【0001】[0001]
【発明の属する技術分野】本発明は、電源により浮動充
電される密閉型鉛蓄電池を備えた電源装置に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device having a sealed lead-acid battery which is float-charged by a power supply.
【0002】[0002]
【従来の技術】無停電電源装置や自動車の電源装置等で
は、浮動充電される密閉型鉛蓄電池を備えている。この
種の電源装置においては、通常時でも密閉型鉛蓄電池の
劣化状態を判定することが重要な課題となっている。鉛
蓄電池の劣化判定方法としては電解液の比重を測定する
方法が最も一般的に行われている。ところが完全密閉式
の密閉型鉛蓄電池では電解液の比重を直接測定できない
ために、電解液比重測定用の二酸化鉛電極を電槽内に設
置して電解液の比重を測定する技術(特開昭61−29
4771号)や、陽極板の伸びを検出する技術(特開平
2−152170号)や、内部インピーダンスを測定す
る技術(特開平4−198783号)などが提案されて
きた。2. Description of the Related Art An uninterruptible power supply, a power supply for an automobile, and the like are provided with a sealed lead-acid battery which is floatingly charged. In this type of power supply device, it is an important issue to determine the state of deterioration of the sealed lead-acid battery even at normal times. As a method of judging the deterioration of a lead storage battery, a method of measuring the specific gravity of an electrolytic solution is most commonly performed. However, since the specific gravity of the electrolyte cannot be directly measured with a completely closed type sealed lead-acid battery, a technology for measuring the specific gravity of the electrolyte by installing a lead dioxide electrode for measuring the specific gravity of the electrolyte in the battery case (Japanese Patent Laid-Open No. 61-29
No. 4771), a technique for detecting the elongation of the anode plate (Japanese Patent Application Laid-Open No. 2-152170), and a technique for measuring the internal impedance (Japanese Patent Application Laid-Open No. 4-198783) have been proposed.
【0003】しかしながら、電解液比重測定用電極を電
槽内に設置して電解液比重を測定する技術,陽極板の伸
びを検出する技術は、電池内部にセンサーを入れる必要
があり、部品点数が増加する問題がある上,電池製作工
数の増加などの製造上の問題もあって、実際にはほとん
ど実施されていないのが現状である。However, the technology for measuring the specific gravity of the electrolytic solution by installing the electrode for measuring the specific gravity of the electrolytic solution in the battery case and the technology for detecting the elongation of the anode plate require that a sensor be provided inside the battery, and the number of parts must be reduced. Actually, it is hardly practiced because there is a problem in manufacturing, such as an increase in the number of man-hours for manufacturing a battery, in addition to an increase in the number of steps.
【0004】これに対して内部インピーダンスを測定す
る技術は密閉型鉛蓄電池の劣化状態の検出技術として実
際に実用化されている。しかしながら内部インピーダン
ス測定値のみから高い精度で劣化判定を行うのは無理が
ある。そこで内部インピーダンスと短時間の放電電圧の
測定値とから放電容量を推定する技術を用いると、内部
インピーダンスあるいは短時間放電電圧いずれか一方か
ら推定するよりも精度が良くなるという研究結果が発表
されている(電気設備学会誌 1993,NO.12,VOL.13,P124
7)。具体的な方法としては、内部インピーダンスと放
電中の平均の電圧低下速度に相関があることを利用し
て、内部インピーダンスから放電中の平均電圧低下速度
を算出する。そしてこの平均電圧低下速度と短時間の放
電を行ったときの電圧値とから放電電圧が終止電圧に達
するまでの時間、つまり放電持続時間を推定して、寿命
を推定する方法が知られている。On the other hand, a technique for measuring the internal impedance has been actually put to practical use as a technique for detecting the state of deterioration of a sealed lead-acid battery. However, it is impossible to judge deterioration with high accuracy from only the internal impedance measurement value. Research results have been published that show that using a technique to estimate the discharge capacity from the internal impedance and the short-term discharge voltage measurement results in a better accuracy than either the internal impedance or the short-term discharge voltage. (Journal of the Institute of Electrical Installations 1993, NO.12, VOL.13, P124
7). As a specific method, utilizing the fact that there is a correlation between the internal impedance and the average voltage drop rate during discharge, the average voltage drop rate during discharge is calculated from the internal impedance. A method of estimating the time until the discharge voltage reaches the end voltage, that is, the discharge duration time, from the average voltage drop rate and the voltage value at the time of performing the short-time discharge, that is, the discharge duration, is known. .
【0005】[0005]
【発明が解決しようとする課題】しかし、この内部イン
ピーダンスの測定を密閉型鉛蓄電池を備えた電源装置に
適用する場合には次の点が問題となる。However, when the measurement of the internal impedance is applied to a power supply device having a sealed lead-acid battery, the following problems arise.
【0006】まずは内部インピーダンスを測定するため
には比較的大きな交流電流を通電する必要があり、測定
用の交流電流通電部が必要になる点である。一般的に密
閉型鉛蓄電池の内部インピーダンスは、一定振幅の交流
電流通電時の端子電圧に含まれる交流電圧成分を測定す
ることによって求める。しかしながら密閉型鉛蓄電池は
内部インピーダンス値が小さいためにノイズの影響を受
けやすく通電される交流電流の電流値が小さいと正確な
測定が困難である。2V,200Ahの据置密閉型鉛蓄
電池の例では、周波数10Hz程度で1mΩ以下の内部
インピーダンス値であり、±2Aの交流電流の通電で端
子電圧に現れる交流電圧成分は±2mV以下と非常に小
さい値となりノイズの影響を受けやすい。このために
は、通電電流の値を大きくすればよいが、交流電流通電
部に用いる半導体スイッチング素子の大型化が避けられ
ず、発熱,消費電力,コストなどの点で問題があり、通
電電流の値を単純に大きくするのは実用的ではない。First, in order to measure the internal impedance, it is necessary to supply a relatively large AC current, and an AC current supplying unit for measurement is required. Generally, the internal impedance of a sealed lead-acid battery is determined by measuring an AC voltage component included in a terminal voltage when an AC current having a constant amplitude is applied. However, since the sealed lead-acid battery has a small internal impedance value, it is susceptible to noise, and accurate measurement is difficult if the value of the alternating current supplied is small. In the example of a stationary sealed lead-acid battery of 2 V, 200 Ah, the internal impedance value is 1 mΩ or less at a frequency of about 10 Hz, and the AC voltage component that appears in the terminal voltage when an AC current of ± 2 A flows is a very small value of ± 2 mV or less. And is susceptible to noise. For this purpose, it is sufficient to increase the value of the energizing current. However, it is inevitable that the semiconductor switching element used for the alternating current energizing section becomes large, and there are problems in terms of heat generation, power consumption, cost, and the like. Simply increasing the value is not practical.
【0007】また、リプル電流が密閉型鉛蓄電池に流れ
ている場合もあり、測定時の端子電圧にリプル電圧が含
まれて誤差となる場合もある。インバータ回路を負荷と
する無停電交流電源装置に使用される密閉型鉛蓄電池に
ついて実測したところ、フロート充電中で60Hzのリ
プル電圧が10mVも密閉型鉛蓄電池の端子電圧に含ま
れていた例もある。この場合、単に密閉型鉛蓄電池の端
子電圧に含まれる交流電圧成分のピーク−ピーク値(P
−P値)を通電電流で割って内部インピーダンス値とす
ると大きな誤差を伴うという問題があった。Further, a ripple current may flow through the sealed lead-acid battery, and an error may occur when the terminal voltage at the time of measurement includes the ripple voltage. When a sealed lead-acid battery used in an uninterruptible AC power supply with an inverter circuit as a load was measured, there was an example in which a 60-Hz ripple voltage during float charging was included in the terminal voltage of the sealed lead-acid battery as much as 10 mV. . In this case, simply the peak-peak value (P) of the AC voltage component included in the terminal voltage of the sealed lead-acid battery
When the internal impedance value is obtained by dividing (−P value) by the supplied current, there is a problem that a large error occurs.
【0008】本発明の目的は、専用の交流電流通電部を
設けずに精度よく密閉型鉛蓄電池の内部インピーダンス
を測定して密閉型鉛蓄電池の劣化状態を判定して表示す
ることができる密閉型鉛蓄電池を備えた電源装置を提供
することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a sealed type lead-acid battery which can accurately measure the internal impedance of the sealed lead-acid battery and determine and display the deterioration state of the sealed lead-acid battery without providing a dedicated alternating current conducting portion. An object of the present invention is to provide a power supply device including a lead storage battery.
【0009】[0009]
【課題を解決するための手段】本発明の密閉型鉛蓄電池
を備えた電源装置は、常時は負荷に直流電力を供給する
とともに密閉型鉛蓄電池を浮動充電する充電装置と、密
閉型鉛蓄電池の劣化状態を内部インピーダンに基づいて
判定する劣化判定装置と、劣化判定装置の判定結果を表
示する表示部とを備えている。前述の劣化判定装置は、
密閉型鉛蓄電池の内部インピーダンスを測定するインピ
ーダンス測定部と、この測定した内部インピーダンスに
基づいて密閉型鉛蓄電池の劣化状態を判定する劣化判定
部とを具備している。According to the present invention, there is provided a power supply device having a sealed lead-acid battery according to the present invention. The charging device always supplies DC power to a load and float-charges the sealed lead-acid battery. The apparatus includes a deterioration determination device that determines the deterioration state based on the internal impedance, and a display unit that displays a determination result of the deterioration determination device. The above-described deterioration determination device is:
The system includes an impedance measuring unit that measures the internal impedance of the sealed lead-acid battery, and a deterioration determining unit that determines the state of deterioration of the sealed lead-acid battery based on the measured internal impedance.
【0010】前述の充電装置は、内部インピーダンス測
定時に、充電のための通常の設定電圧と密閉型鉛蓄電池
から負荷に一定周波数の放電電流が流れるようになる低
い電圧とを一定の周期で出力するように構成されてい
る。The above-described charging device outputs a normal set voltage for charging and a low voltage at which a discharge current having a constant frequency flows from the sealed lead-acid battery to the load at a fixed cycle when measuring the internal impedance. It is configured as follows.
【0011】また前述の劣化判定装置のインピーダンス
測定部は、放電電流を検出する放電電流検出手段と、放
電電流の放電電流波形をフーリエ変換して前述の一定周
波数を基本周波数とする放電電流波形のフーリエ変換値
を求める第1のフーリエ変換手段と、電池の放電中の電
池電圧を検出する放電電圧検出手段と、放電中の電池電
圧の電圧応答波形をフーリエ変換して前述の一定周波数
を基本周波数とする電圧応答波形のフーリエ変換値を求
める第2のフーリエ変換手段と、求めた電圧応答波形の
フーリエ変換値を放電電流波形のフーリエ変換値で除し
て(割って)内部インピーダンスを求めるインピーダン
ス演算手段とから構成されている。The impedance measuring section of the deterioration judging device includes a discharge current detecting means for detecting a discharge current, a Fourier transform of the discharge current waveform of the discharge current, and a discharge current waveform having the above-mentioned constant frequency as a basic frequency. First Fourier transform means for obtaining a Fourier transform value, discharge voltage detecting means for detecting a battery voltage during discharge of the battery, and a Fourier transform of a voltage response waveform of the battery voltage during discharge to obtain the aforementioned constant frequency as a fundamental frequency. Second Fourier transform means for calculating a Fourier transform value of the voltage response waveform to be calculated, and an impedance calculation for dividing (dividing) the obtained Fourier transform value of the voltage response waveform by the Fourier transform value of the discharge current waveform to obtain an internal impedance Means.
【0012】劣化判定部は、演算により求めた内部イン
ピーダンスに基づいて寿命を判定するものであるが、特
別に判定を行わずに、単に前述の表示部に密閉型鉛蓄電
池の内部インピーダンスを表示するようにしてもよい。
表示部に内部インピーダンスを表示する場合に、寿命到
達の基準となる内部インピーダンスの判定基準値または
判定基準レベルを一緒に表示すれば、使用者は内部イン
ピーダンスと判定基準値または判定基準レベルを対比す
ることにより、寿命の到来を予測することができる。ま
た劣化判定部を、演算により求めた内部インピーダンス
に基づいて寿命を判定する場合には、例えば寿命到達の
基準となる内部インピーダンスの判定基準値または判定
基準レベルと演算により求めた内部インピーダンスとを
比較してその結果を数字または量で表すようにしてもよ
いし、また公知の方法で推定放電持続時間を求めて劣化
状態を判定してもよい。The deterioration judging section judges the life based on the internal impedance obtained by calculation, but simply displays the internal impedance of the sealed lead-acid battery on the above-mentioned display section without making any special judgment. You may do so.
When displaying the internal impedance on the display unit, if the judgment reference value or the judgment reference level of the internal impedance which is the reference of the end of life is displayed together, the user compares the internal impedance with the judgment reference value or the judgment reference level. Thus, the end of the life can be predicted. When determining the life based on the calculated internal impedance, the deterioration determination unit compares the calculated internal impedance with a reference value or a reference level of the internal impedance, which is a reference for reaching the life, for example. The result may be represented by a number or a quantity, or the deterioration state may be determined by obtaining an estimated discharge duration time by a known method.
【0013】本発明に係る密閉型鉛蓄電池を備えた電源
装置は、充電装置の出力電圧を通常の設定電圧と通常の
設定電圧より低い電圧値に一定周期毎に切り換える。し
たがって充電装置の出力電圧が通常の設定電圧の場合に
は負荷へ充電装置から電力が供給され、充電装置の出力
電圧が通常の設定電圧より低い場合には密閉型鉛蓄電池
から電力が供給される。すなわち、密閉型鉛蓄電池から
は一定周期毎に放電電流が放電され、当該周期に対応し
た周波数の成分を含む交流電流が放電されることにな
る。内部インピーダンスはこの放電の際の密閉型鉛蓄電
池の電圧応答成分の当該周波数成分の振幅を放電電流の
当該周波数成分の振幅で除した値となる。なお、本発明
ではフーリエ変換により放電電流波形と電圧応答波形の
当該周波数成分を求めているため、当該周波数成分以外
の周波数成分は除去され、ノイズ,リプル電圧の影響を
少なくして精度よく内部インピーダンスを測定できる。A power supply device having a sealed lead-acid battery according to the present invention switches the output voltage of a charging device between a normal set voltage and a voltage value lower than the normal set voltage at regular intervals. Therefore, when the output voltage of the charging device is the normal set voltage, power is supplied from the charging device to the load, and when the output voltage of the charging device is lower than the normal set voltage, power is supplied from the sealed lead-acid battery. . That is, a discharge current is discharged from the sealed lead storage battery at regular intervals, and an alternating current including a component having a frequency corresponding to the cycle is discharged. The internal impedance is a value obtained by dividing the amplitude of the frequency component of the voltage response component of the sealed lead-acid battery during the discharge by the amplitude of the frequency component of the discharge current. In the present invention, since the frequency components of the discharge current waveform and the voltage response waveform are obtained by Fourier transform, the frequency components other than the frequency components are removed, and the influence of noise and ripple voltage is reduced, and the internal impedance is accurately determined. Can be measured.
【0014】[0014]
【発明の実施の形態】以下、図1を参照して、本発明の
密閉型鉛蓄電池を備えた電源装置を無停電電源装置に適
用した実施の形態の一例を説明する。図1は本発明の密
閉型鉛蓄電池を備えた電源装置の実施の形態の一例を示
す概略構成図である。同図において、1は商用電源を入
力とする充電装置である。この充電装置1の2つの出力
端子間には、密閉型鉛蓄電池2とシャント抵抗5の直列
回路が接続されている。このシャント抵抗5は密閉型鉛
蓄電池2からの放電電流を電圧の変化で検出する目的で
配置されたものである。そして密閉型鉛蓄電池2とシャ
ント抵抗5の直列回路に対して負荷6が並列接続されて
いる。この負荷6は、この例が交流無停電電源装置に使
用される場合には、インバータ回路であり、また自動車
の電源に使用さる場合には、バッテリ以外の電装品であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of an embodiment in which a power supply device having a sealed lead-acid battery of the present invention is applied to an uninterruptible power supply device will be described with reference to FIG. FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a power supply device including a sealed lead-acid battery of the present invention. In FIG. 1, reference numeral 1 denotes a charging device that receives a commercial power supply. A series circuit of a sealed lead-acid battery 2 and a shunt resistor 5 is connected between two output terminals of the charging device 1. The shunt resistor 5 is provided for detecting a discharge current from the sealed lead-acid battery 2 by a change in voltage. A load 6 is connected in parallel to a series circuit of the sealed lead-acid battery 2 and the shunt resistor 5. The load 6 is an inverter circuit when this example is used for an AC uninterruptible power supply, and is an electrical component other than a battery when it is used for an automobile power supply.
【0015】充電装置1はマイクロプロセッサ7によっ
て実現される図3に示した放電制御部75により制御さ
れて、通常は負荷6に直流電流を供給するとともに密閉
型鉛蓄電池2を浮動充電している。そして、内部インピ
ーダンス測定時には、充電のための通常の設定電圧と密
閉型鉛蓄電池2から負荷6に一定周波数の放電電流が流
れるようになる通常の設定電圧より低い電圧とを交互に
一定の周期で出力する。このような充電装置1の構成
は、図2に示す通りである。The charging device 1 is controlled by a discharge control unit 75 shown in FIG. 3 which is realized by the microprocessor 7, and normally supplies a direct current to the load 6 and float-charges the sealed lead-acid battery 2. . At the time of measuring the internal impedance, a normal set voltage for charging and a voltage lower than the normal set voltage at which a discharge current having a fixed frequency flows from the sealed lead-acid battery 2 to the load 6 alternately at a constant cycle. Output. The configuration of such a charging device 1 is as shown in FIG.
【0016】図2は、充電装置1の一例の回路を示す回
路図である。この充電装置1の回路は、トランスTを介
して入力された交流を4つのダイオードをブリッジ接続
してなる整流回路RCを通して直流に整流する。整流回
路RCの出力は、主制御トランジスタTr1 によって制
御される。主制御トランジスタTr1 のベースには抵抗
R2 を介してトランジスタTr2 が接続され、このトラ
ンジスタTr2 のベースには抵抗R3 及びR4 からなる
分圧回路の分圧点が接続されている。抵抗R3及びR4
からなる分圧回路には、誤差増幅器OPの出力が印加さ
れている。誤差増幅器OPの反転入力は、逆流防止用ダ
イオードD及び抵抗R5 を介して、主制御トランジスタ
Tr1 の出力に接続されており、また誤差増幅器OPの
非反転入力には基準電圧源Vref から基準電圧が入力さ
れている。この誤差増幅器OPを含む回路により、出力
電圧を定電圧にするためのフィードバックループが構成
されている。誤差増幅器OPの反転入力は、抵抗R5 、
抵抗R6 及び抵抗R7 からなる分圧回路によって分圧さ
れている。抵抗R7 の両端には、出力電圧切替用のトラ
ンジスタTr3 のエミッタ−コレクタ回路が並列接続さ
れており、トランジスタTr3 のベースには抵抗R8 及
び抵抗R9 からなる分圧回路の分圧点が接続されてい
る。抵抗R8 の端部には、図1のマイクロプロセッサ7
から制御信号が入力される。トランジスタTr3 がオン
状態にあると抵抗R7 が短絡されて、誤差増幅器OPの
反転入力に接続されている抵抗R5 、抵抗R6 及び抵抗
R7 からなる分圧回路の分圧比は低くなる。またトラン
ジスタTr3 がオフ状態にあると抵抗R7 が短絡されず
に分圧回路に挿入されるため、誤差増幅器OPの反転入
力に接続されている抵抗R5 、抵抗R6 及び抵抗R7 か
らなる分圧回路の分圧比は高くなる。この分圧比が高い
ときには、充電装置の出力電圧が高くなり、分圧比が低
いときには充電装置の出力電圧は低くなる。したがって
通常の充電時には、マイクロプロセッサ7からトランジ
スタTr3 をオフ状態にする制御信号が出力されて抵抗
R8 を通してトランジスタTr3 のベースに供給され、
またインピーダンス測定時には、マイクロプロセッサ7
から一定の周波数でトランジスタTr3 をオン・オフす
る制御信号が出力されて、抵抗R8 を通してトランジス
タTr3 のベースに供給される。なおこの回路の各回路
要素は、インピーダンス測定時に、充電のための通常の
設定電圧と密閉型鉛蓄電池から負荷に一定周波数の放電
電流が流れるようになる低い電圧とが一定の周期で出力
されるように定められている。FIG. 2 is a circuit diagram showing an example of a circuit of the charging device 1. The circuit of the charging device 1 rectifies the alternating current input through the transformer T into a direct current through a rectifier circuit RC having four diodes connected in a bridge. The output of the rectifier circuit RC is controlled by the main control transistor Tr1. The transistor Tr2 is connected to the base of the main control transistor Tr1 via a resistor R2, and the base of the transistor Tr2 is connected to a voltage dividing point of a voltage dividing circuit composed of the resistors R3 and R4. Resistance R3 and R4
The output of the error amplifier OP is applied to the voltage dividing circuit composed of. The inverting input of the error amplifier OP is connected to the output of the main control transistor Tr1 via a backflow prevention diode D and a resistor R5, and the reference voltage from the reference voltage source Vref is applied to the non-inverting input of the error amplifier OP. Has been entered. The circuit including the error amplifier OP forms a feedback loop for making the output voltage constant. The inverting input of the error amplifier OP is connected to a resistor R5,
The voltage is divided by a voltage dividing circuit including a resistor R6 and a resistor R7. An emitter-collector circuit of an output voltage switching transistor Tr3 is connected in parallel to both ends of the resistor R7, and a voltage dividing point of a voltage dividing circuit composed of the resistors R8 and R9 is connected to the base of the transistor Tr3. I have. At the end of the resistor R8, the microprocessor 7 of FIG.
Receives a control signal. When the transistor Tr3 is on, the resistor R7 is short-circuited, and the voltage dividing ratio of the voltage dividing circuit composed of the resistor R5, the resistor R6 and the resistor R7 connected to the inverting input of the error amplifier OP decreases. When the transistor Tr3 is in the off state, the resistor R7 is inserted into the voltage dividing circuit without being short-circuited. Therefore, the voltage dividing circuit composed of the resistors R5, R6 and R7 connected to the inverting input of the error amplifier OP. The partial pressure ratio increases. When the division ratio is high, the output voltage of the charging device increases, and when the division ratio is low, the output voltage of the charging device decreases. Therefore, during normal charging, a control signal for turning off the transistor Tr3 is output from the microprocessor 7 and supplied to the base of the transistor Tr3 through the resistor R8.
At the time of impedance measurement, the microprocessor 7
Outputs a control signal for turning on / off the transistor Tr3 at a constant frequency, and supplies the control signal to the base of the transistor Tr3 through the resistor R8. At the time of impedance measurement, each circuit element of this circuit outputs a regular set voltage for charging and a low voltage at which a constant-frequency discharge current flows from the sealed lead-acid battery to the load at a constant cycle. It is determined as follows.
【0017】シャント抵抗5の両端には、放電電流値に
比例した電流波形が得られる。そしてシャント抵抗5の
両端には、交流電圧増幅部3aの入力部が接続されてい
る。この交流電圧増幅部3aは、シャント抵抗5の両端
に現れる電流波形を後のA/Dコンバータ3bによるA
/D変換に必要な値まで電流波形を増幅する。交流電圧
増幅部3aの出力部に接続されたA/Dコンバータ3b
によりデジタル信号に変換された放電電流波形は、図3
に示すようにマイクロプロセッサ7で実現される第1の
フーリエ変換手段71に入力されてフーリエ変換され
る。この第1のフーリエ変換手段71は、A/Dコンバ
ータ3bから出力された放電電流の放電電流波形をフー
リエ変換して、前述の充電装置1の出力電圧によって定
まる一定周波数(以下、放電周波数という)を基本周波
数とする放電電流波形のフーリエ変換値を出力する。第
1のフーリエ変換手段71がフリーエ変換を行うタイミ
ング及び前述の一定周波数は、充電装置1を制御する制
御信号を出力する放電制御部75からの指令に基づいて
定まる。At both ends of the shunt resistor 5, a current waveform proportional to the discharge current value is obtained. The input of the AC voltage amplifier 3a is connected to both ends of the shunt resistor 5. The AC voltage amplifying unit 3a converts the current waveform appearing at both ends of the shunt resistor 5 into an A / D
The current waveform is amplified to a value required for / D conversion. A / D converter 3b connected to the output of AC voltage amplifier 3a
The discharge current waveform converted into a digital signal by
As shown in (1), it is input to the first Fourier transform means 71 realized by the microprocessor 7 and subjected to Fourier transform. The first Fourier transform means 71 performs a Fourier transform on the discharge current waveform of the discharge current output from the A / D converter 3b, and a constant frequency (hereinafter, referred to as a discharge frequency) determined by the output voltage of the charging device 1 described above. And outputs a Fourier transform value of a discharge current waveform having a fundamental frequency of The timing at which the first Fourier transform unit 71 performs the Fourier transform and the above-described constant frequency are determined based on a command from the discharge control unit 75 that outputs a control signal for controlling the charging device 1.
【0018】また、密閉型鉛蓄電池2の両端には交流電
圧増幅部3cの入力端が接続されている。この交流電圧
増幅部3cも、前述の交流電圧増幅部3aと同様に、後
のA/Dコンバータ3dによるA/D変換に必要な値ま
で電池電圧を増幅する。交流電圧増幅部3cの出力部に
は、A/Dコンバータ3dが接続されており、A/Dコ
ンバータ3dによりデジタル信号に変換された電池電圧
応答波形は、マイクロプロセッサ7によって実現される
図3の第2のフーリエ変換手段72に入力されてフーリ
エ変換される。この第2のフーリエ変換手段72は、A
/Dコンバータ3dから出力された放電電圧応答波形を
フーリエ変換して、前述の放電周波数を基本周波数とす
る電圧応答波形のフーリエ変換値を出力する。An input terminal of an AC voltage amplifier 3c is connected to both ends of the sealed lead-acid battery 2. The AC voltage amplifying unit 3c also amplifies the battery voltage to a value necessary for A / D conversion by the A / D converter 3d later, similarly to the above-described AC voltage amplifying unit 3a. An A / D converter 3d is connected to the output of the AC voltage amplifying unit 3c, and the battery voltage response waveform converted into a digital signal by the A / D converter 3d is realized by the microprocessor 7 in FIG. The signal is input to the second Fourier transform means 72 and Fourier transformed. The second Fourier transform means 72 calculates A
A Fourier transform is performed on the discharge voltage response waveform output from the / D converter 3d, and a Fourier transform value of the voltage response waveform having the discharge frequency as a basic frequency is output.
【0019】上記例において、シャント抵抗5、交流電
圧増幅部3a及びA/Dコンバータ3bによって放電電
流検出手段が構成され、交流電圧増幅部3c及びA/D
コンバータ3dによって放電電圧検出手段が構成されて
いる。In the above example, the shunt resistor 5, the AC voltage amplifier 3a and the A / D converter 3b constitute a discharge current detecting means, and the AC voltage amplifier 3c and the A / D
The converter 3d constitutes a discharge voltage detecting means.
【0020】図3におけるインピーダンス演算手段7
3、劣化判定部74及び放電制御部75はいずれもマイ
クロプロセッサ7によって実現される。表示部4はLE
Dセグメント等を用いたものでマイクロプロセッサ7に
よって実現される表示制御部を通して劣化判定部の結果
等を表示する。なおこの例では劣化判定部74が表示制
御部の機能を有していて、インピーダンス演算手段73
で演算した演算結果を表示部4に表示させ、内部インピ
ーダンスが予め定めた値以上になると表示部4の表示を
点滅させる等して寿命の到来を表示するようにように構
成されている。なお劣化判定部74の構成は、インピー
ダンス演算手段73で演算した演算結果を表示部4に表
示させるだけもよいが、インピーダンス演算手段73で
演算した演算結果を用いて公知の寿命判定技術で寿命を
判定して、その結果を表示部4に表示させるように構成
してもよいのは勿論である。The impedance calculation means 7 in FIG.
3. The deterioration determination unit 74 and the discharge control unit 75 are all realized by the microprocessor 7. The display unit 4 is LE
The result of the deterioration judgment unit is displayed through a display control unit realized by the microprocessor 7 using a D segment or the like. In this example, the deterioration determination unit 74 has the function of the display control unit, and the impedance calculation unit 73
Is displayed on the display unit 4, and when the internal impedance becomes equal to or greater than a predetermined value, the display on the display unit 4 is blinked to indicate the end of life. Note that the configuration of the deterioration determination unit 74 may be such that the calculation result calculated by the impedance calculation unit 73 is simply displayed on the display unit 4, but the life calculated by the known calculation method by the impedance calculation unit 73 is used to determine the life. It is a matter of course that the determination may be made and the result may be displayed on the display unit 4.
【0021】この例では、インピーダンス測定(寿命判
定)の指令はマイクロプロセッサ7に接続している入力
スイッチ部8を通じて行うようにしている。即ち、この
例では、常時劣化状態を判定せずに、必要なときに入力
スイッチ部8をオン状態として、そのときだけ劣化状態
の判定を行う。このようにすると、節電が図れるだけで
なく、表示部4として専用の表示手段を設けることな
く、他の特性の表示に用いる表示手段を兼用することが
できる。In this example, a command for impedance measurement (life determination) is made through an input switch section 8 connected to a microprocessor 7. That is, in this example, the input switch section 8 is turned on when necessary, and the deterioration state is determined only at that time, without always determining the deterioration state. With this configuration, not only power saving can be achieved, but also a display unit used for displaying other characteristics can be used as the display unit 4 without providing a dedicated display unit.
【0022】次に本実施例の動作を説明する。充電装置
1は通常運転では負荷6に直流電流を供給するとともに
密閉型鉛蓄電池2を浮動充電している。密閉型鉛蓄電池
2の劣化状態を判定しようとする際、すなわち、密閉型
鉛蓄電池2の内部インピーダンスの測定を行おうとする
ときには、入力スイッチ部8からの入力でマイクロプロ
セッサ7の放電制御部75から放電制御指令を出力す
る。充電装置1は、放電制御指令を受けとると、密閉型
鉛蓄電池2の充電のための通常の設定電圧と密閉型鉛蓄
電池2から放電電流が流れる低い電圧(通常の設定電圧
よりも低い電圧)とを一定の周波数で出力する。充電装
置1の出力電圧が、設定電圧より低い電圧になると密閉
型鉛蓄電池2から負荷6及びシャント抵抗5に放電電流
が流れ、設定電圧のときは充電装置1から負荷6へ電力
が供給されるとともに密閉型鉛蓄電池2は浮動充電され
る。これにより負荷6への電力の供給に支障を与えるこ
となく、密閉型鉛蓄電池2からは上述の放電周波数の放
電電流が流れることになる。マイクロプロセッサ7はこ
の放電電流が流れる時の放電電流波形と電圧応答波形の
データを取り込み処理する。すなわち、マイクロプロセ
ッサ7は、交流電圧増幅部3aと3cとで増幅された密
閉型鉛蓄電池2の放電電流波形と電圧応答波形のデータ
をそれぞれA/Dコンバータ3bと3dを通してデジタ
ル信号として取り込み、マイクロプロセッサ7の第1及
び第2のフーリエ変換手段71及び72でそれぞれ放電
周波数を基本とする放電電流波形と電圧応答波形のフー
リエ変換値を求める。この例では、放電制御部75から
与えられるタイミングで、第1及び第2のフーリエ変換
手段71及び72がフーリエ変換を行い、かつインピー
ダンス演算手段73がインピーダンスの演算を行う。マ
イクロプロセッサ7のインピーダンス演算手段73で
は、求められた電圧応答波形のフーリエ変換値を前述の
放電電流波形のフーリエ変換値で除して(割って)、蓄
電池の内部インピーダンスを求める。マイクロプロセッ
サ7の劣化判定部74では得られた内部インピーダンス
を基に密閉型鉛蓄電池2の劣化状態を判定する。得られ
た内部インピーダンス値、密閉型鉛蓄電池2の劣化状態
の判定結果等については表示部4に表示するようにして
いる。以上の内部インピーダンス測定が終了すると充電
装置1は、マイクロプロセッサ7の放電制御部により通
常の浮動充電状態に戻る。Next, the operation of this embodiment will be described. In normal operation, the charging device 1 supplies a direct current to the load 6 and float-charges the sealed lead-acid battery 2. When the degradation state of the sealed lead-acid battery 2 is to be determined, that is, when the internal impedance of the sealed lead-acid battery 2 is to be measured, the discharge control unit 75 of the microprocessor 7 receives an input from the input switch unit 8. Outputs a discharge control command. When receiving the discharge control command, charging device 1 sets a normal set voltage for charging sealed lead-acid battery 2 and a low voltage (a voltage lower than the normal set voltage) at which a discharge current flows from sealed lead-acid battery 2. Is output at a constant frequency. When the output voltage of the charging device 1 becomes lower than the set voltage, a discharge current flows from the sealed lead-acid battery 2 to the load 6 and the shunt resistor 5, and when the output voltage is the set voltage, power is supplied from the charging device 1 to the load 6. At the same time, the sealed lead-acid battery 2 is floatingly charged. As a result, the discharge current having the above-described discharge frequency flows from the sealed lead-acid battery 2 without hindering the supply of power to the load 6. The microprocessor 7 takes in and processes data of the discharge current waveform and the voltage response waveform when the discharge current flows. That is, the microprocessor 7 takes in the data of the discharge current waveform and the voltage response waveform of the sealed lead-acid battery 2 amplified by the AC voltage amplifiers 3a and 3c as digital signals through the A / D converters 3b and 3d, respectively. First and second Fourier transform means 71 and 72 of the processor 7 respectively obtain Fourier transform values of the discharge current waveform and the voltage response waveform based on the discharge frequency. In this example, the first and second Fourier transform means 71 and 72 perform a Fourier transform at the timing given from the discharge control unit 75, and the impedance computing means 73 computes the impedance. The impedance calculating means 73 of the microprocessor 7 divides (divides) the obtained Fourier transform value of the voltage response waveform by the Fourier transform value of the discharge current waveform to obtain the internal impedance of the storage battery. The deterioration determination unit 74 of the microprocessor 7 determines the deterioration state of the sealed lead-acid battery 2 based on the obtained internal impedance. The obtained internal impedance value, the determination result of the deterioration state of the sealed lead-acid battery 2 and the like are displayed on the display unit 4. When the above-described internal impedance measurement is completed, the charging device 1 returns to the normal floating charge state by the discharge control unit of the microprocessor 7.
【0023】このように本発明では充電装置1の出力電
圧を制御することにより密閉型鉛蓄電池2を放電させる
ようにしているため、専用の交流電流通電部が不要とな
り、また、放電周波数成分のフーリエ変換値により内部
インピーダンス値を算出するようにしているため、ノイ
ズ,リプル電圧成分などの影響を受けず正確な内部イン
ピーダンス測定が可能となる。As described above, according to the present invention, since the sealed lead-acid battery 2 is discharged by controlling the output voltage of the charging device 1, a dedicated AC current passing section is not required, and the discharge frequency component of the discharge frequency component is not required. Since the internal impedance value is calculated based on the Fourier transform value, accurate internal impedance measurement can be performed without being affected by noise, ripple voltage components, and the like.
【0024】次に、12V,6.5Ahの密閉型鉛蓄電
池を備えた電源装置とした実施例において内部インピー
ダンス測定を行った例を示す。充電装置1の浮動充電時
の設定電圧は13.65V、放電時の設定電圧は10.
9V、負荷6は約1A流れる負荷である。充電装置1へ
の出力電圧の切換周期は32msec、A/Dコンバー
タ3bと3dのサンプリング間隔は0.5msecであ
る。従って放電電流の1周期は64msecであり、放
電周波数15.625Hzの内部インピーダンスを測定するこ
とになる。この測定を行ったときの放電電流波形を図4
に、電圧応答波形を図5に示す。この波形を高速フーリ
エ変換でフーリエ変換した結果、電流波形の放電周波数
15.625Hzの成分は0.700A、電圧応答波形の放電
周波数15.625Hzの成分は30.3mVであった。従っ
て、放電周波数15.652Hzの内部インピーダンスは3
0.3(mV)/0.700(A)=43.3(mΩ)
であった。この値は同一電池を高精度のインピーダンス
測定装置で測定した値44.6(mΩ)とほぼ同じ値で
あり、本発明でもインピーダンス測定装置とほぼ同じ値
が得られた。その結果、得られた内部インピーダンス値
に基づいて従来よりも高い精度で劣化状態を判定するこ
とが可能になることが分かった。Next, an example in which the internal impedance was measured in an embodiment in which a power supply device provided with a sealed lead-acid battery of 12 V and 6.5 Ah is shown. The set voltage at the time of floating charge of the charging device 1 is 13.65 V, and the set voltage at the time of discharge is 10.
9V, the load 6 is a load that flows about 1A. The switching cycle of the output voltage to the charging device 1 is 32 msec, and the sampling interval between the A / D converters 3b and 3d is 0.5 msec. Therefore, one cycle of the discharge current is 64 msec, and the internal impedance at the discharge frequency of 15.625 Hz is measured. FIG. 4 shows the discharge current waveform when this measurement was performed.
FIG. 5 shows a voltage response waveform. As a result of Fourier transform of this waveform by fast Fourier transform, the discharge frequency of the current waveform
The component at 15.625 Hz was 0.700 A, and the component at the discharge frequency of 15.625 Hz in the voltage response waveform was 30.3 mV. Therefore, the internal impedance at the discharge frequency of 15.652 Hz is 3
0.3 (mV) /0.700 (A) = 43.3 (mΩ)
Met. This value is almost the same as the value 44.6 (mΩ) measured by the high-precision impedance measuring device for the same battery, and the same value as the impedance measuring device was obtained in the present invention. As a result, it was found that it is possible to determine the state of deterioration with higher accuracy than in the past, based on the obtained internal impedance value.
【0025】[0025]
【発明の効果】以上述べたように、本発明によれば、専
用の交流電流通電部を設けることなく、充電装置の設定
電圧を周期的に切り換えることによって密閉型鉛蓄電池
から負荷電流を周期的に放電し、内部インピーダンスを
測定することができる。また、測定が行われている間も
負荷への電力供給は継続されており、負荷の運転を中断
することなく密閉型鉛蓄電池の内部インピーダンス測定
ができる点でも優れている。また、フーリエ変換を行う
ことにより放電周期成分以外の周波数成分を除去するた
め、ノイズ,リプル電圧などの影響も受けることなく正
確な密閉型鉛蓄電池の内部インピーダンス測定ができる
点でも優れている。As described above, according to the present invention, the load current is periodically switched from the sealed lead-acid battery by periodically switching the set voltage of the charging device without providing a dedicated AC current flow section. And the internal impedance can be measured. In addition, the power supply to the load is continued even while the measurement is being performed, which is excellent in that the internal impedance of the sealed lead-acid battery can be measured without interrupting the operation of the load. In addition, since the frequency components other than the discharge cycle component are removed by performing the Fourier transform, it is excellent in that the internal impedance of the sealed lead-acid battery can be accurately measured without being affected by noise, ripple voltage and the like.
【図1】本発明の密閉型鉛蓄電池を備えた電源装置の実
施の形態の一例の構成のブロック図である。FIG. 1 is a block diagram of a configuration of an example of an embodiment of a power supply device including a sealed lead storage battery of the present invention.
【図2】充電装置の一例を示す回路図である。FIG. 2 is a circuit diagram illustrating an example of a charging device.
【図3】マイクロプイロセッサ7で実現する手段を示す
ブロック図である。FIG. 3 is a block diagram showing a unit realized by the micro-pile processor 7;
【図4】密閉型鉛蓄電池の放電電流波形を示す特性線図
である。FIG. 4 is a characteristic diagram showing a discharge current waveform of the sealed lead-acid battery.
【図5】密閉型鉛蓄電池の電圧応答波形を示す特性線図
である。FIG. 5 is a characteristic diagram showing a voltage response waveform of the sealed lead-acid battery.
1 充電装置 2 密閉型鉛蓄電池 4 表示部 5 シャント抵抗 6 負荷 7 マイクロプロセッサ 8 入力スイッチ部 3a,3c 交流電圧増幅部 3b,3d A/Dコンバータ 71 第1のフーリエ変換手段 72 第2のフーリエ変換手段 73 インピーダンス演算手段 74 劣化判定部 75 放電制御部 DESCRIPTION OF SYMBOLS 1 Charging device 2 Sealed lead storage battery 4 Display unit 5 Shunt resistor 6 Load 7 Microprocessor 8 Input switch unit 3a, 3c AC voltage amplifying unit 3b, 3d A / D converter 71 First Fourier transform means 72 Second Fourier transform Means 73 Impedance calculation means 74 Deterioration determination unit 75 Discharge control unit
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21006996AJP3564885B2 (en) | 1996-08-08 | 1996-08-08 | Power supply with sealed lead-acid battery |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21006996AJP3564885B2 (en) | 1996-08-08 | 1996-08-08 | Power supply with sealed lead-acid battery |
| Publication Number | Publication Date |
|---|---|
| JPH1056744Atrue JPH1056744A (en) | 1998-02-24 |
| JP3564885B2 JP3564885B2 (en) | 2004-09-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21006996AExpired - Fee RelatedJP3564885B2 (en) | 1996-08-08 | 1996-08-08 | Power supply with sealed lead-acid battery |
| Country | Link |
|---|---|
| JP (1) | JP3564885B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000010219A1 (en)* | 1998-08-10 | 2000-02-24 | Toyota Jidosha Kabushiki Kaisha | Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell |
| WO2000031557A1 (en)* | 1998-11-19 | 2000-06-02 | Korea Kumho Petrochemical Co., Ltd. | Method and apparatus for determining characteristic parameters of a charge storage device |
| WO2001009631A1 (en)* | 1999-08-03 | 2001-02-08 | Elliott Industries Limited | Assessing a parameter of cells in the batteries of uninterruptable power supplies |
| JP2002174650A (en)* | 2000-12-06 | 2002-06-21 | Nippon Soken Inc | Method for making electronic device model |
| EP1119882A4 (en)* | 1998-09-11 | 2002-09-18 | Keith S Champlin | METHOD AND DEVICE FOR MEASURING THE COMPLEX IMPEDANCE OF CELLS AND BATTERIES |
| US6850037B2 (en) | 1997-11-03 | 2005-02-01 | Midtronics, Inc. | In-vehicle battery monitor |
| WO2005015252A1 (en)* | 2003-06-27 | 2005-02-17 | The Furukawa Electric Co., Ltd. | Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system |
| US6871151B2 (en) | 1997-11-03 | 2005-03-22 | Midtronics, Inc. | Electronic battery tester with network communication |
| US6885195B2 (en) | 1996-07-29 | 2005-04-26 | Midtronics, Inc. | Method and apparatus for auditing a battery test |
| US6888468B2 (en) | 2003-01-22 | 2005-05-03 | Midtronics, Inc. | Apparatus and method for protecting a battery from overdischarge |
| US6891378B2 (en) | 2003-03-25 | 2005-05-10 | Midtronics, Inc. | Electronic battery tester |
| US6906522B2 (en) | 2002-03-29 | 2005-06-14 | Midtronics, Inc. | Battery tester with battery replacement output |
| US6909287B2 (en) | 1997-11-03 | 2005-06-21 | Midtronics, Inc. | Energy management system for automotive vehicle |
| US6913483B2 (en) | 2003-06-23 | 2005-07-05 | Midtronics, Inc. | Cable for electronic battery tester |
| US6914413B2 (en) | 1996-07-29 | 2005-07-05 | Midtronics, Inc. | Alternator tester with encoded output |
| US6919725B2 (en) | 2003-10-03 | 2005-07-19 | Midtronics, Inc. | Electronic battery tester/charger with integrated battery cell temperature measurement device |
| US6930485B2 (en) | 2002-03-14 | 2005-08-16 | Midtronics, Inc. | Electronic battery tester with battery failure temperature determination |
| US6941234B2 (en) | 2001-10-17 | 2005-09-06 | Midtronics, Inc. | Query based electronic battery tester |
| US6967484B2 (en) | 2000-03-27 | 2005-11-22 | Midtronics, Inc. | Electronic battery tester with automotive scan tool communication |
| US6998847B2 (en) | 2000-03-27 | 2006-02-14 | Midtronics, Inc. | Electronic battery tester with data bus for removable module |
| US7003410B2 (en) | 1996-07-29 | 2006-02-21 | Midtronics, Inc. | Electronic battery tester with relative test output |
| US7012433B2 (en) | 2002-09-18 | 2006-03-14 | Midtronics, Inc. | Battery tester upgrade using software key |
| US7015674B2 (en) | 2001-06-22 | 2006-03-21 | Midtronics, Inc. | Booster pack with storage capacitor |
| US7039533B2 (en) | 1999-04-08 | 2006-05-02 | Midtronics, Inc. | Battery test module |
| US7058525B2 (en) | 1999-04-08 | 2006-06-06 | Midtronics, Inc. | Battery test module |
| US7081755B2 (en) | 2002-09-05 | 2006-07-25 | Midtronics, Inc. | Battery tester capable of predicting a discharge voltage/discharge current of a battery |
| US7106070B2 (en) | 2004-07-22 | 2006-09-12 | Midtronics, Inc. | Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries |
| US7116109B2 (en) | 2003-11-11 | 2006-10-03 | Midtronics, Inc. | Apparatus and method for simulating a battery tester with a fixed resistance load |
| US7119686B2 (en) | 2004-04-13 | 2006-10-10 | Midtronics, Inc. | Theft prevention device for automotive vehicle service centers |
| US7126341B2 (en) | 1997-11-03 | 2006-10-24 | Midtronics, Inc. | Automotive vehicle electrical system diagnostic device |
| US7154276B2 (en) | 2003-09-05 | 2006-12-26 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US7208914B2 (en) | 2002-12-31 | 2007-04-24 | Midtronics, Inc. | Apparatus and method for predicting the remaining discharge time of a battery |
| US7212006B2 (en) | 2004-07-02 | 2007-05-01 | Bppower, Inc. | Method and apparatus for monitoring the condition of a battery by measuring its internal resistance |
| US7246015B2 (en) | 1996-07-29 | 2007-07-17 | Midtronics, Inc. | Alternator tester |
| US7319304B2 (en) | 2003-07-25 | 2008-01-15 | Midtronics, Inc. | Shunt connection to a PCB of an energy management system employed in an automotive vehicle |
| US7398176B2 (en) | 2000-03-27 | 2008-07-08 | Midtronics, Inc. | Battery testers with secondary functionality |
| US7408358B2 (en) | 2003-06-16 | 2008-08-05 | Midtronics, Inc. | Electronic battery tester having a user interface to configure a printer |
| JP2008259296A (en)* | 2007-04-04 | 2008-10-23 | Toshiba Mitsubishi-Electric Industrial System Corp | Uninterruptible power supply |
| US7446536B2 (en) | 2000-03-27 | 2008-11-04 | Midtronics, Inc. | Scan tool for electronic battery tester |
| US7479763B2 (en) | 2001-06-22 | 2009-01-20 | Midtronics, Inc. | Apparatus and method for counteracting self discharge in a storage battery |
| US7495415B2 (en) | 2002-04-16 | 2009-02-24 | Hitachi, Ltd. | DC backup power supply system |
| US7498767B2 (en) | 2005-02-16 | 2009-03-03 | Midtronics, Inc. | Centralized data storage of condition of a storage battery at its point of sale |
| US7501795B2 (en) | 2001-06-22 | 2009-03-10 | Midtronics Inc. | Battery charger with booster pack |
| US7505856B2 (en) | 1999-04-08 | 2009-03-17 | Midtronics, Inc. | Battery test module |
| US7545146B2 (en) | 2004-12-09 | 2009-06-09 | Midtronics, Inc. | Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential |
| US7557586B1 (en) | 1999-11-01 | 2009-07-07 | Midtronics, Inc. | Electronic battery tester |
| US7595643B2 (en) | 2003-11-11 | 2009-09-29 | Midtronics, Inc. | Apparatus and method for simulating a battery tester with a fixed resistance load |
| US7598699B2 (en) | 2004-02-20 | 2009-10-06 | Midtronics, Inc. | Replaceable clamp for electronic battery tester |
| US7598744B2 (en) | 2000-03-27 | 2009-10-06 | Midtronics, Inc. | Scan tool for electronic battery tester |
| US7642786B2 (en) | 2004-06-01 | 2010-01-05 | Midtronics, Inc. | Battery tester capable of identifying faulty battery post adapters |
| US7788052B2 (en) | 2006-06-09 | 2010-08-31 | The Furukawa Electric Co., Ltd. | Method and device for determining state of health of the battery, and battery power supply system |
| JP2013029411A (en)* | 2011-07-28 | 2013-02-07 | Yokogawa Electric Corp | Battery impedance measuring device |
| US8513949B2 (en) | 2000-03-27 | 2013-08-20 | Midtronics, Inc. | Electronic battery tester or charger with databus connection |
| US8872517B2 (en) | 1996-07-29 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester with battery age input |
| US8958998B2 (en) | 1997-11-03 | 2015-02-17 | Midtronics, Inc. | Electronic battery tester with network communication |
| US8963550B2 (en) | 2004-08-20 | 2015-02-24 | Midtronics, Inc. | System for automatically gathering battery information |
| US9018958B2 (en) | 2003-09-05 | 2015-04-28 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US9201120B2 (en) | 2010-08-12 | 2015-12-01 | Midtronics, Inc. | Electronic battery tester for testing storage battery |
| US9229062B2 (en) | 2010-05-27 | 2016-01-05 | Midtronics, Inc. | Electronic storage battery diagnostic system |
| US9244100B2 (en) | 2013-03-15 | 2016-01-26 | Midtronics, Inc. | Current clamp with jaw closure detection |
| US9255955B2 (en) | 2003-09-05 | 2016-02-09 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US9274157B2 (en) | 2007-07-17 | 2016-03-01 | Midtronics, Inc. | Battery tester for electric vehicle |
| US9312575B2 (en) | 2013-05-16 | 2016-04-12 | Midtronics, Inc. | Battery testing system and method |
| US9335362B2 (en) | 2007-07-17 | 2016-05-10 | Midtronics, Inc. | Battery tester for electric vehicle |
| US9419311B2 (en) | 2010-06-18 | 2016-08-16 | Midtronics, Inc. | Battery maintenance device with thermal buffer |
| US9425487B2 (en) | 2010-03-03 | 2016-08-23 | Midtronics, Inc. | Monitor for front terminal batteries |
| US9496720B2 (en) | 2004-08-20 | 2016-11-15 | Midtronics, Inc. | System for automatically gathering battery information |
| US9588185B2 (en) | 2010-02-25 | 2017-03-07 | Keith S. Champlin | Method and apparatus for detecting cell deterioration in an electrochemical cell or battery |
| US9851411B2 (en) | 2012-06-28 | 2017-12-26 | Keith S. Champlin | Suppressing HF cable oscillations during dynamic measurements of cells and batteries |
| US9923289B2 (en) | 2014-01-16 | 2018-03-20 | Midtronics, Inc. | Battery clamp with endoskeleton design |
| US9966676B2 (en) | 2015-09-28 | 2018-05-08 | Midtronics, Inc. | Kelvin connector adapter for storage battery |
| US10046649B2 (en) | 2012-06-28 | 2018-08-14 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
| US10222397B2 (en) | 2014-09-26 | 2019-03-05 | Midtronics, Inc. | Cable connector for electronic battery tester |
| US10317468B2 (en) | 2015-01-26 | 2019-06-11 | Midtronics, Inc. | Alternator tester |
| US10429449B2 (en) | 2011-11-10 | 2019-10-01 | Midtronics, Inc. | Battery pack tester |
| US10473555B2 (en) | 2014-07-14 | 2019-11-12 | Midtronics, Inc. | Automotive maintenance system |
| JP2020016520A (en)* | 2018-07-25 | 2020-01-30 | 株式会社東陽テクニカ | Battery impedance evaluation device and battery impedance evaluation method |
| US10608353B2 (en) | 2016-06-28 | 2020-03-31 | Midtronics, Inc. | Battery clamp |
| JP2020527015A (en)* | 2017-09-22 | 2020-08-31 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Power circuit and adapter |
| CN112513652A (en)* | 2018-08-22 | 2021-03-16 | 株式会社自动网络技术研究所 | Internal resistance detection device and power supply device |
| US11054480B2 (en) | 2016-10-25 | 2021-07-06 | Midtronics, Inc. | Electrical load for electronic battery tester and electronic battery tester including such electrical load |
| US11325479B2 (en) | 2012-06-28 | 2022-05-10 | Midtronics, Inc. | Hybrid and electric vehicle battery maintenance device |
| US11474153B2 (en) | 2019-11-12 | 2022-10-18 | Midtronics, Inc. | Battery pack maintenance system |
| US11486930B2 (en) | 2020-01-23 | 2022-11-01 | Midtronics, Inc. | Electronic battery tester with battery clamp storage holsters |
| US11513160B2 (en) | 2018-11-29 | 2022-11-29 | Midtronics, Inc. | Vehicle battery maintenance device |
| US11545839B2 (en) | 2019-11-05 | 2023-01-03 | Midtronics, Inc. | System for charging a series of connected batteries |
| US11566972B2 (en) | 2019-07-31 | 2023-01-31 | Midtronics, Inc. | Tire tread gauge using visual indicator |
| US11650259B2 (en) | 2010-06-03 | 2023-05-16 | Midtronics, Inc. | Battery pack maintenance for electric vehicle |
| US11668779B2 (en) | 2019-11-11 | 2023-06-06 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
| US11740294B2 (en) | 2010-06-03 | 2023-08-29 | Midtronics, Inc. | High use battery pack maintenance |
| US11973202B2 (en) | 2019-12-31 | 2024-04-30 | Midtronics, Inc. | Intelligent module interface for battery maintenance device |
| US12237482B2 (en) | 2019-12-31 | 2025-02-25 | Midtronics, Inc. | Intelligent module interface for battery maintenance device |
| US12320857B2 (en) | 2016-10-25 | 2025-06-03 | Midtronics, Inc. | Electrical load for electronic battery tester and electronic battery tester including such electrical load |
| US12330513B2 (en) | 2022-02-14 | 2025-06-17 | Midtronics, Inc. | Battery maintenance device with high voltage connector |
| US12392833B2 (en) | 2022-05-09 | 2025-08-19 | Midtronics, Inc. | Electronic battery tester |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5370344A (en)* | 1976-12-03 | 1978-06-22 | Japan Storage Battery Co Ltd | Device for observing state of storage battery |
| JPH06294849A (en)* | 1993-04-08 | 1994-10-21 | Kyosan Electric Mfg Co Ltd | Life deciding apparatus for storage battery |
| JPH07128418A (en)* | 1993-11-05 | 1995-05-19 | Shindengen Electric Mfg Co Ltd | AC constant current charging / discharging circuit for battery and battery testing apparatus using the same |
| JPH0896855A (en)* | 1994-09-27 | 1996-04-12 | Yamaha Motor Co Ltd | Constitution method for secondary battery |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5370344A (en)* | 1976-12-03 | 1978-06-22 | Japan Storage Battery Co Ltd | Device for observing state of storage battery |
| JPH06294849A (en)* | 1993-04-08 | 1994-10-21 | Kyosan Electric Mfg Co Ltd | Life deciding apparatus for storage battery |
| JPH07128418A (en)* | 1993-11-05 | 1995-05-19 | Shindengen Electric Mfg Co Ltd | AC constant current charging / discharging circuit for battery and battery testing apparatus using the same |
| JPH0896855A (en)* | 1994-09-27 | 1996-04-12 | Yamaha Motor Co Ltd | Constitution method for secondary battery |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7246015B2 (en) | 1996-07-29 | 2007-07-17 | Midtronics, Inc. | Alternator tester |
| US7003410B2 (en) | 1996-07-29 | 2006-02-21 | Midtronics, Inc. | Electronic battery tester with relative test output |
| US8872517B2 (en) | 1996-07-29 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester with battery age input |
| US7295936B2 (en) | 1996-07-29 | 2007-11-13 | Midtronics, Inc. | Electronic battery tester with relative test output |
| US6914413B2 (en) | 1996-07-29 | 2005-07-05 | Midtronics, Inc. | Alternator tester with encoded output |
| US6885195B2 (en) | 1996-07-29 | 2005-04-26 | Midtronics, Inc. | Method and apparatus for auditing a battery test |
| US7642787B2 (en) | 1997-11-03 | 2010-01-05 | Midtronics Inc. | Automotive vehicle electrical system diagnostic device |
| US6909287B2 (en) | 1997-11-03 | 2005-06-21 | Midtronics, Inc. | Energy management system for automotive vehicle |
| US6871151B2 (en) | 1997-11-03 | 2005-03-22 | Midtronics, Inc. | Electronic battery tester with network communication |
| US7003411B2 (en) | 1997-11-03 | 2006-02-21 | Midtronics, Inc. | Electronic battery tester with network communication |
| US7126341B2 (en) | 1997-11-03 | 2006-10-24 | Midtronics, Inc. | Automotive vehicle electrical system diagnostic device |
| US6850037B2 (en) | 1997-11-03 | 2005-02-01 | Midtronics, Inc. | In-vehicle battery monitor |
| US8958998B2 (en) | 1997-11-03 | 2015-02-17 | Midtronics, Inc. | Electronic battery tester with network communication |
| US6924623B2 (en) | 1998-08-10 | 2005-08-02 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
| WO2000010219A1 (en)* | 1998-08-10 | 2000-02-24 | Toyota Jidosha Kabushiki Kaisha | Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell |
| US7030618B2 (en) | 1998-08-10 | 2006-04-18 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
| US7075305B2 (en) | 1998-08-10 | 2006-07-11 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
| US7180298B2 (en) | 1998-08-10 | 2007-02-20 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
| US7235326B2 (en) | 1998-08-10 | 2007-06-26 | Toyota Jidosha Kabushiki Kaisha | Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries |
| EP1119882A4 (en)* | 1998-09-11 | 2002-09-18 | Keith S Champlin | METHOD AND DEVICE FOR MEASURING THE COMPLEX IMPEDANCE OF CELLS AND BATTERIES |
| WO2000031557A1 (en)* | 1998-11-19 | 2000-06-02 | Korea Kumho Petrochemical Co., Ltd. | Method and apparatus for determining characteristic parameters of a charge storage device |
| US7505856B2 (en) | 1999-04-08 | 2009-03-17 | Midtronics, Inc. | Battery test module |
| US7039533B2 (en) | 1999-04-08 | 2006-05-02 | Midtronics, Inc. | Battery test module |
| US7058525B2 (en) | 1999-04-08 | 2006-06-06 | Midtronics, Inc. | Battery test module |
| WO2001009631A1 (en)* | 1999-08-03 | 2001-02-08 | Elliott Industries Limited | Assessing a parameter of cells in the batteries of uninterruptable power supplies |
| US6765388B1 (en) | 1999-08-03 | 2004-07-20 | Elliott Industries Limited | Assessing a parameter of cells in the batteries of uninterruptable power supplies |
| US7557586B1 (en) | 1999-11-01 | 2009-07-07 | Midtronics, Inc. | Electronic battery tester |
| US6967484B2 (en) | 2000-03-27 | 2005-11-22 | Midtronics, Inc. | Electronic battery tester with automotive scan tool communication |
| US8513949B2 (en) | 2000-03-27 | 2013-08-20 | Midtronics, Inc. | Electronic battery tester or charger with databus connection |
| US9052366B2 (en) | 2000-03-27 | 2015-06-09 | Midtronics, Inc. | Battery testers with secondary functionality |
| US6998847B2 (en) | 2000-03-27 | 2006-02-14 | Midtronics, Inc. | Electronic battery tester with data bus for removable module |
| US7398176B2 (en) | 2000-03-27 | 2008-07-08 | Midtronics, Inc. | Battery testers with secondary functionality |
| US8872516B2 (en) | 2000-03-27 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester mounted in a vehicle |
| US7598744B2 (en) | 2000-03-27 | 2009-10-06 | Midtronics, Inc. | Scan tool for electronic battery tester |
| US7446536B2 (en) | 2000-03-27 | 2008-11-04 | Midtronics, Inc. | Scan tool for electronic battery tester |
| JP2002174650A (en)* | 2000-12-06 | 2002-06-21 | Nippon Soken Inc | Method for making electronic device model |
| US7501795B2 (en) | 2001-06-22 | 2009-03-10 | Midtronics Inc. | Battery charger with booster pack |
| US7479763B2 (en) | 2001-06-22 | 2009-01-20 | Midtronics, Inc. | Apparatus and method for counteracting self discharge in a storage battery |
| US7015674B2 (en) | 2001-06-22 | 2006-03-21 | Midtronics, Inc. | Booster pack with storage capacitor |
| US7034541B2 (en) | 2001-10-17 | 2006-04-25 | Midtronics, Inc. | Query based electronic battery tester |
| US7363175B2 (en) | 2001-10-17 | 2008-04-22 | Midtronics, Inc. | Query based electronic battery tester |
| US6941234B2 (en) | 2001-10-17 | 2005-09-06 | Midtronics, Inc. | Query based electronic battery tester |
| US6930485B2 (en) | 2002-03-14 | 2005-08-16 | Midtronics, Inc. | Electronic battery tester with battery failure temperature determination |
| US6906522B2 (en) | 2002-03-29 | 2005-06-14 | Midtronics, Inc. | Battery tester with battery replacement output |
| US7495415B2 (en) | 2002-04-16 | 2009-02-24 | Hitachi, Ltd. | DC backup power supply system |
| US7081755B2 (en) | 2002-09-05 | 2006-07-25 | Midtronics, Inc. | Battery tester capable of predicting a discharge voltage/discharge current of a battery |
| US7012433B2 (en) | 2002-09-18 | 2006-03-14 | Midtronics, Inc. | Battery tester upgrade using software key |
| US7619417B2 (en) | 2002-12-31 | 2009-11-17 | Midtronics, Inc. | Battery monitoring system |
| US7208914B2 (en) | 2002-12-31 | 2007-04-24 | Midtronics, Inc. | Apparatus and method for predicting the remaining discharge time of a battery |
| US6888468B2 (en) | 2003-01-22 | 2005-05-03 | Midtronics, Inc. | Apparatus and method for protecting a battery from overdischarge |
| US6891378B2 (en) | 2003-03-25 | 2005-05-10 | Midtronics, Inc. | Electronic battery tester |
| US7408358B2 (en) | 2003-06-16 | 2008-08-05 | Midtronics, Inc. | Electronic battery tester having a user interface to configure a printer |
| US6913483B2 (en) | 2003-06-23 | 2005-07-05 | Midtronics, Inc. | Cable for electronic battery tester |
| US7616003B2 (en) | 2003-06-27 | 2009-11-10 | The Furukawa Electric Co., Ltd. | Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system |
| WO2005015252A1 (en)* | 2003-06-27 | 2005-02-17 | The Furukawa Electric Co., Ltd. | Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system |
| EP2626716A2 (en) | 2003-06-27 | 2013-08-14 | The Furukawa Electric Co., Ltd. | Device and method for judging deterioration of accumulator / secondary cell |
| EP2613165A1 (en) | 2003-06-27 | 2013-07-10 | The Furukawa Electric Co., Ltd. | Method and device for measuring secondary cell internal impedance |
| US7362074B2 (en) | 2003-06-27 | 2008-04-22 | The Furukawa Electric Co., Ltd. | Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system |
| EP2472277A3 (en)* | 2003-06-27 | 2012-10-17 | The Furukawa Electric Co., Ltd. | Method and device for measuring secondary cell internal impedance and judging deterioration |
| EP2472277A2 (en) | 2003-06-27 | 2012-07-04 | The Furukawa Electric Co., Ltd. | Method and device for measuring secondary cell internal impedance and judging deterioration |
| US7319304B2 (en) | 2003-07-25 | 2008-01-15 | Midtronics, Inc. | Shunt connection to a PCB of an energy management system employed in an automotive vehicle |
| US9018958B2 (en) | 2003-09-05 | 2015-04-28 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US9255955B2 (en) | 2003-09-05 | 2016-02-09 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US7154276B2 (en) | 2003-09-05 | 2006-12-26 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
| US6919725B2 (en) | 2003-10-03 | 2005-07-19 | Midtronics, Inc. | Electronic battery tester/charger with integrated battery cell temperature measurement device |
| US7595643B2 (en) | 2003-11-11 | 2009-09-29 | Midtronics, Inc. | Apparatus and method for simulating a battery tester with a fixed resistance load |
| US7116109B2 (en) | 2003-11-11 | 2006-10-03 | Midtronics, Inc. | Apparatus and method for simulating a battery tester with a fixed resistance load |
| US7598699B2 (en) | 2004-02-20 | 2009-10-06 | Midtronics, Inc. | Replaceable clamp for electronic battery tester |
| US7119686B2 (en) | 2004-04-13 | 2006-10-10 | Midtronics, Inc. | Theft prevention device for automotive vehicle service centers |
| US7642786B2 (en) | 2004-06-01 | 2010-01-05 | Midtronics, Inc. | Battery tester capable of identifying faulty battery post adapters |
| US7212006B2 (en) | 2004-07-02 | 2007-05-01 | Bppower, Inc. | Method and apparatus for monitoring the condition of a battery by measuring its internal resistance |
| US7106070B2 (en) | 2004-07-22 | 2006-09-12 | Midtronics, Inc. | Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries |
| US7425833B2 (en) | 2004-07-22 | 2008-09-16 | Midtronics, Inc. | Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries |
| US8963550B2 (en) | 2004-08-20 | 2015-02-24 | Midtronics, Inc. | System for automatically gathering battery information |
| US9496720B2 (en) | 2004-08-20 | 2016-11-15 | Midtronics, Inc. | System for automatically gathering battery information |
| US7545146B2 (en) | 2004-12-09 | 2009-06-09 | Midtronics, Inc. | Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential |
| US7498767B2 (en) | 2005-02-16 | 2009-03-03 | Midtronics, Inc. | Centralized data storage of condition of a storage battery at its point of sale |
| US7788052B2 (en) | 2006-06-09 | 2010-08-31 | The Furukawa Electric Co., Ltd. | Method and device for determining state of health of the battery, and battery power supply system |
| JP2008259296A (en)* | 2007-04-04 | 2008-10-23 | Toshiba Mitsubishi-Electric Industrial System Corp | Uninterruptible power supply |
| US9274157B2 (en) | 2007-07-17 | 2016-03-01 | Midtronics, Inc. | Battery tester for electric vehicle |
| US9335362B2 (en) | 2007-07-17 | 2016-05-10 | Midtronics, Inc. | Battery tester for electric vehicle |
| US9588185B2 (en) | 2010-02-25 | 2017-03-07 | Keith S. Champlin | Method and apparatus for detecting cell deterioration in an electrochemical cell or battery |
| US9425487B2 (en) | 2010-03-03 | 2016-08-23 | Midtronics, Inc. | Monitor for front terminal batteries |
| US9229062B2 (en) | 2010-05-27 | 2016-01-05 | Midtronics, Inc. | Electronic storage battery diagnostic system |
| US12196813B2 (en) | 2010-06-03 | 2025-01-14 | Midtronics, Inc. | High use battery pack maintenance |
| US11740294B2 (en) | 2010-06-03 | 2023-08-29 | Midtronics, Inc. | High use battery pack maintenance |
| US11650259B2 (en) | 2010-06-03 | 2023-05-16 | Midtronics, Inc. | Battery pack maintenance for electric vehicle |
| US9419311B2 (en) | 2010-06-18 | 2016-08-16 | Midtronics, Inc. | Battery maintenance device with thermal buffer |
| US9201120B2 (en) | 2010-08-12 | 2015-12-01 | Midtronics, Inc. | Electronic battery tester for testing storage battery |
| JP2013029411A (en)* | 2011-07-28 | 2013-02-07 | Yokogawa Electric Corp | Battery impedance measuring device |
| US10429449B2 (en) | 2011-11-10 | 2019-10-01 | Midtronics, Inc. | Battery pack tester |
| US10046649B2 (en) | 2012-06-28 | 2018-08-14 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
| US11325479B2 (en) | 2012-06-28 | 2022-05-10 | Midtronics, Inc. | Hybrid and electric vehicle battery maintenance device |
| US11548404B2 (en) | 2012-06-28 | 2023-01-10 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
| US9851411B2 (en) | 2012-06-28 | 2017-12-26 | Keith S. Champlin | Suppressing HF cable oscillations during dynamic measurements of cells and batteries |
| US11926224B2 (en) | 2012-06-28 | 2024-03-12 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
| US9244100B2 (en) | 2013-03-15 | 2016-01-26 | Midtronics, Inc. | Current clamp with jaw closure detection |
| US9312575B2 (en) | 2013-05-16 | 2016-04-12 | Midtronics, Inc. | Battery testing system and method |
| US9923289B2 (en) | 2014-01-16 | 2018-03-20 | Midtronics, Inc. | Battery clamp with endoskeleton design |
| US10473555B2 (en) | 2014-07-14 | 2019-11-12 | Midtronics, Inc. | Automotive maintenance system |
| US10222397B2 (en) | 2014-09-26 | 2019-03-05 | Midtronics, Inc. | Cable connector for electronic battery tester |
| US10317468B2 (en) | 2015-01-26 | 2019-06-11 | Midtronics, Inc. | Alternator tester |
| US9966676B2 (en) | 2015-09-28 | 2018-05-08 | Midtronics, Inc. | Kelvin connector adapter for storage battery |
| US10608353B2 (en) | 2016-06-28 | 2020-03-31 | Midtronics, Inc. | Battery clamp |
| US11054480B2 (en) | 2016-10-25 | 2021-07-06 | Midtronics, Inc. | Electrical load for electronic battery tester and electronic battery tester including such electrical load |
| US12320857B2 (en) | 2016-10-25 | 2025-06-03 | Midtronics, Inc. | Electrical load for electronic battery tester and electronic battery tester including such electrical load |
| JP2020527015A (en)* | 2017-09-22 | 2020-08-31 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Power circuit and adapter |
| US11258289B2 (en) | 2017-09-22 | 2022-02-22 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Power supply circuit and adaptor |
| JP2020016520A (en)* | 2018-07-25 | 2020-01-30 | 株式会社東陽テクニカ | Battery impedance evaluation device and battery impedance evaluation method |
| CN112513652A (en)* | 2018-08-22 | 2021-03-16 | 株式会社自动网络技术研究所 | Internal resistance detection device and power supply device |
| US11513160B2 (en) | 2018-11-29 | 2022-11-29 | Midtronics, Inc. | Vehicle battery maintenance device |
| US11566972B2 (en) | 2019-07-31 | 2023-01-31 | Midtronics, Inc. | Tire tread gauge using visual indicator |
| US11545839B2 (en) | 2019-11-05 | 2023-01-03 | Midtronics, Inc. | System for charging a series of connected batteries |
| US11668779B2 (en) | 2019-11-11 | 2023-06-06 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
| US11474153B2 (en) | 2019-11-12 | 2022-10-18 | Midtronics, Inc. | Battery pack maintenance system |
| US12237482B2 (en) | 2019-12-31 | 2025-02-25 | Midtronics, Inc. | Intelligent module interface for battery maintenance device |
| US11973202B2 (en) | 2019-12-31 | 2024-04-30 | Midtronics, Inc. | Intelligent module interface for battery maintenance device |
| US11486930B2 (en) | 2020-01-23 | 2022-11-01 | Midtronics, Inc. | Electronic battery tester with battery clamp storage holsters |
| US12330513B2 (en) | 2022-02-14 | 2025-06-17 | Midtronics, Inc. | Battery maintenance device with high voltage connector |
| US12392833B2 (en) | 2022-05-09 | 2025-08-19 | Midtronics, Inc. | Electronic battery tester |
| Publication number | Publication date |
|---|---|
| JP3564885B2 (en) | 2004-09-15 |
| Publication | Publication Date | Title |
|---|---|---|
| JP3564885B2 (en) | Power supply with sealed lead-acid battery | |
| JP3379298B2 (en) | Device for determining the life of sealed lead-acid batteries | |
| JP3193486B2 (en) | Method and apparatus for displaying remaining battery level in electric vehicle | |
| JP3430264B2 (en) | Charging device | |
| US20080150549A1 (en) | Insulation deterioration detection device for motor | |
| EP0687057A1 (en) | Isolated input current sense means for high power factor rectifier | |
| JP2004201484A (en) | Vehicle-mounted battery monitor | |
| JP4884435B2 (en) | Storage battery state determination device and storage battery state determination method | |
| JPH08329992A (en) | Battery pack and charging unit | |
| JP3367320B2 (en) | Method and apparatus for determining deterioration of sealed lead-acid battery | |
| JPH1070846A (en) | Charging device | |
| JP5554310B2 (en) | Internal resistance measuring device and internal resistance measuring method | |
| JP2951196B2 (en) | Current detector for detecting remaining battery level | |
| JP2001015180A (en) | Battery life judgment device | |
| JP3056046B2 (en) | Small power consumption measuring device | |
| US10094697B2 (en) | Standard signal generator | |
| JPH0821434B2 (en) | Method for detecting deterioration of sealed lead-acid battery | |
| JPS61209372A (en) | Circuit for confirming residual power quantity in battery | |
| JP3612152B2 (en) | Charger | |
| JPH09233714A (en) | Uninterruptible power system | |
| JPH03180784A (en) | Calculator for residual capacity of battery | |
| JPH04305172A (en) | Judging circuit for life of smoothing capacitor | |
| JP3338264B2 (en) | Battery evaluation device | |
| JP2893761B2 (en) | Charging device | |
| JPH10295046A (en) | Power supply device and method for detecting deterioration of power supply device |
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20040223 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20040302 | |
| A521 | Written amendment | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20040412 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20040518 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20040531 | |
| R150 | Certificate of patent or registration of utility model | Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080618 Year of fee payment:4 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090618 Year of fee payment:5 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100618 Year of fee payment:6 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110618 Year of fee payment:7 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120618 Year of fee payment:8 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20130618 Year of fee payment:9 | |
| LAPS | Cancellation because of no payment of annual fees |