Movatterモバイル変換


[0]ホーム

URL:


JPH11111208A - Reflective electron diffraction device - Google Patents

Reflective electron diffraction device

Info

Publication number
JPH11111208A
JPH11111208AJP9284600AJP28460097AJPH11111208AJP H11111208 AJPH11111208 AJP H11111208AJP 9284600 AJP9284600 AJP 9284600AJP 28460097 AJP28460097 AJP 28460097AJP H11111208 AJPH11111208 AJP H11111208A
Authority
JP
Japan
Prior art keywords
film
phosphor
electron diffraction
plate
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9284600A
Other languages
Japanese (ja)
Inventor
Shunji Misawa
三沢  俊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac IncfiledCriticalUlvac Inc
Priority to JP9284600ApriorityCriticalpatent/JPH11111208A/en
Publication of JPH11111208ApublicationCriticalpatent/JPH11111208A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PROBLEM TO BE SOLVED: To provide a reflective electron diffraction device equipped with a fluorescent plate by which an observation of a sample surface by a high- energy reflective electron diffraction method is possible, even when the inside of a vacuum chamber, where a thin film is formed on the sample, is occupied by a corrosive atmosphere. SOLUTION: A fluorescent plate 10, composed by forming a transparent conductive film 12, a phosphor film 13 and a carbon film 14 on the surface of a visible-ray transparent plate 11 such as a glass plate, is installed inside an observation window 5 of a vacuum chamber 1, as the carbon film 14 is positioned inside. When the light from a luminous source in the vacuum chamber 1 illuminates the fluorescent plate 10, the light is absorbed by the carbon film 14 and it does not reach the phosphor film 13. On the other hand, a reflected electron beam e1 from a thin-filmed surface on a substrate 3 permeates the carbon film 14 and reaches the phosphor film 13, also even when an ingredient gas for forming the thin film or a by-product gas is corrosive, the carbon film 14 is not corroded, therefore, a diffracted image on the thin-filmed surface can be clearly observed always.

Description

Translated fromJapanese
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高エネルギー反射電
子回折法(RHEED)によって基板上の成長過程にあ
る薄膜や成長後における薄膜などの試料表面の結晶構造
等を調べる反射電子回折装置に関するものであり、更に
詳しくは、反射電子線による鮮明な回折像が得られる反
射電子回折装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection electron diffraction apparatus for examining the crystal structure and the like of a sample surface such as a thin film being grown on a substrate or a thin film after growth by high energy reflection electron diffraction (RHEED). More specifically, the present invention relates to a backscattered electron diffraction apparatus capable of obtaining a clear diffraction image by a backscattered electron beam.

【0002】[0002]

【従来の技術】高エネルギー反射電子回折法は、試料表
面の第1原子層から数原子層までの深さ、すなわち、試
料表面から数十オングストロームまでの深さの結晶構造
等を観察する方法である。分子線エピタキシー(MB
E)装置のような薄膜形成装置には反射電子回折装置が
付設されており、成長している薄膜をその場で観察し制
御することに利用されている。ここにおいて、高エネル
ギーとは通常的には10keV〜30keVを指すが、
実用されている反射電子回折装置には20keV〜30
keVの電子銃を備えたものが多い。
2. Description of the Related Art High energy reflection electron diffraction is a method of observing a crystal structure at a depth from the first atomic layer to several atomic layers on a sample surface, that is, a depth from the sample surface to several tens angstroms. is there. Molecular beam epitaxy (MB
E) A reflection electron diffraction apparatus is attached to a thin film forming apparatus such as an apparatus, and is used for observing and controlling a growing thin film on the spot. Here, high energy generally refers to 10 keV to 30 keV,
20 keV to 30 volts is used for a backscattered electron diffraction device that is in practical use.
Many have a keV electron gun.

【0003】例えば、分子線エピタキシー(MBE)装
置に付設される反射電子回折装置は、真空チャンバー内
で蒸発源からの膜形成材料の蒸気によって基板上に成長
しつつある薄膜の表面に向けて電子銃からエネルギー2
0keV〜30keV程度の電子線を小さい視射角(例
えば1〜4度)で射出し、試料表面で回折されて反射さ
れる反射電子線を蛍光板に入射させて発光させ、その発
光する回折像によって薄膜の表面構造等をその場で観察
するようになっている。そして、使用されている蛍光板
はガラス板の片面に螢光体である硫化亜鉛(ZnS)を
塗布して蛍光体膜を形成させたものであり、蛍光板は真
空チャンバーの覗き窓内に、蛍光体膜を内側へ向けて取
り付けられ、発光する回折像を真空チャンバー外から観
察するようになっている。
[0003] For example, a reflection electron diffraction apparatus attached to a molecular beam epitaxy (MBE) apparatus emits electrons toward a surface of a thin film growing on a substrate by vapor of a film forming material from an evaporation source in a vacuum chamber. Energy 2 from guns
An electron beam of about 0 keV to 30 keV is emitted at a small glancing angle (for example, 1 to 4 degrees), a reflected electron beam diffracted and reflected on the surface of the sample is made incident on a fluorescent plate to emit light, and the emitted diffraction image is obtained. The surface structure and the like of the thin film are observed on the spot. The fluorescent plate used is one in which zinc sulfide (ZnS) as a fluorescent material is applied to one surface of a glass plate to form a fluorescent film, and the fluorescent plate is placed in a viewing window of a vacuum chamber. The film is attached with the film facing inward, and a light-emitting diffraction image is observed from outside the vacuum chamber.

【0004】上述の反射電子回折装置で問題になるの
は、真空チャンバー内に存在する蒸発源加熱用ヒータや
基板加熱用ヒータ等を発光源とする光が蛍光板を照らす
ことによって、回折像のコントラストが低下して観察に
支障をきたすということである。この問題を解決するも
のとして、特開平1−149353号公報に係る「反射
電子回折装置」には、蛍光板の部分拡大断面図である図
3に示すように、ガラス平板21に塗布された蛍光体膜
23の表面に、反射率の高い物質であるアルミニウム
(Al)の厚さ0.05〜0.1μmの膜24を光学的
遮蔽膜として形成させた蛍光板20を使用する反射電子
回折装置が例示されている。すなわち、高エネルギー電
子線は、そのエネルギーが10keVであっても、厚さ
0.6μm以下のAl膜24は透過してしまうに対し
て、発光源からの波長2200A以上の光は厚さ0.0
5μm以上のAl膜24を透過し得ないので、蛍光体膜
23へは到達せず、反射電子線による蛍光回折像が鮮明
に観察されるとしている。
A problem with the above-mentioned reflection electron diffraction apparatus is that light emitted from a heater for heating an evaporation source, a heater for heating a substrate, or the like, which is present in a vacuum chamber, illuminates a fluorescent plate, thereby causing a contrast of a diffraction image to be increased. Is reduced and obstructs observation. As a solution to this problem, Japanese Patent Application Laid-Open No. 1-149353 discloses a "backscattered electron diffractometer" which includes a phosphor coated on a glass plate 21 as shown in FIG. An example is a reflection electron diffraction apparatus using a fluorescent screen 20 in which a film 24 having a thickness of 0.05 to 0.1 μm of aluminum (Al) having a high reflectance is formed as an optical shielding film on the surface of the film 23. Have been. That is, the high energy electron beam transmits through the Al film 24 having a thickness of 0.6 μm or less even if the energy is 10 keV, whereas light having a wavelength of 2200 A or more from the light emitting source has a thickness of 0.1 μm. 0
Since it cannot pass through the Al film 24 having a thickness of 5 μm or more, it does not reach the phosphor film 23, and the fluorescence diffraction image by the reflected electron beam is clearly observed.

【0005】[0005]

【発明が解決しようとする課題】しかるに、分子線エピ
タキシー装置などの薄膜形成装置において成長させる薄
膜の種類、成長方法は多様化しており、例えば、基板上
に炭素珪素(SiC)膜を形成させる場合に、三塩化シ
ラン(SiHCl3 )とプロパン(C38 )とを次式
に基いて、1000℃以上の高温で形成させる方法があ
る。
However, the types and growth methods of thin films to be grown in a thin film forming apparatus such as a molecular beam epitaxy apparatus are diversified. For example, when a carbon silicon (SiC) film is formed on a substrate, There is a method of forming silane trichloride (SiHCl3 ) and propane (C3 H8 ) at a high temperature of 1000 ° C. or higher based on the following formula.

【0006】 3SiHCl3 +C38 →3SiC+H2 +9HCl3SiHCl3 + C3 H8 → 3SiC + H2 + 9HCl

【0007】この場合、基板加熱用ヒータや基板3自体
が発光源になるということのほかに、塩化水素(HC
l)ガスを副生するので真空チャンバー1内が腐食性雰
囲気となり、従来の技術における蛍光体膜23上のAl
膜24は腐食されて消失してしまうという問題がある。
そのほか、酸化マグネシウム(MgO)膜や酸化亜鉛
(ZnO)膜などの酸化膜を形成させる場合に、真空チ
ャンバー1内へ酸素(O2)ガスを導入することがある
が、この場合、Al膜24は容易に酸化されて本来の目
的を達しなくなる。
In this case, in addition to the fact that the substrate heating heater or the substrate 3 itself becomes a light emitting source, hydrogen chloride (HC)
l) Since the gas is by-produced, the inside of the vacuum chamber 1 becomes a corrosive atmosphere, and the Al on the phosphor film 23 in the conventional technique is changed.
There is a problem that the film 24 is corroded and disappears.
In addition, when an oxide film such as a magnesium oxide (MgO) film or a zinc oxide (ZnO) film is formed, an oxygen (O2 ) gas may be introduced into the vacuum chamber 1. Is easily oxidized and loses its intended purpose.

【0008】本発明は上述の問題に鑑みてなされ、薄膜
形成装置の真空チャンバー内が腐食性の雰囲気となって
も影響されることなく、反射電子線による高コントラス
トの回折像を観察し得る反射電子回折装置を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made to be able to observe a high-contrast diffraction image by a reflected electron beam without being affected even if the inside of a vacuum chamber of a thin film forming apparatus becomes a corrosive atmosphere. It is an object to provide an electron diffraction device.

【0009】[0009]

【課題を解決するための手段】上記の課題は請求項1の
構成によって解決されるが、その解決手段を実施の形態
によって例示すれば、図2は実施の形態の反射電子回折
装置に使用される蛍光板10の部分拡大断面図である。
すなわち、蛍光板10はガラス板のような可視光透明板
11の片面に酸化インジウム(In23 )等の透明導
電膜12、硫化亜鉛(ZnS)等による蛍光体膜13、
炭素(C)膜14を形成させたものである。炭素膜14
は塩素、フッ素を含む腐食性のガスに対して耐食性を有
する光吸収膜であり、真空チャンバー1内の基板加熱用
ヒータ等の発光源からの光を吸収すると共に、反射電子
線er を通過させて蛍光体膜13へ到達させる。透明導
電膜12は反射電子線er による蛍光体膜13のチャー
ジアップ(静電荷の滞積を防止するための膜である。
Means for Solving the Problems The above problem is solved by the structure of claim 1. If the means for solving the problem is exemplified by an embodiment, FIG. 2 is used in a backscattered electron diffraction apparatus of the embodiment. FIG. 2 is a partially enlarged cross-sectional view of the fluorescent screen 10.
That is, the fluorescent plate 10 has a transparent conductive film 12 of indium oxide (In2 O3 ) or the like, a phosphor film 13 of zinc sulfide (ZnS) or the like on one surface of a visible light transparent plate 11 such as a glass plate.
In this case, a carbon (C) film 14 is formed. Carbon film 14
Passing chlorine, a light absorbing film having corrosion resistance against corrosive gas containing fluorine, as well as absorb light from the light emitting source substrate heater or the like in the vacuum chamber 1, a reflection electron beam er Then, the light reaches the phosphor film 13. The transparent conductive film 12 is a film for preventing the deposition of the charge-up (electrostatic charge of the phosphor film 13 by the reflected electron beam er.

【0010】本発明の実施の形態による反射電子回折装
置は上記のような蛍光板10を使用するものであり、基
板加熱用ヒータ等の発光源からの光によって蛍光板10
が照らされても、その光は炭素膜14に吸収されて蛍光
体膜13へ届かず、反射電子線er は炭素膜14を透過
して蛍光体膜13へ到達するので、試料表面の回折像が
高コントラストになり鮮明に観察される。また、真空チ
ャンバー1内が薄膜形成用の原料ガスや副生ガスで腐食
性の雰囲気となっても、炭素膜は本質的に耐食性である
ので、腐食されて機能を失うことはない。
The backscattered electron diffraction apparatus according to the embodiment of the present invention uses the above-described fluorescent plate 10 and emits light from a light source such as a heater for heating a substrate.
Even if illuminated, so that light does not reach is absorbed by the carbon film 14 to the phosphor film 13, the reflected electron beam er reaches the phosphor film 13 passes through the carbon film 14, the diffraction of the sample surface The image has a high contrast and is clearly observed. Even if the inside of the vacuum chamber 1 is corrosive due to a raw material gas for forming a thin film or a by-product gas, the carbon film is essentially corrosion-resistant and does not lose its function due to corrosion.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態による
反射電子回折装置について、図面を参照して具体的に説
明する。図1は反射電子回折装置Aを備えた分子線エピ
タキシー(MBE)装置Bの概略を示す縦断面図であ
る。真空チャンバー1内で蒸発源2から膜形成材料が蒸
発され、場合によっては蒸発源2の近傍の導入管6から
原料ガスが導入されて、上方の基板3上に成長しつつあ
る薄膜の表面に向けて反射電子回折装置Aの電子銃4か
らエネルギー20keV〜30keVの電子線ei が小
さい視射角(例えば1〜4度)で射出され、薄膜の表面
部分で回折されて反射され、反射電子線er は覗き窓5
の内側に取り付けられた電子回折装置Aの蛍光板10へ
入射されて、蛍光板10に回折像を発光させるようにな
っている。そして、その回折像は真空チャンバー1外か
ら覗き窓5を介して観察され、写真撮影するか、ビデオ
カメラ等に記録することが行われる。なお、導入管6は
膜形成材料の蒸気と反応させるためのガスやエッチング
用ガスの導入にも使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a backscattered electron diffraction device according to an embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing a molecular beam epitaxy (MBE) apparatus B provided with a backscattered electron diffraction apparatus A. In the vacuum chamber 1, the film forming material is evaporated from the evaporation source 2, and in some cases, a raw material gas is introduced from the introduction pipe 6 near the evaporation source 2, and the material is deposited on the surface of the thin film growing on the substrate 3 above. emitted by the electron beam ei is smaller glancing angles of energy 20keV~30keV from the electron gun 4 in the reflection electron diffraction device a toward (e.g. 1-4 degrees), it is reflected and diffracted by the surface portion of the thin film, reflected electrons Line er is the viewing window 5
Is incident on the fluorescent plate 10 of the electron diffraction device A mounted inside the device, and causes the fluorescent plate 10 to emit a diffraction image. Then, the diffraction image is observed from outside the vacuum chamber 1 through the viewing window 5, and a photograph is taken or recorded on a video camera or the like. The introduction pipe 6 is also used for introducing a gas for reacting with the vapor of the film forming material and an etching gas.

【0012】図2は反射電子回折装置Aの蛍光板10の
部分断面図である。すなわち、支持板としてのガラス板
11の片面に透明導電膜としての酸化インジウム(In
23 )膜12、蛍光体膜としての硫化亜鉛(ZnS)
膜13、炭素(C)膜14が形成されている。In2
3 膜12は反射電子線er によるZnS膜13のチャー
ジアップ(静電荷の堆積)を防止するための膜である。
そして、炭素膜14は塩素、フッ素等を含有する腐食性
ガスに対して耐食性を有する光吸収膜であり、真空チャ
ンバー1内の基板加熱用ヒータ等の発光源からの光を吸
収すると共に、反射電子線er を透過させて蛍光体膜1
3へ到達させる。上記のZnS膜13上の炭素膜14は
アーク蒸着法、電子ビーム蒸着法、またはプラズマCV
D法によって形成させることができる。
FIG. 2 is a partial sectional view of the fluorescent screen 10 of the backscattered electron diffraction apparatus A. That is, indium oxide (In) as a transparent conductive film is formed on one surface of the glass plate 11 as a support plate.
2 O3 ) film 12, zinc sulfide (ZnS) as phosphor film
A film 13 and a carbon (C) film 14 are formed. In2 O
3 film 12 is a film to prevent charge-up of the ZnS film 13 by reflected electron beam er (deposition of electrostatic charge).
The carbon film 14 is a light absorbing film having corrosion resistance to corrosive gas containing chlorine, fluorine and the like, and absorbs light from a light emitting source such as a heater for heating a substrate in the vacuum chamber 1 and reflects the light. phosphor film 1 by transmitting an electron beam er
Reach 3. The carbon film 14 on the ZnS film 13 is formed by an arc evaporation method, an electron beam evaporation method, or a plasma CV method.
It can be formed by Method D.

【0013】炭素膜14は、Al膜等の金属膜に較べて
軽元素膜であるために、電子線を透過させ易く、エネル
ギー20eVの電子線が透過し得る炭素膜14の厚さは
理論的には約3.7μmであり、30eVの電子線では
約7.3μmにもおよぶ。一方、炭素膜14は全ての波
長の光を吸収する黒体膜であるが、真空チャンバー1内
の発光源からの光を完全に吸収させるには、炭素膜14
は膜厚1μmもあれば十分である。また、炭素膜14の
成膜過程において孔径が光の波長に近いピンホールが生
成したとしても、光は黒体吸収する炭素膜14のピンホ
ール内で繰り返し反射されることによって吸収され、そ
の吸収効果は金属膜のピンホールより大きい。
Since the carbon film 14 is a light element film as compared with a metal film such as an Al film, it easily transmits an electron beam, and the thickness of the carbon film 14 through which an electron beam having an energy of 20 eV can pass is theoretically. Is about 3.7 μm, and reaches about 7.3 μm with an electron beam of 30 eV. On the other hand, the carbon film 14 is a black body film that absorbs light of all wavelengths. However, in order to completely absorb light from a light emitting source in the vacuum chamber 1, the carbon film 14 is required.
A film thickness of 1 μm is sufficient. Further, even if a pinhole having a hole diameter close to the wavelength of light is generated in the process of forming the carbon film 14, the light is absorbed by being repeatedly reflected in the pinhole of the carbon film 14 that absorbs a black body, and the light is absorbed. The effect is larger than the pinhole of the metal film.

【0014】また、各種化学プラントの耐食性構造材料
として黒鉛が使用されているように、炭素は本質的に耐
食性であり、膜形成用の原料ガスが塩素、フッ素等のハ
ロゲンを含有するガスであったり、成膜時の反応によっ
て塩化水素、フッ化水素等の腐食性ガスを副生するな
ど、真空チャンバー1内が腐食性雰囲気となる場合であ
ってもZnS膜13の表面の光吸収膜である炭素膜14
が腐食されることはない。
Further, as graphite is used as a corrosion-resistant structural material in various chemical plants, carbon is inherently corrosion-resistant, and the raw material gas for forming a film is a gas containing halogen such as chlorine or fluorine. Even when the inside of the vacuum chamber 1 becomes a corrosive atmosphere, for example, a corrosive gas such as hydrogen chloride or hydrogen fluoride is produced as a by-product due to a reaction at the time of film formation, the light absorbing film on the surface of the ZnS film 13 may be used. Certain carbon film 14
Is not corroded.

【0015】実施の形態の反射電子回折装置Aは以上の
ように構成されるが、次にその作用を説明する。
The backscattered electron diffraction apparatus A according to the embodiment is configured as described above. Next, the operation thereof will be described.

【0016】薄膜形成装置Bの真空度10ー10 Torr
程度の真空チャンバー1内において、蒸発源2から膜形
成材料が蒸発され、場合によっては反応ガスが導入管6
から真空チャンバー1内に導入されて、基板3上に薄膜
が形成される。その成膜の途中である、または成膜の完
了した基板3上の薄膜に向けて、付設の反射電子回折装
置Aの電子銃4からエネルギ−20〜30keVの電子
線ei が視射角1〜4度で射出される。電子線ei は薄
膜の表面部分で回折されて反射され、反射電子線er
して覗き窓5に取り付けられている反射電子回折装置A
の蛍光板10に入射する。
The vacuum degree of 10over 10 Torr thin film forming apparatus B
In the vacuum chamber 1, the film forming material is evaporated from the evaporation source 2, and in some cases, the reaction gas is introduced into the introduction pipe 6.
From the vacuum chamber 1 to form a thin film on the substrate 3. As in the middle of the film formation or toward the thin film on the substrate 3 which has completed the film formation, to attach a reflection electron diffractometer electron gun 4 morphism view electron beam ei energy -20~30keV angle 1 of A, Fired at ~ 4 degrees. The electron beam ei is reflected and diffracted by the surface portion of the thin film, the reflected electron beam er a sight glass 5 reflection electron diffraction apparatus is attached to the A
To the fluorescent plate 10.

【0017】反射電子線er は蛍光板10の最外層の炭
素膜14を透過しZnS膜13に到達して薄膜の回折像
を蛍光として光らせる。この時、真空チャンバー1内に
存在する基板加熱用ヒータ、蒸発源加熱用ヒータ等を発
光源とする光が同時に蛍光板10を照らすが、これらの
光は蛍光板10の最外層の炭素膜14に吸収されZnS
膜13までは届かないので、反射電子線er による薄膜
の回折像が高コントラストの蛍光として観察される。
The reflected electron beam er is illuminate a fluorescence diffraction pattern of the thin film reaches the ZnS film 13 through the carbon film 14 of the outermost layer of the phosphor plate 10. At this time, light emitted from a substrate heating heater, an evaporation source heating heater, and the like existing in the vacuum chamber 1 simultaneously illuminates the fluorescent plate 10, and these lights are absorbed by the outermost carbon film 14 of the fluorescent plate 10. And ZnS
It does not reach to the membrane 13, the diffraction image of the thin film by reflecting the electron beam er is observed as a fluorescence with high contrast.

【0018】形成させる薄膜の種類によっては、膜形成
材料の蒸気やガス、ないしは成膜時に副生するガスが塩
素やフッ素を含有して腐食性を有し、真空チャンバー1
内が腐食性の雰囲気となる場合もあるが、蛍光板10の
最外層にあって発光源からの光を吸収する炭素膜14は
本質的に耐食性であるために腐食されず、薄膜表面部分
の回折像を常に鮮明に観察することができる。
Depending on the type of the thin film to be formed, the vapor or gas of the film forming material or the gas by-produced at the time of film formation contains chlorine or fluorine and is corrosive.
Although the inside may be a corrosive atmosphere, the carbon film 14, which is the outermost layer of the fluorescent plate 10 and absorbs light from the light-emitting source, is not corroded due to its inherent corrosion resistance, and the diffraction of the surface portion of the thin film is performed. Images can always be observed clearly.

【0019】本発明の実施の形態による反射電子回折装
置は以上のように構成され作用するが、勿論、本発明は
これに限られることなく、本発明の技術的精神に基づい
て種々の変形が可能である。
The backscattered electron diffraction apparatus according to the embodiment of the present invention is constructed and operates as described above. However, the present invention is not limited to this, and various modifications may be made based on the technical spirit of the present invention. It is possible.

【0020】例えば本実施の形態においては、蛍光板1
0において、蛍光体膜13を支持する可視光透明板とし
てガラス板11を採用したが、これ以外の透明材料、例
えば透明アルミナ、透明石英やフッ化カルシウムの平行
板を使用してもよい。
For example, in the present embodiment, the fluorescent screen 1
At 0, the glass plate 11 was adopted as the visible light transparent plate supporting the phosphor film 13, but other transparent materials, for example, a parallel plate of transparent alumina, transparent quartz or calcium fluoride may be used.

【0021】また本実施の形態においては、電子線によ
る蛍光体膜13のチャージアップを防ぐために、ガラス
板11とZnS膜13との間に、透明で導電性を有する
In23 膜12を挟んで静電荷を逃がすようにした
が、In23 膜12をそれ以外の透明導電膜、例えば
酸化錫(SnO2 )膜や錫をドープした酸化インジウム
(ITO)膜に代えうる。また、蛍光体膜13の表面に
形成させる炭素膜14の導電性を利用して蛍光体膜13
の静電荷を逃がすようにする場合には、In23 膜1
2を省略してもよい。
In this embodiment, in order to prevent the phosphor film 13 from being charged up by an electron beam, a transparent and conductive In2 O3 film 12 is provided between the glass plate 11 and the ZnS film 13. Although the electrostatic charge is released by sandwiching the film, the In2 O3 film 12 can be replaced with another transparent conductive film, for example, a tin oxide (SnO2 ) film or a tin-doped indium oxide (ITO) film. The phosphor film 13 is formed by utilizing the conductivity of the carbon film 14 formed on the surface of the phosphor film 13.
In order to release the static charge, the In2 O3 film 1
2 may be omitted.

【0022】また本実施の形態においては、蛍光体膜と
してZnS膜13を採用したが、これ以外の蛍光体、例
えば硫化カルシウム(CaS)や酸化亜鉛(ZnO)も
採用し得る。
In this embodiment, the ZnS film 13 is used as the phosphor film. However, other phosphors such as calcium sulfide (CaS) and zinc oxide (ZnO) may be used.

【0023】また本実施の形態においては、真空チャン
バー1内の基板加熱用ヒータ等を発光源とする光を吸収
し、反射電子線er を透過させる炭素膜14を厚さ1μ
mとしたが、上記の光が吸収される限りにおいて厚さ
0.1μmとしてもよく、また反射電子線er が透過す
る限りにおいて厚さ5μmとしてもよい。炭素膜14の
好ましい厚さは0.5〜2μmの範囲にある。
[0023] In the present embodiment, a substrate heater or the like in the vacuum chamber 1 to absorb the light that the light-emitting source, the thickness of 1μ carbon film 14 that transmits reflected electron beam er
The thickness may be 0.1 μm as long as the above light is absorbed, or may be 5 μm as long as the reflected electron beamer is transmitted. The preferred thickness of the carbon film 14 is in the range of 0.5 to 2 μm.

【0024】また本実施の形態においては、蛍光板10
はガラス板11を支持板として、その片面にIn23
膜12、ZnS膜13、炭素膜14を形成させたが、蛍
光体の自立性の板に直接にIn23 膜12、ZnS膜
13、炭素膜14を形成させるようにしてもよい。
In this embodiment, the fluorescent screen 10
Uses a glass plate 11 as a support plate, and has In2 O3
Although the film 12, the ZnS film 13, and the carbon film 14 are formed, the In2 O3 film 12, the ZnS film 13, and the carbon film 14 may be formed directly on the self-supporting plate of the phosphor.

【0025】また本実施の形態においては、反射電子回
折装置を分子線エピタキシ(MBE)装置に付設した場
合を例示したが、反射電子回折装置はこれ以外の一般的
な薄膜形成装置に広く付設し得る。
Further, in this embodiment, the case where the backscattered electron diffraction apparatus is attached to a molecular beam epitaxy (MBE) apparatus is exemplified, but the backscattered electron diffraction apparatus is widely attached to other general thin film forming apparatuses. obtain.

【0026】[0026]

【発明の効果】本発明は以上に説明したような形態で実
施され、次ぎに記載するような効果を奏する。
The present invention is embodied in the form described above, and has the following effects.

【0027】本発明の反射電子回折装置によれば、真空
チャンバー内の基板加熱用ヒータ等の発光源からの光が
蛍光板を照らしても蛍光体膜を被覆している炭素膜が光
を吸収するので蛍光体膜までは届かず、試料からの反射
電子線は炭素膜を透過して蛍光体膜に到達するので、試
料表面の回折像が高コントラストとなって容易に観察さ
れるだけでなく、真空チャンバー内が膜形成用の原料ガ
スや副生ガスによって腐食性の雰囲気となる場合も、炭
素膜は本質的に耐食性であり腐食されないので、回折像
が常に鮮明に観察される。
According to the backscattered electron diffraction apparatus of the present invention, even if light from a light source such as a heater for heating a substrate in a vacuum chamber illuminates the phosphor plate, the carbon film covering the phosphor film absorbs the light. Therefore, the reflected electron beam from the sample does not reach the phosphor film, and the reflected electron beam from the sample reaches the phosphor film through the carbon film. Even when the inside of the vacuum chamber becomes a corrosive atmosphere due to a raw material gas for forming a film or a by-product gas, the diffraction image is always clearly observed because the carbon film is essentially corrosion-resistant and is not corroded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態による反射電子回折装置を備えた薄
膜形成装置の概略を示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing a thin film forming apparatus provided with a backscattered electron diffraction device according to an embodiment.

【図2】同反射電子回折装置に使用される蛍光板の部分
拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a fluorescent plate used in the reflection electron diffraction apparatus.

【図3】従来例の反射電子回折装置に使用される蛍光板
の部分拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view of a fluorescent plate used in a conventional backscattered electron diffraction apparatus.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 3 基板 4 電子銃 10 蛍光板 11 可視光透明板(ガラス) 12 透明導電膜(In23 ) 13 蛍光体膜(ZnS) 14 炭素膜(C) A 反射電子回折装置 er 反射電子線Reference Signs List 1 vacuum chamber 3 substrate 4 electron gun 10 fluorescent plate 11 visible light transparent plate (glass) 12 transparent conductive film (In2 O3 ) 13 phosphor film (ZnS) 14 carbon film (C) A reflection electron diffraction deviceer reflected electron line

Claims (5)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 試料の表面に向けて高エネルギーの電子
線を小さい視射角で射出させ、前記試料の表面において
回折され反射される前記電子線の回折像を蛍光板に写し
出す反射電子回折装置において、 前記蛍光板の表面に前記電子線は透過させて可視光は吸
収し、かつ耐食性を有する炭素膜が形成されていること
を特徴とする反射電子回折装置。
1. A reflection electron diffraction apparatus which emits a high-energy electron beam toward a surface of a sample at a small glancing angle and projects a diffraction image of the electron beam diffracted and reflected on the surface of the sample onto a fluorescent screen. A reflection electron diffractometer, wherein a carbon film is formed on the surface of the phosphor plate, the carbon film having the function of transmitting the electron beam and absorbing the visible light and having corrosion resistance.
【請求項2】 前記炭素膜の厚さが0.1μmから5μ
mの範囲内、好ましくは0.5μmから2μmの範囲内
にある請求項1に記載の反射電子回折装置。
2. The method according to claim 1, wherein said carbon film has a thickness of 0.1 μm to 5 μm.
2. The backscattered electron diffraction device according to claim 1, wherein the distance is within the range of m, preferably within the range of 0.5 μm to 2 μm.
【請求項3】 前記蛍光板がガラス等の可視光に透明な
平板を支持板として、その一方の表面に蛍光体膜が形成
されたものである請求項1または請求項2に記載の電子
回折装置。
3. The electron diffraction apparatus according to claim 1, wherein the fluorescent plate is a plate made of glass or the like that is transparent to visible light, and a phosphor film is formed on one surface of the fluorescent plate. .
【請求項4】 前記電子線による前記蛍光体膜のチャー
ジアップ(静電荷の堆積)を防ぐための導電性透明膜が
前記支持板と前記蛍光体膜との間に形成されている請求
項3に記載の反射電子回折装置。
4. A phosphor transparent film is formed between said support plate and said phosphor film for preventing charge-up (accumulation of electrostatic charge) of said phosphor film by said electron beam. 2. A backscattered electron diffraction apparatus according to claim 1.
【請求項5】 前記導電性透明膜が酸化インジウム膜で
ある請求項3または請求項4に記載の反射電子回折装
置。
5. The backscattered electron diffraction apparatus according to claim 3, wherein the conductive transparent film is an indium oxide film.
JP9284600A1997-09-301997-09-30Reflective electron diffraction devicePendingJPH11111208A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP9284600AJPH11111208A (en)1997-09-301997-09-30Reflective electron diffraction device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP9284600AJPH11111208A (en)1997-09-301997-09-30Reflective electron diffraction device

Publications (1)

Publication NumberPublication Date
JPH11111208Atrue JPH11111208A (en)1999-04-23

Family

ID=17680563

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP9284600APendingJPH11111208A (en)1997-09-301997-09-30Reflective electron diffraction device

Country Status (1)

CountryLink
JP (1)JPH11111208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006261006A (en)*2005-03-182006-09-28Fujitsu Ltd Nano-level structural composition observation device
WO2012144543A1 (en)*2011-04-202012-10-26株式会社エイブイシーReflection high-energy electron diffraction method
WO2012144544A1 (en)*2011-04-202012-10-26株式会社エイブイシーReflection high-energy electron diffraction method
JP2015028933A (en)*2013-07-052015-02-12株式会社半導体エネルギー研究所Transmission electron diffraction measurement apparatus, and method for measuring transmission electron diffraction pattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006261006A (en)*2005-03-182006-09-28Fujitsu Ltd Nano-level structural composition observation device
WO2012144543A1 (en)*2011-04-202012-10-26株式会社エイブイシーReflection high-energy electron diffraction method
WO2012144544A1 (en)*2011-04-202012-10-26株式会社エイブイシーReflection high-energy electron diffraction method
JP2012227009A (en)*2011-04-202012-11-15Avc Co LtdReflection high-energy electron diffraction method
JP2012227010A (en)*2011-04-202012-11-15Avc Co LtdReflection high-energy electron diffraction apparatus
JP2015028933A (en)*2013-07-052015-02-12株式会社半導体エネルギー研究所Transmission electron diffraction measurement apparatus, and method for measuring transmission electron diffraction pattern

Similar Documents

PublicationPublication DateTitle
EP0042149B1 (en)Radiation excited phosphor screen and method for manufacturing the same
US6897560B2 (en)Ultraviolet-transparent conductive film and process for producing the same
EP0215699B1 (en)Scintillator input screen for an x-ray image intensifier, and method of manufacturing such a scintillator
US20070003718A1 (en)Reflector, heating crucible equipped with reflector and process for preparation of radiation image storage panel
JPS63215987A (en)Highly resolvable scintillation fiber plate
US6852357B2 (en)Process for preparing radiation image storage panel by gas phase deposition
US20080139885A1 (en)Autoclavable antireflective coatings for endoscopy windows and related methods
KR910009641B1 (en) X-ray imaging tube and manufacturing method
KR19980080354A (en) Fluorescent and indicator
JPH11111208A (en)Reflective electron diffraction device
US7439523B2 (en)Method for preparing radiation image storage panel
Gil-Rostra et al.Thin film electroluminescent device based on magnetron sputtered Tb doped ZnGa2O4 layers
US4528210A (en)Method of manufacturing a radiation excited input phosphor screen
JPS5941267B2 (en) Radiation-excited fluorescent surface and its manufacturing method
GB2043622A (en)Quartz glass lamp envelopes
US7446330B2 (en)Phosphor panel
US4981712A (en)Method of producing thin-film electroluminescent device using CVD process to form phosphor layer
US20070041087A1 (en)Reflector, light source device, liquid crystal projector, and method for depositing reflecting film coatings
US7154104B2 (en)Radiation image storage panel and its preparation
Distler et al.Photoelectret mechanism of long range transmission of structural information
RU2127465C1 (en)Method for manufacturing of luminescent screens with row-like structure
US6815692B2 (en)Radiation image storage panel
JP2006225733A (en)Film-forming apparatus and film-forming method
TWI356439B (en)An optical properties restoration apparatus, the r
JP2689449B2 (en) Reflection electron diffraction device

[8]ページ先頭

©2009-2025 Movatter.jp