【発明の詳細な説明】癌およびその他の過形成を治療する薬剤本発明は癌およびその他の過形成の治療薬剤に関するものである。本発明の応用領域は医学および薬剤工業である。癌増殖および過形成に対する薬はすでに多数あり、その際通例、何らかの方法で細胞物質代謝を阻害し、癌細胞を多かれ少なかれ選択的に死滅させる物質が重要である。これらのいわゆる化学療法剤は数種類の少ない癌疾患、例えば白血病において特に有効であることが証明されているが、大部分の癌疾患では効果は不十分で、しかも多くの副作用がある。遺伝子治療の概念は過去5年間に癌治療戦略に革命を起こした。遺伝子およびその生成物で癌増殖およびその他の過形成、例えばカテーテル措置による損傷後の血管筋細胞増殖など、に選択的影響を及ぼすことがこの戦略の目的である。すでに効果的に組み換えられた戦略は、増殖しつつある細胞を、或る遺伝子の挿入によって選択的に殺すことである;その遺伝子は、最初は無毒性である化学療法剤を癌細胞に選択的に有毒に作用する物質に変換する生産物(酵素)を産生するのである。(モルテン(Moolten,F.L.)ら、1990、ヒト遺伝子治療(Human Gene Therapy)1巻、125−134ページ;クルヴェル(Curver,K.W)ら、1992、科学256巻、1550−1552ページ)このために使用する遺伝子は単純ヘルペスウィルスのチミジン−キナーゼ(tk)−遺伝子並びに細菌性シトシン−デサミン遺伝子である。チミジンキナーゼはヌクレオシドガンシクロヴィルを有毒な三リン酸塩に変え、それはDNA複製細胞に組み込まれた後、鎖を分解し、それによって細胞死をおこす。従来の化学療法に比べてこの方法の大きい長所は、毒性効果の選択性である。その場合すべての癌細胞にtk遺伝子を導入することは効果的ではない、なぜならばガンシクロヴィルはいわゆる“ギャップ結合”を介して隣接細胞に渡されるが、成長している細胞のみを毒殺することができるからである。この効果は“bystander”と呼ばれるラム(Ram,Z.)ら、1993、Cancer Res.53巻、83−88ページ)。しかし比較的多くの癌が“bystander”効果に抵抗することがわかった。その上ガンシクロヴィルの患者に対する毒性も過小評価することはできない。そこで腫瘍治療のためのこれに代わる遺伝子治療戦略が強く求められている。最近研究されている方法は、増殖しつつある細胞に、効果的なウィルスベクターを用いていわゆる癌サプレッサーを導入することに基づくものであるバヘッチ(Bacchetti,S)およびグラハム(Graham,F.L.)、1993、Int.J.Oncol.3巻、781−788ページ、ツァング(Zhang,WW.)ら、1994、癌遺伝子治療(Cancer Gene Therapy)1巻、5−13ページ)。これまで用いられた2つの癌サプレッサーはp53遺伝子およびRb−遺伝子である。両方とも細胞分割のリプレッサーをコードする。それらの細胞分割抑制効果は内因性癌抑制遺伝子に欠陥を示す癌でのみ実現する。これはRb−遺伝子で約15%およびp53−遺伝子では約50%である。その際R58の点突然変異は正常蛋白質に対して優性である、すなわち癌細胞では、抑制効果に到達するためには、内因性突然変異遺伝子によるよりも、挿入された正常遺伝子によって、実質上より多い蛋白質が発現しなければならない。細胞分割研究は近年多数の陽性および陰性細胞分裂調節物質の発見に導いた。陽性調節物質はいわゆるサイクリンおよびそれと錯化したサイクリン依存性キナーゼ(cdk)である;陰性調節物質はキナーゼ抑制物質である(シェル(Sherr,C.J.)、1994、細胞(Cell)79巻、551−555ページ)。本発明の目的は癌およびその他の過形成を治療する新しい薬剤を提供することである。それは癌またはその他の過形成細胞の分裂増殖を抑制する薬剤を開発するという課題に基づいている。本発明は請求項1によって実現し、それ以下の請求項は主な変形である。本発明による薬剤は下記のものを含むという特徴を有する;−癌サプレサーRbと協同する癌抑制遺伝子、−拮抗性キナーゼ或いはサイクリンに対して活性なアンチセンス−またはリボチーム配列、または−その他の、Rb−蛋白質のリン酸化を抑制する物質。この薬剤の本質は、cdk抑制物質の形成をコードする遺伝子、またはG1期特異的サイクリンまたはcdkのmRNAに対するアンチセンス配列或いはリボチームを適したベクターにおいてクローン化し、遺伝子伝達のために癌細胞またはその他の過形成細胞に挿入することである。ベクターとしては標的組織の100%感染を容認するような使用が好適である。そのようなベクターは例えばアデノウィルスから誘導され、適したプロモーターの使用によって腫瘍組織に特異的であるものである。好適な協同癌抑制遺伝子はMTS−1(p16)およびMTS−2(p15)である。アンチセンス−またはリボチーム配列を使用する場合、キナーゼcdk2、cdk4、cdk5またはcdk6、またはサイクリンD1、D2、D3またはEのmRNAに向けられる配列を選択するのが好適である。本発明はcdkまたはサイクリンのプロモーターに向けられる配列も包含する。リン酸化抑制物質の場合は、キナーゼcdk4またはcdk6を特異的に抑制するものを使用するのが好適である。アンチセンス−またはリボチーム配列は本発明により好適に合成され、オリゴヌクレオチドとして使用される。次のものに対するアンチセンス配列が特に好適である−構成要素配列5’GAAGTTCTCCATGAAG 3’のcdk2のmRNA、−構成要素配列5’CTCACCATGTGACC 3’のcdk4のmRNA、−構成要素配列5’CCGTCCTTCTCCATG 3’のcdk6のmRNA、−構成要素配列5’AGGAGCTGGTCTTCCATG 3’のサイクリンD1のmRNA、−構成要素配列5’TGGCACAGCAGCTCCATG 3’のサイクリンD2のmRNA、−構成要素配列5’AACACAGCAGCTCCATAC 3’のサイクリンD3のmRNA、−構成要素配列5’CCGCTCCTTCGCATC 3’のサイクリンEのmRNA。本発明のその他の好適実施態様は、癌サプレッサーRbと協同する癌抑制遺伝子、拮抗キナーゼ或いはサイクリンに対して活性のアンチセンス−またはリボチーム配列、或いはRb蛋白質のリン酸化を阻止するその他の物質と、p53遺伝子との組み合わせである。それによって細胞傷害性効果の他に、癌細胞を広範囲に死滅させることもできる。特に好適なのは協同する腫瘍抑制遺伝子MTS−1(p16)とp53−遺伝子との組み合わせである。本発明を以下に実施例によってより詳細に説明する。例1.サイクリンD1に対するアンチセンスRNAの発現ヒト サイクリンD1遺伝子の完全cDNAは、アンチセンス方向(antisense-Orientiering)においてpXのCMV−プロモーターの後方でクローン化される。この組換え体は種々の腫瘍細胞系にトランスフェクトされ、しかも標識遺伝子CD20と共にトランスフェクトされる。48時間後、培養シャーレのTryspinierungによって細胞を剥離し、細胞自動解析分離装置で2パラメーターによって分析する。1.CD20の存在(効果的にトランスフェクトされた細胞を示す)2.DNAプロフィール(相分布) 典型的結果を表1に示す:この結果はアンチセンス−D1−構造が、Rb陽性細胞においてのみ、これら細胞のS期への移行を阻止することを明らかに示している;これはサイクリンD1がその細胞物質促進作用をあらわすにはRbの存在を必要とすることを示唆するものである。2.p16遺伝子の腫瘍細胞への伝達p16のためのcDNAはpXのCMV−プロモーターの後でクローン化される。生成する組換え体は種々の腫瘍細胞系にCD20遺伝子と共にトランスフェクトされる。48時間後、細胞を細胞自動解析分離装置でCD20発現によって選択し、DNAプロフィールをとる。典型的結果を図1に示す。その結果はRb陽性細胞において正常p16遺伝子の使用のもとでS期への移行が明らかに阻止されることを示す。これに対して、対照として使われた、腫瘍系から分離された突然変異p16遺伝子は阻止効果を示さなかった。3.アデノウィルスベクターによるp16遺伝子の伝達ヒト p16遺伝子のcDNAをCMV−プロモーターのコントロール下でアデノウィルス伝達プラスミドp E1sp1Aにおいてクローン化する。このプラスミドをヘルパープラスミドpJM17と共にCa++−共同沈殿によってHEK293細胞にトランスフェクトする。両プラスミド間の相同組み換えによって生ずるE1欠失ウィルスをプラーク法で精製し、PCR増幅および制限酵素消化によって試験する。HEK293細胞で増殖させた後、細胞溶解物をCaCl2勾配中で分離することによって精製ウィルスストックを得る。そのウィルスストックをプラークアッセイによって力価を測定する。種々の腫瘍細胞系で、有効ウィルス量/細胞(MOI)をβ−ガラクトシダーゼ発現アデノウィルスの感染によって、並びに酵素の組織化学的証明によって決定する。腫瘍細胞系Hu H7、Lovo、MCF7(p16−)並びにHepG2、BT549およびC33A(p16+)にAd p16或いはAd Bgalを感染させ、p16をウェスターンブロット法で証明する。ウィルス仲介性p16−発現はHepG2、BT549およびC33A細胞の内生水準を少なくとも5倍は高める。p16の発現はRbのリン酸化型の富化を阻止する(図2)。Ad p16の感染は官能性Rbをもった細胞の成長停止をおこし、一方Ad Bgalの感染は細胞周期の減速をおこす。細胞自動解析分離装置におけるDNAプロフィールの分析で、Rb陽性細胞はS期への移行が抑制されることが記録された(図3)。DETAILED DESCRIPTION OF THE INVENTIONDrugs for Treating Cancer and Other Hyperplasias The present invention relatesto drugs for treating cancer and other hyperplasias. The field of application of the present invention is in the medical and pharmaceutical industries. Drugs for cancer growth and hyperplasia already exist in large numbers, and substances that in some way inhibit cellular metabolism and kill cancer cells more or less selectively are important. Although these so-called chemotherapeutic agents have proven to be particularly effective in some of the few cancer diseases, such as leukemia, they are ineffective in most cancer diseases and have many side effects. The concept of gene therapy has revolutionized cancer treatment strategies over the past five years. It is the purpose of this strategy that the gene and its products selectively affect cancer growth and other hyperplasia, such as vascular myocyte proliferation following injury by catheterization. An already effectively recombined strategy is to selectively kill proliferating cells by the insertion of certain genes, which selectively target nontoxic chemotherapeutic agents to cancer cells. It produces a product (enzyme) that is converted into a substance that acts toxic to the creature. (Moolten, FL, et al., 1990, Human Gene Therapy, vol. 1, pages 125-134; Curver, K.W. et al., 1992, Science 256, 1550-1552). The genes used for this are the herpes simplex virus thymidine-kinase (tk) gene as well as the bacterial cytosine-desamine gene. Thymidine kinase converts the nucleoside ganciclovir into a toxic triphosphate, which, after being incorporated into DNA-replicating cells, breaks down the chain and thereby causes cell death. A major advantage of this method over conventional chemotherapy is the selectivity of the toxic effects. In that case, introducing the tk gene into all cancer cells would not be effective, because ganciclovir would be passed on to neighboring cells via so-called "gap junctions", but only to poison growing cells. Because it can be. This effect is called "bystander" in Ram, Z. et al., 1993, Cancer Res. 53, 83-88). However, relatively many cancers have been found to resist the "bystander" effect. Moreover, the toxicity of ganciclovir to patients cannot be underestimated. Thus, there is a strong need for alternative gene therapy strategies for treating tumors. Recent methods being studied are based on the introduction of so-called cancer suppressors into proliferating cells using effective viral vectors, Bacchet ti, S. and Graham, FL. 1993, Int. J. Oncol. 3, 781-788, Zhang, WW. Et al., 1994, Cancer Gene Therapy, 1, 5-13. The two cancer suppressors used so far are the p53 gene and the Rb-gene. Both encode repressors of cell division. These cell division inhibitory effects are realized only in cancers deficient in endogenous tumor suppressor genes. This is about 15% for the Rb gene and about 50% for the p53 gene. The R58 point mutation is then dominant with respect to the normal protein, ie, in cancer cells, to achieve a suppressive effect, substantially more by the inserted normal gene than by the endogenous mutant gene. Many proteins must be expressed. Cell division studies have recently led to the discovery of a number of positive and negative cell division regulators. Positive modulators are the so-called cyclins and their complexed cyclin-dependent kinases (cdk); negative regulators are kinase inhibitors (Sherr, CJ., 1994, Cell 79, 551-555). It is an object of the present invention to provide new agents for treating cancer and other hyperplasias. It is based on the task of developing drugs that inhibit the proliferation of cancer or other hyperplastic cells. The present invention is realized by claim 1 and the following claims are main modifications. The medicament according to the invention is characterized in that it comprises: a tumor suppressor gene which cooperates with the cancer suppressor Rb; an antisense or ribozyme sequence active against antagonistic kinases or cyclins; or -Substances that inhibit protein phosphorylation. The essence of this agent is that the gene encoding the formation of the cdk inhibitor, or the antisense sequence or ribozyme for the G1-phase specific cyclin or cdk mRNA, is cloned in a suitable vector and used to transfer cancer cells or other genes for gene transfer. Inserting into hyperplastic cells. The vector is preferably used so as to tolerate 100% infection of the target tissue. Such vectors are derived, for example, from adenovirus and are specific for tumor tissue by use of a suitable promoter. Preferred synergistic tumor suppressor genes are MTS-1 (p16) and MTS-2 (p15). If an antisense or ribozyme sequence is used, it is preferred to select a sequence that is directed to the mRNA for the kinase cdk2, cdk4, cdk5 or cdk6, or cyclin D1, D2, D3 or E. The invention also includes sequences directed to cdk or cyclin promoters. In the case of a phosphorylation inhibitor, a substance that specifically inhibits kinase cdk4 or cdk6 is preferably used. Antisense or ribozyme sequences are suitably synthesized according to the invention and used as oligonucleotides. Antisense sequences for the following are particularly preferred:-mRNA of cdk2 of component sequence 5 'GAAGTCTCTCCATGAAG 3'-mRNA of cdk4 of component sequence 5 'CTCACATCATTGACC 3'-component sequence 5 'CCGTCCTCTCTCCATG 3' -MRNA of cdk6 of-, mRNA of cyclin D1 of component sequence 5'AGGAGCTGGTCTTCCATG 3 ',-mRNA of cyclin D2 of component sequence 5'TGGCACAGCAGCTCCATG 3', -Cycle of component sequence 5'AACACAGCAGCCTCACAT3D mRNA -MRNA of cyclin E of the component sequence 5 'CCGCTCCTTCCGCATC 3'. Other preferred embodiments of the present invention include a tumor suppressor gene that cooperates with the cancer suppressor Rb, an antisense- or ribozyme sequence active on antagonist kinases or cyclins, or other substances that inhibit phosphorylation of the Rb protein; This is a combination with the p53 gene. Thereby, besides the cytotoxic effect, it can also kill cancer cells extensively. Particularly preferred is the combination of the cooperating tumor suppressor gene MTS-1 (p16) with the p53-gene. The present invention will be described in more detail with reference to the following examples. Example1 Expression of antisense RNA against cyclin D1 The complete cDNA of the human cyclin D1 gene is cloned behind the CMV-promoter of pX in the antisense orientation. This recombinant is transfected into various tumor cell lines and transfected with the marker gene CD20. Forty-eight hours later, the cells are detached using a Trisp inierung culture dish, and analyzed using an automatic cell analysis / separator using two parameters. 1. 1. Presence of CD20 (indicating effectively transfected cells) DNA profile (phase distribution) Typical results are shown in Table 1: The results clearly show that the antisense-D1-structure only prevents Rb-positive cells from entering the S phase of cells; this suggests that cyclin D1 exerts its cytoplasmic promoting effect. This suggests that the presence of Rb is required.2. Transmission of p16 gene to tumor cells The cDNA for p16 is cloned after the CMV promoter of pX. The resulting recombinant is transfected into various tumor cell lines with the CD20 gene. Forty-eight hours later, cells are selected by CD20 expression on an automated cell analyzer and DNA profiles are taken. Typical results are shown in FIG. The results show that entry to S phase is clearly blocked in Rb-positive cells under the use of the normal p16 gene. In contrast, the mutant p16 gene isolated from the tumor line, which was used as a control, showed no inhibitory effect.3. Transfer of the p16 gene by an adenovirus vector The cDNA of the human p16 gene is cloned in the adenovirus transfer plasmid pE1sp1A under control of the CMV-promoter. This plasmid is transfected together with the helper plasmid pJM17 into HEK 293 cells by Ca ++-coprecipitation. The E1-deleted virus resulting from homologous recombination between both plasmids is purified by plaque method and tested by PCR amplification and restriction digestion. After growth on HEK293 cells, a purified virus stock is obtained by separating the cell lysate in a CaCl2 gradient. The virus stock is titered by plaque assay. In various tumor cell lines, the effective viral load / cell (MOI) is determined by infection with a β-galactosidase expressing adenovirus, as well as by histochemical demonstration of the enzyme. The tumor cell lines Hu H7, Lovo, MCF7 (p16-) and HepG2, BT549 and C33A (p16 +) are infected with Ad p16 or Ad Bgal and p16 is verified by Western blot. Virus-mediated p16-expression increases endogenous levels of HepG2, BT549 and C33A cells by at least 5-fold. Expression of p16 blocks enrichment of the phosphorylated form of Rb (FIG. 2). Infection with Ad p16 causes growth arrest of cells with functional Rb, while infection with Ad Bgal causes a slowing of the cell cycle. The analysis of the DNA profile in the automatic cell analysis separation apparatus recorded that Rb-positive cells were inhibited from entering the S phase (FIG. 3).
─────────────────────────────────────────────────────フロントページの続き (81)指定国 EP(AT,BE,CH,DE,DK,ES,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE),CA,JP,US(72)発明者 ルーカス ジルル デンマーク国 デイケイ−2670 グレヴェ ラエルケモゼン 10(72)発明者 サンデイッグ フオルカー デンマーク国 デー−13125 ベルリン ロバート−レツスレ−シュトラセ 1────────────────────────────────────────────────── ───Continuation of front page (81) Designated countries EP (AT, BE, CH, DE,DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), CA, JP, US(72) Inventor Lucas Jiruru Denmark-2670 Greve Rael Chemozen 10(72) Inventor Sunday Fork Day 13125 Berlin, Denmark Robert-Letzley-Strasse 1