FIG. 2 is a diagram showing a vertical and horizontal cross section of a flat battery according to a first embodiment of the present invention.

【図3】本発明の第1の比較例である偏平型電池の縦横
断面を示した図
FIG. 3 is a view showing a vertical and horizontal cross section of a flat battery according to a first comparative example of the present invention.

【図4】本発明の第1の実施例である負極の溶解後の表
面形態を示した図
FIG. 4 is a view showing the surface morphology after dissolution of the negative electrode according to the first embodiment of the present invention.

【図5】本発明の第1の比較例である負極の溶解後の表
面形態を示した図
FIG. 5 is a view showing a surface morphology after dissolution of a negative electrode according to a first comparative example of the present invention.

【図6】本発明の第1の実施例と第1の比較例である電
池の放電電流密度に対する放電容量をプロットした図
FIG. 6 is a diagram plotting the discharge capacity versus the discharge current density of the batteries according to the first embodiment of the present invention and the first comparative example.

【図7】本発明の第3の実施例である電池の放電容量の
サイクル特性を示した図
FIG. 7 is a diagram showing cycle characteristics of a discharge capacity of a battery according to a third embodiment of the present invention.

【図8】本発明の第4の実施例である電池の負極を作製
する際に双ローラーに通した回数とそれを用いた電池で
の放電容量をプロットした図
FIG. 8 is a diagram plotting the number of passes through a twin roller and the discharge capacity of a battery using the same when producing a negative electrode of a battery according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1′ 正極 2,2′ 正極集電体 3,3′ 正極缶 4,4′ セパレータ 5,5′ リチウム金属箔 6,6′ 封口板 7,7′ 負極集電体 8,8′ ガスケット 1,1 'positive electrode 2,2' positive electrode current collector 3,3 'positive electrode can 4,4' separator 5,5 'lithium metal foil 6,6' sealing plate 7,7 'negative electrode current collector 8,8' gasket

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/74 H01M 4/74 C 6/16 6/16 Z 10/40 10/40 ZContinued on the front page (51) Int.Cl.6 Identification code FI H01M 4/74 H01M 4/74 C 6/16 6/16 Z 10/40 10/40 Z

Claims (8)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 正極と、アルカリイオン伝導性電解質
と、アルカリ金属を活物質とする負極と、複数個の貫通
孔を有する金属箔よりなる前記負極用集電体とを構成要
素とし、前記金属箔を前記アルカリ金属に食い込ませ、
かつ前記アルカリ金属を前記金属箔の貫通孔開孔部に圧
入したことを特徴とする非水電解質電池。
1. A battery comprising: a positive electrode; an alkali ion conductive electrolyte; a negative electrode using an alkali metal as an active material; and the negative electrode current collector comprising a metal foil having a plurality of through holes. Let the foil bite into the alkali metal,
A non-aqueous electrolyte battery wherein the alkali metal is press-fitted into a through-hole of the metal foil.
【請求項2】 金属箔の貫通孔の直径が、0.05mm
以上でかつ1mm以下であることを特徴とする請求項1
記載の非水電解質電池。
2. The diameter of a through hole of a metal foil is 0.05 mm.
2. The thickness is not less than 1 mm and not more than 1 mm.
The nonaqueous electrolyte battery according to any one of the preceding claims.
【請求項3】 貫通孔を有する金属箔の開孔率が、10
%以上でかつ90%以下であることを特徴とする請求項
1または2記載の非水電解質電池。
3. The metal foil having a through hole has an opening ratio of 10
The nonaqueous electrolyte battery according to claim 1, wherein the content is not less than 90% and not more than 90%.
【請求項4】 貫通孔を有する金属箔の厚みが、2μm
以上で50μm 以下であることを特徴とする請求項1、
2または3記載の非水電解質電池。
4. The thickness of a metal foil having a through hole is 2 μm.
The thickness is not more than 50 μm.
4. The non-aqueous electrolyte battery according to 2 or 3.
【請求項5】 金属箔上の貫通孔の配列は、千鳥格子状
であることを特徴とする請求項1、2,3または4記載
の非水電解質電池。
5. The non-aqueous electrolyte battery according to claim 1, wherein the arrangement of the through-holes on the metal foil is a staggered lattice.
【請求項6】 貫通孔を有する金属箔が、パンチング箔
であることを特徴とする請求項1、2、3、4または5
記載の非水電解質電池。
6. The metal foil having a through-hole is a punching foil.
The nonaqueous electrolyte battery according to any one of the preceding claims.
【請求項7】 貫通孔を有する金属箔の一方の面にアル
カリ金属活物質を正極が対向するように配置し、他の面
に、アルカリ金属箔または板,アルカリ金属以外の金属
箔または板のいずれかを配置することを特徴とする請求
項1、2、3、4、5または6記載の非水電解質電池。
7. An alkali metal active material is disposed on one side of a metal foil having a through hole so that a positive electrode faces the other side, and an alkali metal foil or a plate, or a metal foil or a plate other than an alkali metal is disposed on the other side. 7. The non-aqueous electrolyte battery according to claim 1, wherein any one of them is arranged.
【請求項8】 請求項1または7記載の非水電解質電池
の製造法であって、アルカリ金属活物質に貫通孔を有す
る金属箔を配置する工程は、平板型加圧治具または回転
ローラーを用いて前記アルカリ金属活物質と貫通孔を有
する金属箔を加圧する工程と、前記加圧工程により圧着
した一体化物を平板型加圧治具または回転ローラーに対
して回転する工程と、前記回転工程を経た前記一体化物
を再度加圧治具により加圧する工程とを有することを特
徴とする非水電解質電池の製造法。
8. The method for producing a nonaqueous electrolyte battery according to claim 1, wherein the step of arranging the metal foil having the through-hole in the alkali metal active material includes the step of: Pressurizing the alkali metal active material and the metal foil having a through-hole by using the same; pressing the integrated product pressed by the pressing process with respect to a flat pressing jig or a rotating roller; And pressurizing the integrated product having passed through above again with a pressurizing jig.
JP10127124A1997-11-051998-05-11Nonaqueous electrolyte battery and its manufacturePendingJPH11195415A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP10127124AJPH11195415A (en)1997-11-051998-05-11Nonaqueous electrolyte battery and its manufacture

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP9-3024431997-11-05
JP302443971997-11-05
JP10127124AJPH11195415A (en)1997-11-051998-05-11Nonaqueous electrolyte battery and its manufacture

Publications (1)

Publication NumberPublication Date
JPH11195415Atrue JPH11195415A (en)1999-07-21

Family

ID=26463143

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP10127124APendingJPH11195415A (en)1997-11-051998-05-11Nonaqueous electrolyte battery and its manufacture

Country Status (1)

CountryLink
JP (1)JPH11195415A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008047458A (en)*2006-08-182008-02-28Kri IncElectrode for power storage device, and power storage device using it
WO2009021379A1 (en)*2007-08-102009-02-19Shenzhen Bak Battery Co., LtdA current collector of lithium ion battery, a high-capacity cylindrical lithium ion battery and the preparation method of the same
JP2012009626A (en)*2010-06-242012-01-12Shin Kobe Electric Mach Co LtdLaminated body, lithium ion capacitor using the same, and method for manufacturing the lithium ion capacitor
JP2014529378A (en)*2011-07-112014-11-06プロテウス デジタル ヘルス, インコーポレイテッド Communication system having improved partial power supply and method of manufacturing the same
US9548497B2 (en)2011-06-102017-01-17Eaglepicher Technologies, LlcLayered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
JP2018018821A (en)*2016-07-252018-02-01エルジー・ケム・リミテッドNegative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
US9883819B2 (en)2009-01-062018-02-06Proteus Digital Health, Inc.Ingestion-related biofeedback and personalized medical therapy method and system
US9941931B2 (en)2009-11-042018-04-10Proteus Digital Health, Inc.System for supply chain management
JP2018520493A (en)*2016-02-242018-07-26エルジー・ケム・リミテッド Lithium secondary battery electrode assembly, lithium secondary battery and battery module including the same
US10084880B2 (en)2013-11-042018-09-25Proteus Digital Health, Inc.Social media networking based on physiologic information
US10097388B2 (en)2013-09-202018-10-09Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
CN109065838A (en)*2018-08-162018-12-21薛树超A kind of manganese lithium battery raw powder's production technology of combination porous metals piece
US10175376B2 (en)2013-03-152019-01-08Proteus Digital Health, Inc.Metal detector apparatus, system, and method
US10187121B2 (en)2016-07-222019-01-22Proteus Digital Health, Inc.Electromagnetic sensing and detection of ingestible event markers
US10207093B2 (en)2010-04-072019-02-19Proteus Digital Health, Inc.Miniature ingestible device
US10223905B2 (en)2011-07-212019-03-05Proteus Digital Health, Inc.Mobile device and system for detection and communication of information received from an ingestible device
US10238604B2 (en)2006-10-252019-03-26Proteus Digital Health, Inc.Controlled activation ingestible identifier
US10376218B2 (en)2010-02-012019-08-13Proteus Digital Health, Inc.Data gathering system
US10398161B2 (en)2014-01-212019-09-03Proteus Digital Heal Th, Inc.Masticable ingestible product and communication system therefor
US10421658B2 (en)2013-08-302019-09-24Proteus Digital Health, Inc.Container with electronically controlled interlock
US10441194B2 (en)2007-02-012019-10-15Proteus Digital Heal Th, Inc.Ingestible event marker systems
US10517506B2 (en)2007-05-242019-12-31Proteus Digital Health, Inc.Low profile antenna for in body device
US10529044B2 (en)2010-05-192020-01-07Proteus Digital Health, Inc.Tracking and delivery confirmation of pharmaceutical products
US10542909B2 (en)2005-04-282020-01-28Proteus Digital Health, Inc.Communication system with partial power source
US10588544B2 (en)2009-04-282020-03-17Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
US10682071B2 (en)2008-07-082020-06-16Proteus Digital Health, Inc.State characterization based on multi-variate data fusion techniques
CN111640915A (en)*2019-03-012020-09-08麻省固能控股有限公司Negative electrode, secondary battery including the same, and method of manufacturing negative electrode
US11051543B2 (en)2015-07-212021-07-06Otsuka Pharmaceutical Co. Ltd.Alginate on adhesive bilayer laminate film
US11149123B2 (en)2013-01-292021-10-19Otsuka Pharmaceutical Co., Ltd.Highly-swellable polymeric films and compositions comprising the same
US11158149B2 (en)2013-03-152021-10-26Otsuka Pharmaceutical Co., Ltd.Personal authentication apparatus system and method
US11464423B2 (en)2007-02-142022-10-11Otsuka Pharmaceutical Co., Ltd.In-body power source having high surface area electrode
US11504511B2 (en)2010-11-222022-11-22Otsuka Pharmaceutical Co., Ltd.Ingestible device with pharmaceutical product
US11529071B2 (en)2016-10-262022-12-20Otsuka Pharmaceutical Co., Ltd.Methods for manufacturing capsules with ingestible event markers
US11744481B2 (en)2013-03-152023-09-05Otsuka Pharmaceutical Co., Ltd.System, apparatus and methods for data collection and assessing outcomes
CN117276468A (en)*2023-11-232023-12-22宁德时代新能源科技股份有限公司Negative electrode plate, battery and electricity utilization device
US11928614B2 (en)2006-05-022024-03-12Otsuka Pharmaceutical Co., Ltd.Patient customized therapeutic regimens

Cited By (54)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9962107B2 (en)2005-04-282018-05-08Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
US10517507B2 (en)2005-04-282019-12-31Proteus Digital Health, Inc.Communication system with enhanced partial power source and method of manufacturing same
US11476952B2 (en)2005-04-282022-10-18Otsuka Pharmaceutical Co., Ltd.Pharma-informatics system
US10542909B2 (en)2005-04-282020-01-28Proteus Digital Health, Inc.Communication system with partial power source
US10610128B2 (en)2005-04-282020-04-07Proteus Digital Health, Inc.Pharma-informatics system
US11928614B2 (en)2006-05-022024-03-12Otsuka Pharmaceutical Co., Ltd.Patient customized therapeutic regimens
JP2008047458A (en)*2006-08-182008-02-28Kri IncElectrode for power storage device, and power storage device using it
US11357730B2 (en)2006-10-252022-06-14Otsuka Pharmaceutical Co., Ltd.Controlled activation ingestible identifier
US10238604B2 (en)2006-10-252019-03-26Proteus Digital Health, Inc.Controlled activation ingestible identifier
US10441194B2 (en)2007-02-012019-10-15Proteus Digital Heal Th, Inc.Ingestible event marker systems
US11464423B2 (en)2007-02-142022-10-11Otsuka Pharmaceutical Co., Ltd.In-body power source having high surface area electrode
US10517506B2 (en)2007-05-242019-12-31Proteus Digital Health, Inc.Low profile antenna for in body device
WO2009021379A1 (en)*2007-08-102009-02-19Shenzhen Bak Battery Co., LtdA current collector of lithium ion battery, a high-capacity cylindrical lithium ion battery and the preparation method of the same
US11217342B2 (en)2008-07-082022-01-04Otsuka Pharmaceutical Co., Ltd.Ingestible event marker data framework
US10682071B2 (en)2008-07-082020-06-16Proteus Digital Health, Inc.State characterization based on multi-variate data fusion techniques
US9883819B2 (en)2009-01-062018-02-06Proteus Digital Health, Inc.Ingestion-related biofeedback and personalized medical therapy method and system
US10588544B2 (en)2009-04-282020-03-17Proteus Digital Health, Inc.Highly reliable ingestible event markers and methods for using the same
US9941931B2 (en)2009-11-042018-04-10Proteus Digital Health, Inc.System for supply chain management
US10305544B2 (en)2009-11-042019-05-28Proteus Digital Health, Inc.System for supply chain management
US10376218B2 (en)2010-02-012019-08-13Proteus Digital Health, Inc.Data gathering system
US11173290B2 (en)2010-04-072021-11-16Otsuka Pharmaceutical Co., Ltd.Miniature ingestible device
US10207093B2 (en)2010-04-072019-02-19Proteus Digital Health, Inc.Miniature ingestible device
US10529044B2 (en)2010-05-192020-01-07Proteus Digital Health, Inc.Tracking and delivery confirmation of pharmaceutical products
JP2012009626A (en)*2010-06-242012-01-12Shin Kobe Electric Mach Co LtdLaminated body, lithium ion capacitor using the same, and method for manufacturing the lithium ion capacitor
US11504511B2 (en)2010-11-222022-11-22Otsuka Pharmaceutical Co., Ltd.Ingestible device with pharmaceutical product
US9548497B2 (en)2011-06-102017-01-17Eaglepicher Technologies, LlcLayered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
US11229378B2 (en)2011-07-112022-01-25Otsuka Pharmaceutical Co., Ltd.Communication system with enhanced partial power source and method of manufacturing same
JP2014529378A (en)*2011-07-112014-11-06プロテウス デジタル ヘルス, インコーポレイテッド Communication system having improved partial power supply and method of manufacturing the same
US10223905B2 (en)2011-07-212019-03-05Proteus Digital Health, Inc.Mobile device and system for detection and communication of information received from an ingestible device
US11149123B2 (en)2013-01-292021-10-19Otsuka Pharmaceutical Co., Ltd.Highly-swellable polymeric films and compositions comprising the same
US11744481B2 (en)2013-03-152023-09-05Otsuka Pharmaceutical Co., Ltd.System, apparatus and methods for data collection and assessing outcomes
US11741771B2 (en)2013-03-152023-08-29Otsuka Pharmaceutical Co., Ltd.Personal authentication apparatus system and method
US10175376B2 (en)2013-03-152019-01-08Proteus Digital Health, Inc.Metal detector apparatus, system, and method
US11158149B2 (en)2013-03-152021-10-26Otsuka Pharmaceutical Co., Ltd.Personal authentication apparatus system and method
US10421658B2 (en)2013-08-302019-09-24Proteus Digital Health, Inc.Container with electronically controlled interlock
US11102038B2 (en)2013-09-202021-08-24Otsuka Pharmaceutical Co., Ltd.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10097388B2 (en)2013-09-202018-10-09Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10498572B2 (en)2013-09-202019-12-03Proteus Digital Health, Inc.Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10084880B2 (en)2013-11-042018-09-25Proteus Digital Health, Inc.Social media networking based on physiologic information
US11950615B2 (en)2014-01-212024-04-09Otsuka Pharmaceutical Co., Ltd.Masticable ingestible product and communication system therefor
US10398161B2 (en)2014-01-212019-09-03Proteus Digital Heal Th, Inc.Masticable ingestible product and communication system therefor
US11051543B2 (en)2015-07-212021-07-06Otsuka Pharmaceutical Co. Ltd.Alginate on adhesive bilayer laminate film
US11024886B2 (en)2016-02-242021-06-01Lg Chem, Ltd.Electrode assembly having plurality of lithium metal sheets or lithium alloy sheets for lithium secondary battery, and lithium secondary battery and battery module including same
JP2018520493A (en)*2016-02-242018-07-26エルジー・ケム・リミテッド Lithium secondary battery electrode assembly, lithium secondary battery and battery module including the same
US10187121B2 (en)2016-07-222019-01-22Proteus Digital Health, Inc.Electromagnetic sensing and detection of ingestible event markers
US10797758B2 (en)2016-07-222020-10-06Proteus Digital Health, Inc.Electromagnetic sensing and detection of ingestible event markers
US10686193B2 (en)2016-07-252020-06-16Lg Chem, Ltd.Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
JP2018018821A (en)*2016-07-252018-02-01エルジー・ケム・リミテッドNegative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
US11529071B2 (en)2016-10-262022-12-20Otsuka Pharmaceutical Co., Ltd.Methods for manufacturing capsules with ingestible event markers
US11793419B2 (en)2016-10-262023-10-24Otsuka Pharmaceutical Co., Ltd.Methods for manufacturing capsules with ingestible event markers
CN109065838A (en)*2018-08-162018-12-21薛树超A kind of manganese lithium battery raw powder's production technology of combination porous metals piece
CN111640915A (en)*2019-03-012020-09-08麻省固能控股有限公司Negative electrode, secondary battery including the same, and method of manufacturing negative electrode
CN117276468A (en)*2023-11-232023-12-22宁德时代新能源科技股份有限公司Negative electrode plate, battery and electricity utilization device
CN117276468B (en)*2023-11-232024-04-12宁德时代新能源科技股份有限公司Negative electrode plate, battery and electricity utilization device

Similar Documents

PublicationPublication DateTitle
JPH11195415A (en)Nonaqueous electrolyte battery and its manufacture
CN108886150B (en)Negative electrode for secondary battery comprising lithium metal layer having fine pattern and protective layer thereof, and method for manufacturing same
CN1599099A (en)Negative electrode for a non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US5616152A (en)Method of preparing electrodes
JPH10334948A (en)Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2006302877A (en)Nonaqueous electrolyte battery and its manufacturing method
CN207504104U (en)A kind of collector and the secondary cell using the collector
JP2001357855A (en) Non-aqueous electrolyte secondary battery
JPH10241670A (en)Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP2001236945A (en)Lithium battery electrode, its manufacturing method, and battery using the same
JPH06260168A (en)Lithium secondary battery
JP3908459B2 (en) Nonaqueous electrolyte secondary battery
TW200423449A (en)Secondary cell with polymer coated anode
CN1134852C (en)Lithium polymer cell
JPH11167929A (en)Square battery
JPH06310126A (en)Nonaquous electrolytic secondary battery
KR102172070B1 (en)Patterning of Lithium metal and electrochemical device prepared thereby
JP2003223899A (en)Manufacturing method of negative electrode plate and lithium secondary battery using the negative electrode plate
JP2003017069A (en)Electrode for lithium secondary battery and lithium secondary battery
KR100439350B1 (en)Method for Continuously Making Band Type Lithium Metal Anode, Rechargeable Lithium Polymer Battery and Method for Making the Same Using the Lithium Metal Anode
KR102406390B1 (en)Method of preparing lithium metal negative electrode, lithium metal negative electrode prepared by the method, and lithium secondary battery comprising the smae
JP4636920B2 (en) Battery with spiral electrode
JP3300168B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2666382B2 (en) Rechargeable battery
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method

[8]ページ先頭

©2009-2025 Movatter.jp