【0001】[0001]
【発明の属する技術分野】本発明は耐摩耗性が要求され
る容器、内張材、粉砕用メディア等の被粉砕物と接触す
る箇所を構成する粉砕機用部材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverizer member for forming a portion which comes into contact with an object to be pulverized, such as a container, a lining material, and a pulverizing medium, which are required to have abrasion resistance.
【0002】[0002]
【従来の技術】従来、粉砕機は耐衝撃性に優れた金属製
の粉砕機用部材により構成されていたが、被粉砕物の高
純度化、ならびに粉砕機および粉砕機部材の軽量化とい
う近年の要求に対しては、満足し得るものではなかっ
た。2. Description of the Related Art Conventionally, a pulverizer has been constituted by a metal pulverizer member having excellent impact resistance. However, in recent years, the pulverizer has been required to be highly purified and to reduce the weight of the pulverizer and pulverizer members. Was not satisfactory.
【0003】すなわち、金属製粉砕機用部材は耐衝撃性
に優れるが、その反面、耐摩耗性が不十分であって、金
属成分であるFe摩耗粉が混入される場合があり、粉砕
物の高純度化は望めなかった。そこで、金属体にコーテ
イングを施した部材が使用されているが、金属は密度が
高いため、粉砕機および粉砕機用部材の重量が大きくな
り、これにより、被粉砕物の容量に対して、大きなウエ
イトを占めていた。[0003] That is, a metal pulverizer member is excellent in impact resistance, but on the other hand, its abrasion resistance is insufficient, and in some cases, Fe abrasion powder which is a metal component is mixed, resulting in high pulverized material. Purification could not be expected. Therefore, a member in which a metal body is coated is used, but since the metal has a high density, the weight of the pulverizer and the pulverizer member increases, thereby increasing the capacity of the object to be pulverized. Occupied the weight.
【0004】かかる問題点を解決するために、アルミナ
およびジルコニア等のセラミックスを用いて耐摩耗性と
軽量化を達成した粉砕機用部材が提案されている。In order to solve such problems, there has been proposed a pulverizer member which achieves wear resistance and weight reduction by using ceramics such as alumina and zirconia.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、これら
セラミックス製粉砕機用部材によれば、耐衝撃性に劣
り、しかも、熱伝導率も低く、そのため、天然石等の乾
式粉砕における温度上昇によって耐熱衝撃性の点から満
足し得るものではない。However, according to these ceramic pulverizer members, the impact resistance is poor and the thermal conductivity is low. It is not satisfactory from the point of view.
【0006】そこで、セラミックス体に金属コーテイン
グを施した粉砕機用部材が提案されているが、このよう
なコーテイング技術においてはコーテイング層の摩耗や
剥離により、粉砕性能が低下するという問題点がある。In view of the above, there has been proposed a pulverizer member in which a ceramic body is provided with a metal coating. However, in such a coating technique, there is a problem that the pulverizing performance is reduced due to abrasion or peeling of the coating layer.
【0007】また、窒化ケイ素質焼結体からなる粉砕機
用部材も特開平5−301775号にて提案されている
が、優れた耐衝撃性を有する反面、耐摩耗特性の点で実
用上十分に満足できるものではない。A member for a pulverizer made of a silicon nitride sintered body has also been proposed in Japanese Patent Application Laid-Open No. 5-301775. However, while having excellent impact resistance, it is practically sufficient in terms of abrasion resistance. Is not satisfactory.
【0008】したがって本発明の目的は、粉砕時の耐久
性、特に耐摩耗性に優れた粉砕機用部材を提供すること
にある。Accordingly, an object of the present invention is to provide a pulverizer member excellent in durability at the time of pulverization, particularly, abrasion resistance.
【0009】[0009]
【課題を解決するための手段】本発明者らは、粉砕機用
部材に窒化ケイ素質焼結体を採用する場合、その焼結体
における成分組成や、密度および気孔率を所定範囲に制
御するとともに、ボイド径を特定の分布で存在させる
と、優れた強度を具備するととともに、さらに系中のS
iO2分から焼結体組織中にSiとして析出させた焼結
体が、高温強度とともに優れた靱性を有することを見い
だし、粉砕時においても摩耗の少ない優れた粉砕機用部
材が得られることを見いだし、本発明に至った。When the present invention employs a silicon nitride sintered body as a pulverizer member, the present inventors control the component composition, density, and porosity of the sintered body within a predetermined range. In addition, when the void diameters are present in a specific distribution, excellent strength is provided, and S
It was found that the sintered body precipitated as Si in the sintered body structure from the amount of iO2 had excellent toughness as well as high-temperature strength, and that it was possible to obtain an excellent pulverizer member with little wear even during pulverization. This has led to the present invention.
【0010】即ち、本発明の粉砕機用部材は、窒化ケイ
素を75〜95重量%、Yおよび希土類元素のうちの少
なくとも1種を酸化物換算量で1〜12重量%、アルミ
ニウムを酸化物換算量0.01〜5重量%、不純物的酸
素を酸化ケイ素換算量で10重量%以下の割合で含み、
密度3.20g/cm3以上、気孔率3%以下、平均ボ
イド径が5μm以下であり、ボイド径5〜30μmが3
0%以下、ボイド径30μm以上が5%以下、残部がボ
イド径5μm以下のボイド径分布を有し、且つラマン分
光分析法により検出されるSiの521cm-1のピーク
強度の窒化ケイ素の206cm-1のピーク強度に対する
比が0.2〜3である窒化ケイ素質焼結体からなること
を特徴とするものである。That is, in the pulverizer member of the present invention, silicon nitride is 75 to 95% by weight, at least one of Y and rare earth elements is 1 to 12% by weight in terms of oxide, and aluminum is in terms of oxide. 0.01 to 5% by weight, containing impurity oxygen in a proportion of 10% by weight or less in terms of silicon oxide,
The density is 3.20 g / cm3 or more, the porosity is 3% or less, the average void diameter is 5 μm or less, and the void diameter is 5 to 30 μm.
0% or less, void diameter of 30 μm or more has a void diameter distribution of 5% or less, the remainder has a void diameter distribution of 5 μm or less, and 206 cm− of silicon nitride having a peak intensity of 521 cm−1 of Si detected by Raman spectroscopy. It is characterized by comprising a silicon nitride based sintered body having a ratio of1 to a peak intensity of 0.2 to 3.
【0011】また、前記窒化ケイ素質焼結体には、M
g、W、Mo、Mn、CuおよびFeの酸化物、窒化
物、酸窒化物もしくは珪化物の群から選ばれる少なくと
も1種を8重量%以下の割合で含むことを特徴とするも
のである。[0011] The silicon nitride sintered body may include M
g, W, Mo, Mn, Cu and Fe, characterized by containing at least one selected from the group consisting of oxides, nitrides, oxynitrides and silicides in a proportion of 8% by weight or less.
【0012】[0012]
【発明の実施の形態】本発明の粉砕機用部材は、β−窒
化ケイ素結晶相と、Yおよび希土類元素のうちの少なく
とも1種、ケイ素、アルミニウム、酸素および窒素を含
む粒界相とからなる窒化ケイ素質焼結体から構成され
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The pulverizer member of the present invention comprises a β-silicon nitride crystal phase and a grain boundary phase containing at least one of Y and rare earth elements, silicon, aluminum, oxygen and nitrogen. It is composed of a silicon nitride sintered body.
【0013】上記β−窒化ケイ素結晶相は、平均アスペ
クト比が3以上、平均短軸径が0.5〜2μmの柱状結
晶として存在するものであり、それが互いに絡み合った
構造となることで、破壊靱性および強度が向上し、粉砕
特性の向上にも寄与する。また、希土類元素、アルミニ
ウムは、粒界相においてはガラス相を形成するか、また
は希土類元素酸化物−Si3N4−SiO2系や、希土
類元素酸化物−SiO2系などの結晶相として存在して
もよい。なお、アルミニウムは、β−窒化ケイ素結晶相
中に一部固溶していてもよい。The β-silicon nitride crystal phase exists as a columnar crystal having an average aspect ratio of 3 or more and an average minor axis diameter of 0.5 to 2 μm, and has a structure entangled with each other. Fracture toughness and strength are improved, and it also contributes to improved crushing characteristics. Further, the rare earth element and aluminum form a glass phase in the grain boundary phase or exist as a crystal phase such as a rare earth element oxide-Si3 N4 —SiO2 system or a rare earth element oxide—SiO2 system. May be. Note that aluminum may be partially dissolved in the β-silicon nitride crystal phase.
【0014】本発明によれば、かかる焼結体をラマン分
光分析法によって分析した時に、微小のSiが検出され
ることも大きな特徴である。このSiは、走査型電子顕
微鏡(SEM)においても観察することができないレベ
ルのものであり、ラマン分光分析法によって検出される
ものである。このSiがSEM観察では検出できないも
のの、おそらく粒界中もしくは窒化ケイ素粒内に分散し
ているものと推察される。According to the present invention, when such a sintered body is analyzed by Raman spectroscopy, a significant feature is that minute Si is detected. This Si is at a level that cannot be observed even with a scanning electron microscope (SEM), and is detected by Raman spectroscopy. Although this Si cannot be detected by SEM observation, it is presumed that it is probably dispersed in the grain boundaries or in the silicon nitride grains.
【0015】このようなSiを焼結体中に存在させるこ
とにより、室温強度1000MPa以上、1000℃強
度が800MPa以上、破壊靱性値が6MPa・m1/2
以上の優れた特性を発揮することができる。この理由は
定かではないが、おそらく粒界に分散するSiがクラッ
クの進展を妨げる作用をなしているためと推察されるし
かし、ここで粒界に存在するSi粒子は、ごく微量であ
ることが必要であり、例えば、X線回折測定法によって
検出されるレベルで存在すると、それが破壊源となり、
焼結体の強度を劣化させてしまう。これに対して、本発
明の焼結体は、ごく微量のSiまで検出可能なラマン分
光分析法に従い、特定のレベルで存在することが必要で
ある。それは、具体的にはβ−窒化ケイ素の206cm
-1付近に存在するピークの強度をX1、Siの521c
m-1付近のピークの強度をX2としたとき、X2/X1
で表されるピーク比が0.2〜3、好ましくは1〜2で
あることが重要である。このピーク比が0.2よりも低
いと強度、靱性の向上効果が低く、所望の特性が得られ
ず、3を越えると、析出したSi自体が破壊源となり強
度を劣化させてしまうためである。When such Si is present in the sintered body, the room temperature strength is 1000 MPa or more, the 1000 ° C. strength is 800 MPa or more, and the fracture toughness is 6 MPa · m1/2.
The above excellent characteristics can be exhibited. The reason for this is not clear, but is presumed to be because the Si dispersed at the grain boundaries acts to hinder the progress of cracks.However, here, the Si particles present at the grain boundaries may be extremely small. Required, for example, if present at levels detected by X-ray diffraction measurement, it becomes a source of destruction,
The strength of the sintered body is deteriorated. On the other hand, the sintered body of the present invention needs to be present at a specific level according to Raman spectroscopy in which even a trace amount of Si can be detected. It is specifically 206 cm of β-silicon nitride.
The intensity of the peak existing near-1 is X1 , 521c of Si
When the intensity of the peak near m−1 is X2 , X2 / X1
It is important that the peak ratio represented by is 0.2 to 3, preferably 1 to 2. If the peak ratio is lower than 0.2, the effect of improving the strength and toughness is low, and desired characteristics cannot be obtained. If the peak ratio exceeds 3, the precipitated Si itself becomes a source of destruction and deteriorates the strength. .
【0016】また、本発明における窒化ケイ素質焼結体
は、組成上では、主成分として、窒化ケイ素を75〜9
5重量%、好適には80〜90重量%含み、さらに焼結
助剤成分として、Yおよび希土類元素のうちの少なくと
も1種を酸化物換算量で1〜12重量%、好適には3〜
10重量%、アルミニウムを酸化物換算量0.01〜5
重量%、好適には1〜4重量%、さらに不純物的酸素を
酸化ケイ素換算量で10重量%以下、好適には8重量%
以下の割合でそれぞれ含むものであり、これらの範囲内
において、高耐摩耗性が得られる。なお、上記希土類元
素としては、Er、Yb、LuおよびSm等が挙げられ
る。The silicon nitride sintered body according to the present invention has a composition in which silicon nitride is used as a main component in an amount of 75 to 9%.
5% by weight, preferably 80 to 90% by weight, and at least one of Y and a rare earth element as a sintering aid component is 1 to 12% by weight, preferably 3 to 3% by weight in terms of oxide.
10% by weight, aluminum is converted to oxide in an amount of 0.01 to 5
% By weight, preferably 1 to 4% by weight, and furthermore, impurity oxygen is not more than 10% by weight, preferably 8% by weight in terms of silicon oxide.
It contains each of the following proportions, and within these ranges, high wear resistance is obtained. The rare earth elements include Er, Yb, Lu and Sm.
【0017】ここで、上記不純物的酸素とは、焼結体中
の全酸素量から焼結体中のYまたは希土類元素(RE)
およびAlに対して化学量論組成(RE2O3およびA
l2O3)で結合していると仮定される酸素量を差し引
いた残りの酸素量であり、そのほとんどは窒化ケイ素粉
末中の不可避的酸素または意図的に添加されたSiO2
成分より構成される。Here, the impurity oxygen means Y or rare earth element (RE) in the sintered body based on the total amount of oxygen in the sintered body.
Stoichiometric composition (RE2 O3 and A
l2 O3 ), which is the amount of oxygen remaining after subtracting the amount of oxygen assumed to be bound in the silicon nitride powder, most of which is unavoidable oxygen in the silicon nitride powder or SiO2 added intentionally.
Consists of components.
【0018】これらの焼結助剤成分の含有量を上記のよ
うに限定したのは、各成分が上記の範囲より低いと焼成
過程で液相が不足し緻密体が得られず強度は低下し、各
成分が上記の値より多いと焼成中の液相が増加する結
果、窒化ケイ素が異常な粒成長を引き起こしやすくな
り、その異常粒が破壊源となり強度を低下させてしま
い、また表層では窒化ケイ素の分解が激しくなり強度低
下してしまうためである。The content of these sintering aid components is limited as described above. When each component is lower than the above range, the liquid phase becomes insufficient during the firing process, a dense body cannot be obtained, and the strength decreases. However, if each component is more than the above values, the liquid phase during firing increases, so that silicon nitride tends to cause abnormal grain growth, and the abnormal grains become a source of fracture, lowering the strength, and nitriding in the surface layer. This is because silicon is severely decomposed and strength is reduced.
【0019】また、上記窒化ケイ素質焼結体には、助剤
成分としてMg、W、Mo、Mn、CuおよびFeの酸
化物、窒化物、酸窒化物あるいは珪化物の群から選ばれ
る少なくとも1種を8重量%以下の割合で含有させるこ
とにより、焼結性を高め、緻密化を促進し、さらに特性
の改善を図ることができる。Further, the silicon nitride sintered body has at least one selected from the group consisting of oxides, nitrides, oxynitrides and silicides of Mg, W, Mo, Mn, Cu and Fe as auxiliary components. By containing the seed at a ratio of 8% by weight or less, sinterability can be enhanced, densification can be promoted, and characteristics can be further improved.
【0020】そして、かかる組成の窒化ケイ素質焼結体
に対して、密度が3.20g/cm3以上、好適には
3.23g/cm3以上になるように、かつ気孔率を3
%以内、好適には1.5%以内であることが、優れた耐
摩耗性を達成する上で重要であり、密度が3.20g/
cm3よりも低いと、粉砕時において部材の摩耗が大き
くなる。The density of the silicon nitride sintered body having the above composition is 3.20 g / cm3 or more, preferably 3.23 g / cm3 or more, and the porosity is3 or more.
%, Preferably within 1.5%, is important to achieve excellent wear resistance, with a density of 3.20 g /
If it is lower than cm3 , wear of the member during pulverization increases.
【0021】さらに、本発明における窒化ケイ素質焼結
体内には、所定の範囲でボイドを均一に点在させること
で、破壊源であるクラックが発生した場合において、ク
ラックの進展により破損や欠損および割損が生じても、
クラックの進展を防止することができる。このボイド
は、平均ボイド径が5μm以下、特に3μm以下である
ことが重要である。これは、平均ボイド径が5μmを越
えると、小さなボイドが均一に点在してクラックが結晶
粒界に選択的に進展し、これによって微小な脱粒摩耗や
チッピングを併発し、その結果、粉砕メディア中に混入
して、粉砕物の高純度化が望めなくなるためである。Furthermore, in the silicon nitride sintered body according to the present invention, by uniformly dispersing voids within a predetermined range, when a crack which is a fracture source is generated, the crack, the breakage, the defect, and the Even if a loss occurs,
Cracks can be prevented from developing. It is important that the voids have an average void diameter of 5 μm or less, particularly 3 μm or less. This is because, when the average void diameter exceeds 5 μm, small voids are uniformly scattered and cracks selectively propagate to the crystal grain boundaries, thereby causing minute deagglomeration wear and chipping. This is because it becomes impossible to expect high purity of the pulverized material by being mixed in.
【0022】また、焼結体中のボイドは、直径5〜30
μmのボイドが全ボイド数の30%以下、ボイド径30
μm以上が5%以下、残部がボイド径5μm以下となる
ボイド径分布からなることが望ましい。これは、ボイド
径30μm以上が5%を越えると、局所的な欠けや脱粒
が生じて摩耗を促進し、5〜30μmのボイド数が30
%を越えると微小な欠け、脱粒が増加し、摩耗が増加し
やすいためである。The voids in the sintered body have a diameter of 5 to 30.
μm voids are 30% or less of the total number of voids, void diameter 30
It is preferable that the void diameter distribution is 5% or less for μm or more and the void diameter is 5 μm or less for the remainder. This is because, when the void diameter is 30 μm or more, 5% or more, local chipping or shedding occurs to promote wear, and the number of voids of 5 to 30 μm is 30%.
%, Fine chipping and shedding increase, and wear tends to increase.
【0023】このようなボイドを均一に点在させるに
は、窒化ケイ素原料を混合粉砕し、造粒なしに、成形、
焼成したり、混合粉末を一旦造粒した後、この造粒した
粉体を成形時に成形圧力を十分に上げて造粒粉体をつぶ
すことにより、均一に点在させることができる。なお、
ボイド径分布は、用いる原料粉末と成形時の圧力、さら
には焼成温度などの焼成条件による緻密化の程度など周
知の手法によって制御できる。In order to uniformly disperse such voids, a silicon nitride raw material is mixed and pulverized, and is formed without granulation.
After firing or once granulating the mixed powder, the granulated powder can be evenly scattered by sufficiently increasing the molding pressure during molding to crush the granulated powder. In addition,
The void diameter distribution can be controlled by a known method such as the raw material powder to be used, the pressure during molding, and the degree of densification by firing conditions such as firing temperature.
【0024】このような本発明の窒化ケイ素質焼結体
は、例えば、次のような製造方法によって作製される。
まず、窒化ケイ素粉末としては、平均粒径が0.4〜
1.2μm、不純物酸素量が0.5〜1.5重量%のα
−Si3N4、β−Si3N4のいずれでもよいが、焼
結性を高める上では、α化率が90%以上であることが
望ましい。また、窒化ケイ素粉末の0〜80重量%相当
量をケイ素粉末に置き換え、ケイ素粉末を低温で窒化し
て成形体中のα−Si3N4含有量を高めることができ
る。このようなα−Si3N4の含有量の大きい成形体
を焼成すると、前述した柱状のβ−窒化ケイ素結晶相の
生成を増加させることができ、焼結体の強度および靱性
を高くさせることができる。Such a silicon nitride sintered body of the present invention is manufactured, for example, by the following manufacturing method.
First, as silicon nitride powder, the average particle size is 0.4 to
Α having an impurity oxygen content of 0.5 to 1.5% by weight
—Si3 N4 or β-Si3 N4 may be used, but in order to enhance sinterability, it is desirable that the α-formation ratio is 90% or more. Further, the equivalent of 0 to 80% by weight of the silicon nitride powder can be replaced with silicon powder, and the silicon powder can be nitrided at a low temperature to increase the α-Si3 N4 content in the compact. By firing such a molded body having a large content of α-Si3 N4 , it is possible to increase the generation of the above-mentioned columnar β-silicon nitride crystal phase, and to increase the strength and toughness of the sintered body. Can be.
【0025】次に、このような窒化ケイ素粉末に対し
て、希土類元素酸化物粉末、Al2O3粉末、場合によ
ってはSiO2粉末を、焼成前の成形体組成が、Yまた
は希土類元素のうちの少なくとも1種の酸化物換算量が
1〜12重量%、特に3〜10重量%、アルミニウムが
酸化物換算で0.01〜5重量%、特に1〜4重量%で
あること、さらには、成形体中の全酸素量から希土類元
素酸化物粉末、Al2O3粉末中の酸素分を差し引いた
残りの酸素量が、SiO2換算で10重量%以下、特に
8重量%以下となるように添加する。Next, a rare earth element oxide powder, an Al2 O3 powder, and in some cases, a SiO2 powder are added to the silicon nitride powder, and the molded body composition before firing is made of Y or rare earth element. Is at least one oxide equivalent of 1 to 12% by weight, especially 3 to 10% by weight, and aluminum is 0.01 to 5% by weight, especially 1 to 4% by weight of oxides. The amount of oxygen remaining after subtracting the oxygen content in the rare earth element oxide powder and the Al2 O3 powder from the total oxygen content in the compact is 10% by weight or less, particularly 8% by weight or less in terms of SiO2. Added.
【0026】また、場合によっては、Mg、W、Mo、
Mn、CuおよびFeの酸化物、窒化物、酸窒化物もし
くは珪化物のうちの少なくとも1種の粉末を8重量%以
下の割合で添加混合する。In some cases, Mg, W, Mo,
At least one powder of oxides, nitrides, oxynitrides or silicides of Mn, Cu and Fe is added and mixed at a ratio of 8% by weight or less.
【0027】得られた混合粉末をメッシュパス造粒、ス
プレー造粒、乾式造粒等により30〜300μmの大き
さの造粒体を形成した後に、公知の成形法、たとえばプ
レス成形、鋳込み成形、押し出し成形、射出成形、冷間
静水圧成形などにより所望の形状に成形する。The obtained mixed powder is formed into granules having a size of 30 to 300 μm by mesh pass granulation, spray granulation, dry granulation or the like, and then formed by a known molding method, for example, press molding, cast molding, or the like. It is formed into a desired shape by extrusion molding, injection molding, cold isostatic pressing or the like.
【0028】次に、得られた成形体をSiOを含む窒素
雰囲気下で1700〜1800℃、特に1720〜18
00℃の温度で常圧焼成する。SiOの雰囲気は、Si
O2+Si、もしくはSiO2+Si3N4の混合粉末
を成形体が収納される焼成鉢内に一緒に入れて焼成する
ことにより形成することができる。この焼成によって焼
結体密度が3.20g/cm3以上となる条件で焼成緻
密化する。Next, the obtained molded body is placed in a nitrogen atmosphere containing SiO at 1700 to 1800 ° C., particularly 1720 to 18
Baking at normal pressure at a temperature of 00 ° C. The atmosphere of SiO is Si
It can be formed by putting together a mixed powder of O2 + Si or SiO2 + Si3 N4 in a firing pot in which a molded body is stored and firing. By this firing, the sintered body is densified under the condition that the density of the sintered body becomes 3.20 g / cm3 or more.
【0029】より具体的には、この時の焼成温度を、窒
化ケイ素が常圧にてSi3N4がケイ素と窒素ガスに分
解する平衡温度から約30℃低い温度範囲内で焼成し
て、ごく微量のSi3N4を分解させる。この分解によ
って、生成されたSiが粒界中に粒子として存在するこ
とになる。なお、Si量は、上記温度範囲での保持時間
などにより任意に制御することが可能である。More specifically [0029] The baking temperature at this, silicon nitride and fired in a Si3 N4 silicon and nitrogen gas at about 30 ° C. lower temperature range decomposes equilibrium temperature under normal pressure, A very small amount of Si3 N4 is decomposed. This decomposition causes the generated Si to exist as particles in the grain boundaries. The amount of Si can be arbitrarily controlled by, for example, the holding time in the above temperature range.
【0030】なお、焼成雰囲気中にSiOを含まない場
合、もしくは1800℃を越える焼成温度では、窒化ケ
イ素の分解が激しく、微量の窒化ケイ素のみを分解させ
るような細かな制御が難しい。また1700℃よりも低
いと、焼結性が低下するとともに、Siの析出が望め
ず、強度、靱性の向上が望めない。When SiO is not contained in the sintering atmosphere or at a sintering temperature exceeding 1800 ° C., silicon nitride decomposes violently, and it is difficult to perform fine control to decompose only a small amount of silicon nitride. On the other hand, when the temperature is lower than 1700 ° C., the sinterability is reduced, and the precipitation of Si cannot be expected, and the improvement in strength and toughness cannot be expected.
【0031】また、上記のようにして常圧焼成によって
Siが特定範囲にて析出した焼結体をさらに、熱間静水
圧焼成によって、1600〜1800℃の温度で窒素ガ
ス、またはアルゴンガス中で1000〜2000atm
の圧力下で焼成して、さらに緻密化を図ることもでき
る。この場合、焼結体中のSiの析出状態に対しては、
変化のないように先の常圧焼成よりも低い温度で処理す
ることが望ましい。Further, the sintered body in which Si is precipitated in a specific range by the normal pressure firing as described above is further subjected to hot isostatic firing at a temperature of 1600 to 1800 ° C. in a nitrogen gas or an argon gas. 1000-2000atm
And further densification can be achieved. In this case, for the precipitation state of Si in the sintered body,
It is desirable to perform the treatment at a lower temperature than the normal pressure firing so as not to change.
【0032】[0032]
【実施例】窒化ケイ素(Si3N4)粉末、各種のYま
たは希土類元素の酸化物(RE2O3)、酸化アルミニ
ウム(Al2O3)および酸化ケイ素(SiO2)の各
粉末を用いて、各成分が表1および表2に示す組成にな
るように調合し、スプレードライによって粒径が40〜
200μmの造粒体を作製した。その後、1〜3ton
/cm2の圧力でもってラバープレス(アイソスタテイ
ックプレス)成形をおこなった。なお、SiO2量はS
i3N4粉末中の不純物酸素をSiO2換算したものも
含む。各成形体を炭化ケイ素質の匣鉢に入れ、カーボン
ヒータを用いて、成形体重量の5%のSiO2+Si
(重量比で1:1)混合粉末を配置し、表1、2の条件
で5時間、常圧焼成した。なお、試料No.26について
は、SiO2+Si混合粉末を配置せずに焼成した。EXAMPLE A silicon nitride (Si3 N4 ) powder, oxides of various Y or rare earth elements (RE2 O3 ), aluminum oxide (Al2 O3 ) and silicon oxide (SiO2 ) were used. Then, each component is prepared so as to have the composition shown in Tables 1 and 2, and the particle size is 40 to 40 by spray drying.
A 200 μm granule was produced. After that, 1-3 tons
Rubber press (isostatic press) molding was performed at a pressure of / cm2 . The amount of SiO2 is S
It also includes those obtained by converting impurity oxygen in i3 N4 powder into SiO2 . Each compact was placed in a silicon carbide sagger, and 5% of the weight of the compact was SiO2 + Si using a carbon heater.
(1: 1 by weight ratio) The mixed powder was arranged and calcined under normal pressure for 5 hours under the conditions shown in Tables 1 and 2. The sample No. 26 was fired without disposing the SiO2 + Si mixed powder.
【0033】成形体中にSi粉末を含まない場合には、
窒素圧9気圧の窒素中、表1、2の焼成温度で5時間焼
成し、その後に炉冷して焼結体を得た。また、Si粉末
を含む場合には、1150℃で5時間加熱して窒化さ
せ、その後に表1、2の焼成温度で5時間焼成し、続け
て炉冷して焼結体を得た。なお、ボイドの大きさは成形
時の圧力によって制御した。さらにまた、比較例として
アルミナ焼結体やジルコニア焼結体も作製した。When no Si powder is contained in the compact,
The sintered body was fired in nitrogen at a nitrogen pressure of 9 atm at the firing temperatures shown in Tables 1 and 5 for 5 hours, and then cooled in a furnace to obtain a sintered body. In the case where Si powder was included, nitriding was performed by heating at 1150 ° C. for 5 hours, followed by firing at the firing temperatures shown in Tables 1 and 5 for 5 hours, followed by furnace cooling to obtain a sintered body. The size of the void was controlled by the pressure during molding. Furthermore, as a comparative example, an alumina sintered body and a zirconia sintered body were also manufactured.
【0034】かくして得られた各焼結体に対して、密
度、気孔率、強度、靭性、硬度、ボイド分布状態を以下
の方法で測定した。密度および気孔率は、JISR16
01にて規定された条件の形状にまで加工し、アルキメ
デス法に基づく比重測定から求めた。強度は、JISR
1601に基づき室温の4点曲げ抗折強度試験をおこな
って求めた。靭性は鏡面仕上げをおこなった試料に対し
て、JIS−R1607に基づく室温での破壊靱性を測
定することで求めた。硬度はビッカース硬度(荷重2k
g)により測定した。さらにボイドの状態はSEMや実
体顕微鏡を用いて平均ボイド径、ボイドの分布状態を調
べた。For each of the thus obtained sintered bodies, the density, porosity, strength, toughness, hardness and void distribution were measured by the following methods. The density and porosity are determined according to JISR16
It was processed to a shape under the conditions specified in No. 01, and determined by specific gravity measurement based on the Archimedes method. Strength is JISR
It was determined by conducting a four-point bending proof strength test at room temperature based on 1601. The toughness was determined by measuring the fracture toughness at room temperature based on JIS-R1607 for a sample that had been mirror-finished. Hardness is Vickers hardness (load 2k
g). Further, the state of the voids was examined using an SEM or a stereomicroscope to determine the average void diameter and the distribution state of the voids.
【0035】さらに、得られた焼結体に対して、ラマン
分光分析法により窒化ケイ素の206cm-1のピーク強
度X1と、Siの521cm-1のピーク強度X2とのX
2/X1比を求めた。なお、試料No.9についてそのラ
マン分光分析チャートを図1に示した。Furthermore, the obtained sintered body, X and the peak intensity X1 in the silicon nitride 206cm-1 by Raman spectroscopic analysis, a peak intensity X2 of Si 521 cm-1
It was determined2 / X1 ratio. The Raman spectroscopic analysis chart of Sample No. 9 is shown in FIG.
【0036】摩耗試験として下記のとおり摩耗率を求め
る試験をおこなった。摩耗率については、60mm×3
0mm×6mmの試料板を作製し、表面を平滑に仕上げ
て評価面となし、この面に対してメディアとして水を含
んだSiC製GC#240番(80〜130μm)を噴
射圧力3.0kg/cm2で、3分間、試料板に直角
(90°)にあてることで、試料板の重量変化を測定
し、これを摩耗率とした。As a wear test, a test for determining a wear rate was performed as follows. For the wear rate, 60 mm x 3
A sample plate of 0 mm × 6 mm was prepared, and the surface was smoothed to form an evaluation surface. The surface was sprayed with water-containing SiC GC # 240 (80 to 130 μm) containing water as a medium at an injection pressure of 3.0 kg / kg. The sample was placed at a right angle (90 °) to the sample plate for 3 minutes in cm2 , and the change in weight of the sample plate was measured, and this was defined as the wear rate.
【0037】なお、上記噴射のノズル径はφ7.6mm
とし、衝突距離は10mmとした。The nozzle diameter of the above injection is φ7.6 mm.
And the collision distance was 10 mm.
【0038】メディア摩耗率については、φ10mmの
試料体250gをメディアとし、水300ccとともに
ポットミルに入れ、振動ミルで粉砕媒体を混ぜないでお
こなう、からずり試験を80時間おこなった。その後、
メディアを取り出し、洗浄および乾燥させ、そのメディ
アの重量変化により摩耗率を求めた。The media abrasion rate was measured by using a 250 g sample having a diameter of 10 mm as a medium, placing the medium in a pot mill together with 300 cc of water, and performing a rolling test for 80 hours without mixing the grinding medium with a vibration mill. afterwards,
The media was taken out, washed and dried, and the wear rate was determined from the weight change of the media.
【0039】[0039]
【表1】[Table 1]
【0040】[0040]
【表2】[Table 2]
【0041】[0041]
【表3】[Table 3]
【0042】[0042]
【表4】[Table 4]
【0043】表1乃至表4の結果から明らかなとおり、
本発明の試料No.1〜15については、強度800MP
a以上、靭性6.0MPa・m1/2以上、硬度14.0
GPa以上の機械的特性を、また摩耗率1.0%以下、
メディア摩耗率1.0%以下の摩耗特性が達成でき、ア
ルミナ材(試料No.28)やジルコニア材(試料No.
29)と比較しても大幅に摩耗率、メディア摩耗率が低
く、耐摩耗性に優れていた。As is clear from the results in Tables 1 to 4,
For samples Nos. 1 to 15 of the present invention, the strength was 800MP.
a or more, toughness 6.0 MPa · m1/2 or more, hardness 14.0
GPa or more mechanical properties, wear rate 1.0% or less,
Abrasion characteristics with a media abrasion rate of 1.0% or less can be achieved, and an alumina material (Sample No. 28) and a zirconia material (Sample No. 28) can be obtained.
Compared with 29), the abrasion rate and the media abrasion rate were significantly lower, and the abrasion resistance was excellent.
【0044】表1乃至表4の結果によると、ラマン分光
分析により強度比が0.2よりも小さい試料No.21
は、強度および靱性の向上効果が十分でなく、強度、靱
性ともに満足できるものではなく、摩耗率やメディア摩
耗率も十分な特性を有するものではなかった。また、単
なる窒素雰囲気中で焼成した試料No.26では、前記強
度比が3を越えるものであり、また、組成および焼成条
件によって強度比が3を越える試料No.27は靱性が低
いものであり、摩耗率、メディア摩耗率ともに低いもの
であった。According to the results of Tables 1 to 4, the sample No. having an intensity ratio smaller than 0.2 by Raman spectroscopic analysis. 21
However, the effect of improving the strength and toughness was not sufficient, and both the strength and the toughness were not satisfactory, and the wear rate and the media wear rate did not have sufficient characteristics. Sample No. 26 fired in a mere nitrogen atmosphere had the above-mentioned strength ratio exceeding 3, and sample No. 27 whose strength ratio exceeded 3 depending on the composition and firing conditions had low toughness. , Abrasion rate and media abrasion rate were both low.
【0045】また、希土類元素酸化物量、SiO2量、
Al2O3量が本発明の範囲から逸脱する試料No.1
6、17、18、19、20では、いずれも本発明の特
性を得るには至らず、摩耗特性も低下した。密度が3.
00g/cm3の試料No.16では摩耗率、メディア摩
耗率ともに著しく増大している。Also, the amount of rare earth element oxide, the amount of SiO2 ,
Sample No. 1 in which the amount of Al2 O3 deviates from the scope of the present invention
In Nos. 6, 17, 18, 19, and 20, none of the characteristics of the present invention were obtained, and the wear characteristics were also reduced. The density is 3.
In the sample No. 16 of 00 g / cm3 , both the wear rate and the media wear rate were significantly increased.
【0046】また、成形条件や焼成条件により密度、平
均ボイド径が本発明の範囲から逸脱する試料No.22〜
25においては、いずれも摩耗率およびメディア摩耗が
大きく粉砕機用部材として満足できるものではなかっ
た。Further, depending on the molding conditions and sintering conditions, samples No. 22 to 22 whose density and average void diameter deviate from the scope of the present invention.
In No. 25, the wear rate and the media wear were all large, and were not satisfactory as members for a crusher.
【0047】[0047]
【発明の効果】以上のとおり、本発明の粉砕機用部材に
よれば、特定の組成に制御するとともに、さらに密度、
気孔率、ボイド分布を制御し、粒界中に微量のSiを適
宜に析出させることにより、優れた機械的特性を具備す
るとともに、粉砕機用部材としての耐摩耗性を向上させ
ることができ、粉砕機用部材の長寿命化を達成すること
ができる。As described above, according to the pulverizer member of the present invention, while controlling to a specific composition, the density,
By controlling the porosity and void distribution, and by appropriately precipitating a small amount of Si in the grain boundaries, it has excellent mechanical properties and can improve the wear resistance as a pulverizer member, A longer life of the pulverizer member can be achieved.
【図1】本発明における窒化ケイ素質焼結体(試料No.
9)のラマン分光分析チャートの一例を示す。FIG. 1 shows a silicon nitride sintered body (sample No.
9 shows an example of the Raman spectroscopic analysis chart of 9).
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26006397AJP4126447B2 (en) | 1997-09-25 | 1997-09-25 | Crusher parts |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP26006397AJP4126447B2 (en) | 1997-09-25 | 1997-09-25 | Crusher parts |
| Publication Number | Publication Date |
|---|---|
| JPH11100272Atrue JPH11100272A (en) | 1999-04-13 |
| JP4126447B2 JP4126447B2 (en) | 2008-07-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP26006397AExpired - Fee RelatedJP4126447B2 (en) | 1997-09-25 | 1997-09-25 | Crusher parts |
| Country | Link |
|---|---|
| JP (1) | JP4126447B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000319071A (en)* | 1999-05-06 | 2000-11-21 | Nitsukatoo:Kk | Grinding/dispersion media and their production |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000319071A (en)* | 1999-05-06 | 2000-11-21 | Nitsukatoo:Kk | Grinding/dispersion media and their production |
| Publication number | Publication date |
|---|---|
| JP4126447B2 (en) | 2008-07-30 |
| Publication | Publication Date | Title |
|---|---|---|
| Van Dijen et al. | Liquid phase sintering of silicon carbide | |
| Kim et al. | Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide | |
| Kim et al. | Densification and mechanical properties of B4C with Al2O3 as a sintering aid | |
| EP0153000B1 (en) | Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase | |
| GB1590968A (en) | Silicon nitride | |
| Li et al. | Preparation and mechanical properties of SiC-AlN ceramic alloy | |
| EP1892227B1 (en) | Process for producing a boron carbide based sintered body | |
| EP2636659B1 (en) | High rigidity ceramic material and method for producing same | |
| Baharvandi et al. | Processing and mechanical properties of boron carbide–titanium diboride ceramic matrix composites | |
| Zhou et al. | Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry and microstructure | |
| JP4129104B2 (en) | Silicon nitride sintered body and wear-resistant member using the same | |
| JP2507480B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
| JP2518630B2 (en) | Silicon nitride sintered body and method for producing the same | |
| US5118644A (en) | Thermal shock-resistant silicon nitride sintered material | |
| Lee et al. | Effect of β–Si3N4 seed crystal on the microstructure and mechanical properties of sintered reaction-bonded silicon nitride | |
| JP2000256066A (en) | Silicon nitride based sintered body, method for producing the same, and wear-resistant member using the same | |
| US5229046A (en) | Process for producing thermal shock-resistant silicon nitride sintered material | |
| JP3694583B2 (en) | Crusher parts | |
| JPH11100272A (en) | Crusher components | |
| JP3762090B2 (en) | Silicon nitride sintered body and cutting tool using the same | |
| JP3580660B2 (en) | Crusher components | |
| JP3554125B2 (en) | Crusher components | |
| Bengisu et al. | Sintering of MgO and MgO-TiC ceramics by plasma, microwave and conventional heating | |
| JP2000072553A (en) | Silicon nitride-based wear-resistant member and method of manufacturing the same | |
| JP2000143350A (en) | Wear-resistant material |
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20040427 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20040831 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20050412 | |
| A521 | Written amendment | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20050609 | |
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20080426 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110523 Year of fee payment:3 | |
| R150 | Certificate of patent or registration of utility model | Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110523 Year of fee payment:3 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120523 Year of fee payment:4 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120523 Year of fee payment:4 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20130523 Year of fee payment:5 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20140523 Year of fee payment:6 | |
| LAPS | Cancellation because of no payment of annual fees |