【0001】[0001]
【発明の属する技術分野】本発明は、画像信号の信号処
理回路に係り、特に、飛び越し走査系の画像信号を順次
走査系の画像信号に変換するIP変換や、複数方式の画
像信号を画像表示部の所定フォ−マットの画像信号に変
換するフォ−マット変換に好適な、画像信号のIP変換
およびフォ−マット変換の信号処理回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal processing circuit for an image signal, and more particularly to an IP conversion for converting an image signal of an interlaced scanning system into an image signal of a sequential scanning system and an image display of an image signal of a plurality of systems. The present invention relates to a signal processing circuit for performing IP conversion and format conversion of an image signal, which is suitable for format conversion for converting an image signal into a predetermined format image signal.
【0002】[0002]
【従来の技術】近年、マルチメディア社会の進展によ
り、画像信号に関しては、取り扱う画像の種類や形態が
飛躍的に増加し、多様化の方向に進捗している。また、
画像を表示するディスプレイに関しても、CRTの他
に、LCD、PDPなどの平面ディスプレイが多く使用
されるようになってきた。このため、今後のマルチメデ
ィア対応の情報端末機器では、多種多様な画像ソ−スを
受信して表示する機能を備えることが必須になる。2. Description of the Related Art In recent years, with the progress of the multimedia society, the types and forms of images to be handled have been dramatically increased and image signals have been diversified. Also,
Regarding displays for displaying images, flat displays such as LCDs and PDPs have been increasingly used in addition to CRTs. For this reason, it is indispensable for information terminals compatible with multimedia in the future to have a function of receiving and displaying various image sources.
【0003】この機能を実現する代表的な方法として
は、表示系で対処する方法と、信号処理で対処する方法
とが知られている。As a typical method of realizing this function, a method of coping with a display system and a method of coping with signal processing are known.
【0004】前者の方法は、表示部の偏向系の動作範囲
を広く設定し、入力画像の信号フォ−マットと合致した
形態で走査を行って画像を表示するもので、マルチスキ
ャン方式として実用化されている。これは、表示部がC
RTの場合には比較的低コストで実現でき有効な方法で
あるが、順次走査で表示画素数が一定のLCDやPDP
などの平面ディスプレイでは適用が困難という問題があ
る。In the former method, the operating range of the deflection system of the display unit is set wide, and scanning is performed in a form conforming to the signal format of an input image to display an image. Have been. This is because the display is C
In the case of RT, it is an effective method that can be realized at a relatively low cost.
However, there is a problem that it is difficult to apply the present invention to a flat display such as the above.
【0005】後者の方法は、入力画像信号に対してIP
変換やフォ−マット変換の信号処理を行い、表示部のフ
ォ−マットの信号に変換して画像を表示する。このた
め、CRTに限らず、LCDやPDPなどの平面ディス
プレイにも柔軟に対応できる。従って、今後予想される
入力ソ−スやディスプレイの多様化への対処には、極め
て有効な方法である。ただ、IP変換やフォ−マット変
換では、飛び越し〜順次の走査変換、フレ−ムレ−ト変
換、画面のサイズ縮小拡大変換などの信号処理に、膨大
な容量のメモリが必要になる。また、信号処理に伴い画
質が劣化する可能性もある。このため、高品質な画質を
維持し、信号処理に使用するメモリの容量が少なく、低
コストで実現できる信号処理回路を実現することが、重
要な課題になっている。[0005] The latter method uses an IP image signal for an input image signal.
It performs signal processing for conversion and format conversion, converts the signal into a signal in the format of the display unit, and displays an image. For this reason, it is possible to flexibly cope with not only CRTs but also flat displays such as LCDs and PDPs. Therefore, it is an extremely effective method for coping with the diversification of input sources and displays expected in the future. However, in IP conversion and format conversion, an enormous capacity of memory is required for signal processing such as interlace-to-sequential scan conversion, frame rate conversion, and screen size reduction / enlargement conversion. Further, there is a possibility that the image quality is degraded with the signal processing. Therefore, it is important to realize a signal processing circuit that maintains high quality image quality, has a small memory capacity for signal processing, and can be implemented at low cost.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記の課題
に鑑みてなされたもので、使用するメモリの容量が極め
て少なく、低コスト化に適し、かつ、高品質な画質で画
像信号のIP変換やフォ−マット変換を行う、信号処理
回路を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an extremely small memory capacity, is suitable for cost reduction, and has a high quality image signal IP. It is an object of the present invention to provide a signal processing circuit for performing conversion and format conversion.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明においては以下に述べる技術的手段を採用す
る。In order to achieve the above object, the present invention employs the following technical means.
【0008】画像信号のIP変換では、輝度信号に対し
ては、サブナイキスト標本化の信号処理で標本点の数を
1/2に削減し、この信号系列をメモリに記憶する。そし
て、メモリから読み出した信号系列を復号処理で元の標
本点数の輝度信号に再生し、この輝度信号をもとに動き
適応型の補間処理で補間走査線の信号を生成する。ま
た、動きの情報は、サブナイキスト標本化した信号系列
の1フレ−ム間の差分信号成分で検出する。この技術的
手段で、従来の方法に較べてメモリの容量を1/2と大幅
に削減することができる。なお、サブナイキスト標本化
の信号処理では、輝度信号高域の斜め成分が削られる
が、この成分は視覚の特性も劣っているため、画質の劣
化はほとんど検知できない程度に抑圧できる。[0008] In the IP conversion of an image signal, the number of sampling points is determined for a luminance signal by signal processing of sub-Nyquist sampling.
The signal sequence is reduced to 1/2, and this signal sequence is stored in the memory. Then, the signal sequence read from the memory is reproduced into a luminance signal of the original number of sample points by decoding processing, and a signal of an interpolation scanning line is generated by motion adaptive interpolation processing based on the luminance signal. The motion information is detected as a difference signal component between one frame of the signal sequence sampled by sub-Nyquist. With this technical measure, the capacity of the memory can be significantly reduced by half compared with the conventional method. In the signal processing of the sub-Nyquist sampling, an oblique component in a high-range luminance signal is removed. However, since this component has poor visual characteristics, deterioration in image quality can be suppressed to such an extent that it is hardly detectable.
【0009】画像信号のフォ−マット変換では、飛び越
し走査系の画像信号はIP変換で順次走査系の画像信号
に変換し、順次走査系の信号でフォ−マット変換のため
の水平、垂直方向の拡大縮小などの信号処理を行う。周
知の如く、順次走査系と飛び越し走査系とでは、順次走
査系の方がフィルタ設計などの自由度が大きい。よっ
て、この技術的手段で、フォ−マット変換の信号処理が
より理想に近い特性で実現できる。そして、信号処理に
伴う画質劣化を大幅に抑圧することができる。In the format conversion of an image signal, an image signal of an interlaced scanning system is converted into an image signal of a progressive scanning system by an IP conversion, and the signals of the progressive scanning system are used in the horizontal and vertical directions for format conversion. Performs signal processing such as scaling. As is well known, between the progressive scanning system and the interlaced scanning system, the progressive scanning system has a greater degree of freedom in filter design and the like. Therefore, by this technical means, signal processing of format conversion can be realized with more ideal characteristics. And image quality deterioration accompanying signal processing can be suppressed significantly.
【0010】また、フォ−マット変換の信号処理では、
垂直スケ−リングの信号処理に先立って、水平スケ−リ
ングの信号処理を実行する。さらに、垂直スケ−リング
では、メモリの動作制御で、縮小拡大の信号処理の他
に、TV信号の方式変換(例えば、PAL−NTSC変
換)のためのフレ−ムレ−ト変換や、PALフィ−ルド
倍速変換や、2画面表示やPIP表示などのマルチ画面
の同期整合などの信号処理も併せて行う。この技術的手
段で、フォ−マット変換での信号処理に必要なメモリ容
量は、従来の方法(方式変換、縮小拡大、同期整合など
の信号処理をそれぞれ縦続的に行う)の数分の一と大幅
に削減でき、1フィ−ルド程度(数メガビット)の容量
で実現できる。In the signal processing of the format conversion,
Prior to signal processing for vertical scaling, signal processing for horizontal scaling is executed. Further, in vertical scaling, in addition to signal processing for reduction / enlargement in operation control of a memory, frame rate conversion for TV signal format conversion (for example, PAL-NTSC conversion) and PAL field conversion. It also performs signal processing such as double speed conversion and multi-screen synchronization matching such as two-screen display and PIP display. With this technical means, the memory capacity required for signal processing in format conversion is a fraction of that of the conventional method (each of which performs signal processing such as system conversion, reduction / enlargement, and synchronization matching in cascade). It can be greatly reduced and can be realized with a capacity of about one field (several megabits).
【0011】さらに、水平、垂直スケ−リングの回路構
成は、複数画素あるいは複数ラインの画素に係数値を乗
算する演算部と、メモリ部と、複数個数のスイッチの組
み合わせで構成し、該スイッチを選択制御して信号を切
り換え、縮小機能や、拡大機能や、スル−の機能を実現
する。そして、演算部では、2点線形補間の特性の演算
を実行する。この技術的手段で、信号処理に必要な回路
規模を大幅に低減できる。Further, the circuit configuration of horizontal and vertical scaling includes a combination of an arithmetic unit for multiplying a plurality of pixels or pixels on a plurality of lines by a coefficient value, a memory unit, and a plurality of switches, and the switches are constituted by a plurality of switches. The signal is switched by performing selective control to realize a reduction function, an enlargement function, and a through function. Then, the calculation unit performs calculation of the characteristics of the two-point linear interpolation. With this technical means, the circuit scale required for signal processing can be significantly reduced.
【0012】また、順次走査系の信号を2系列の信号に
分割し、この2系列の信号に対して、フォ−マット変換
のための水平、垂直スケ−リングの信号処理を1/2の
動作速度で実行する。この技術的手段で、極めて高速動
作が要求される超高精細ディスプレイなどへのフォ−マ
ット変換信号処理を、1系列の場合と同程度のメモリ容
量で行うことができる。Further, the signal of the progressive scanning system is divided into two series of signals, and the horizontal and vertical scaling signal processing for format conversion is performed on the two series of signals in half. Run at speed. With this technical means, it is possible to perform format conversion signal processing for an ultra-high-definition display or the like, which requires extremely high-speed operation, with the same memory capacity as in the case of one series.
【0013】また、フォ−マット変換の信号処理を行っ
た画像信号に対して、最後に色空間変換や逆γ変換など
の画質改善処理を実行する。一般に、この画質改善処理
出力では10ビット/画素程度の精度が必要である。こ
の技術的手段で、水平、垂直スケ−リングまでの信号処
理は8ビット/画素で行えるため、メモリ容量の削減
や、回路規模の低減ができる。Finally, image quality improvement processing such as color space conversion and inverse γ conversion is performed on the image signal that has been subjected to the format conversion signal processing. Generally, the output of the image quality improvement processing requires an accuracy of about 10 bits / pixel. With this technical means, signal processing up to horizontal and vertical scaling can be performed with 8 bits / pixel, so that the memory capacity can be reduced and the circuit size can be reduced.
【0014】そして、入力画像信号は、輝度信号と2つ
の色差信号とからなる4:2:2系、あるいは4:2:
0系のコンポ−ネント信号を採用する。この技術的手段
で、多様なソ−ス信号(例えば、現行TV信号、HDT
V信号、EDTV信号、パソコン画像、パッケ−ジ系画
像など)が一元的に処理でき、また、2つの色差信号の
信号処理を、4:2:2系では輝度信号と同程度、4:
2:0系では輝度信号の1/2のメモリ容量で行うこと
ができる。The input image signal is a 4: 2: 2 system composed of a luminance signal and two color difference signals, or 4: 2:
0-component signal is used. With this technical means, various source signals (eg, current TV signals, HDT
V signal, EDTV signal, personal computer image, package image, etc.), and the signal processing of the two color difference signals is about the same as the luminance signal in the 4: 2: 2 system.
In the 2: 0 system, the operation can be performed with half the memory capacity of the luminance signal.
【0015】以上に述べた技術的手段の採用により、高
品質な画質を維持して、メモリ容量が極めて少なく、低
コスト化に適した画像信号のIP変換およびフォ−マッ
ト変換の信号処理回路を実現することができる。By adopting the technical means described above, a signal processing circuit for IP conversion and format conversion of an image signal, which maintains a high quality image, has a very small memory capacity, and is suitable for cost reduction. Can be realized.
【0016】[0016]
【発明の実施の形態】本発明における画像信号のIP変
換の信号処理回路の第1の実施例について、図1に示す
ブロック構成図で説明する。同図の1はプリフィルタ、
2はダウンサンプル部、3はアップサンプル部、4はポ
ストフィルタ、5は1H遅延、6,8は加算部、7は動
き係数加重部、9は1フィ−ルド遅延、10は減算部、
11は動き検出部、12はMAX選択部、13はα加重
部である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a signal processing circuit for IP conversion of an image signal according to the present invention will be described with reference to a block diagram shown in FIG. 1 in the figure is a pre-filter,
2 is a down-sampling section, 3 is an up-sampling section, 4 is a post filter, 5 is a 1H delay, 6 and 8 are addition sections, 7 is a motion coefficient weighting section, 9 is a 1-field delay, 10 is a subtraction section,
11 is a motion detecting unit, 12 is a MAX selecting unit, and 13 is an α weighting unit.
【0017】飛び越し走査系の画像信号の輝度信号Y
は、プリフィルタ1に入力し、サブナイキスト標本化で
折り返し歪となる水平垂直の高域成分を除去する。ダウ
ンサンプル部2は、標本点の2:1のサブサンプリング処
理を行い、サブナイキスト標本化した信号系列を生成す
る。すなわち、図2(a)に示す標本点系列の信号に対
し、水平方向、垂直方向でそれぞれ標本点の1/2の間引
きを行い、(b)に示す標本点からなるサブナイキスト標
本化の信号系列を生成する。The luminance signal Y of the image signal of the interlaced scanning system
Is input to the pre-filter 1 and removes horizontal and vertical high-frequency components that are aliasing distortions in sub-Nyquist sampling. The down-sampling unit 2 performs a 2: 1 sub-sampling process on the sampling points to generate a signal sequence that is sub-Nyquist-sampled. In other words, the signal of the sample point series shown in FIG. 2A is thinned out by half of the sample points in the horizontal and vertical directions, respectively, and the signal of the sub-Nyquist sampling consisting of the sample points shown in FIG. Generate a series.
【0018】アップサンプル部3は、標本点の2:1のア
ップサンプリング処理を行う。そして、サブナイキスト
標本化で抜けた標本点(図2(b)の・で示す点)には零
の信号を挿入し、図2(a)の標本点構造の信号系列を生
成する。ポストフィルタ4は、サブナイキスト標本化で
抜けた標本点の信号を、近傍の標本点の信号で補間する
信号処理を行い、入力と同じ標本点構造の輝度信号を再
生する。この信号の一方は、伝送走査線信号系列の輝度
信号YMとして出力する。The up-sampling section 3 performs a 2: 1 up-sampling process on the sample points. Then, a zero signal is inserted into the sampling points (points indicated by in FIG. 2 (b)) that have passed through the sub-Nyquist sampling, and a signal sequence having the sampling point structure shown in FIG. 2 (a) is generated. The post filter 4 performs signal processing for interpolating the signal of the sample point that has been dropped by the sub-Nyquist sampling with the signal of the nearby sample point, and reproduces the luminance signal having the same sample point structure as the input. One of these signals is output as a luminance signal YM of a transmission scanning line signal sequence.
【0019】一方、この信号と、1H遅延5で1ライン
期間遅延させた信号は、加算部6で信号加算と係数値1/
2の加重を行い、フィ−ルド内補間による動画像に適し
た補間信号を生成する。On the other hand, this signal and the signal delayed for one line period by the 1H delay 5 are added by the adder 6 to the signal addition and the coefficient value 1 /.
A weight of 2 is applied to generate an interpolation signal suitable for a moving image by intra-field interpolation.
【0020】また、メモリ部9で1フィ−ルド期間相当
(263H)遅延させたサブナイキスト標本化の信号系列は、
アップサンプル部3、ポストフィルタ4で復号処理を行
い、1フィ−ルド前の輝度信号を再生し、フィ−ルド間
補間の静止画像に適した補間信号を生成する。Also, the memory unit 9 corresponds to one field period.
(263H) The signal sequence of the delayed sub-Nyquist sampling is
The decoding processing is performed by the up-sampling unit 3 and the post filter 4, and the luminance signal one field before is reproduced to generate an interpolation signal suitable for a still image of the inter-field interpolation.
【0021】更に、メモリ部9で1フィ−ルド期間相当
(262H)遅延させた1フレ−ム前のサブナイキスト標本化
の信号系列と、現フレ−ムのサブナイキスト標本化の信
号系列は、減算部10で減算演算を行い、1フレ−ム間
の差分信号を検出する。動き検出部11は、この差分信
号の絶対値の大小に応じて、0から1までの値の動き情報
係数を設定する。動きの検出漏れを回避するため、MA
X選択部12で、1フィ−ルド前の動きの情報も使用し
て、最終的な動き係数Kを設定する。すなわち、α加重
部13で係数α(0<α<1)を加重した信号をメモリ部9で
1フィ−ルド期間相当(262H)遅延させた信号、更に1H
遅延5で1ライン期間遅延させた信号(ト−タル263Hの
遅延)と、動き情報係数の間で、最大値を検出し、この
最大値を最終的な動き係数K(0≦K≦1,静止時:K=0)とし
て出力する。Further, the memory section 9 corresponds to one field period.
(262H) The subtraction unit 10 performs a subtraction operation on the delayed sub-Nyquist sampled signal sequence one frame before and the current frame sub-Nyquist sampled signal sequence. Detect the difference signal. The motion detection unit 11 sets a motion information coefficient having a value from 0 to 1 according to the magnitude of the absolute value of the difference signal. MA to avoid motion detection omission
The X selector 12 sets the final motion coefficient K using the information of the motion one field before. That is, the signal obtained by delaying the signal obtained by weighting the coefficient α (0 <α <1) by the α weighting unit 13 by one field period (262H) in the memory unit 9 and further by 1H
A maximum value is detected between the signal (total 263H delay) delayed by one line period by the delay 5 and the motion information coefficient, and this maximum value is determined as the final motion coefficient K (0 ≦ K ≦ 1, When stationary: K = 0) is output.
【0022】動き係数加重部7−1と7−2は、それぞ
れ係数値K、1-Kを加重し、加算部8で両者の信号を加算
して、補間走査線信号系列の輝度信号YIを生成する。The motion coefficient weighting sections 7-1 and 7-2 weight the coefficient values K and 1-K, respectively, add the two signals in the addition section 8, and generate the luminance signal YI of the interpolation scanning line signal sequence. Generate.
【0023】飛び越し走査系の画像信号の色差信号Cに
対しては、フィ−ルド内補間で補間信号を生成する。す
なわち、信号Cを伝送走査線信号系列の色差信号CMとし
て出力するとともに、この信号と、1H遅延5で1ライ
ン期間遅延させた信号を、加算部6で信号加算と係数値
1/2の加重を行い、補間走査線信号系列の色差信号CIを
生成する。For the color difference signal C of the interlaced scanning image signal, an interpolation signal is generated by intra-field interpolation. That is, the signal C is output as the color difference signal CM of the transmission scanning line signal sequence, and this signal and the signal delayed by one line period by the 1H delay 5 are added by the adder 6 to signal addition and coefficient value.
A weight of 1/2 is applied to generate a color difference signal CI of the interpolated scanning line signal sequence.
【0024】プリフィルタ、ポストフィルタの一構成例
を図3に示す。同図(a)はフィルタのインパルス応答特
性で、水平方向、垂直方向ともに3タップの3x3の2
次元フィルタである。なお、プリフィルタはこの数値に
1/16、ポストフィルタは1/8を掛けたものがタップ係数
となる。このフィルタは、同図(b)に示す構成で実現で
きる。1H遅延14と係数加重部15と加算部16との
組み合わせで垂直HPFを実現し、1画素遅延部17と
係数加重部18と加算部19との組み合わせで水平HP
Fを実現し、この縦続接続で、水平・垂直周波数の高域
成分を抽出する。そして、減算部21で、遅延部20で
時間遅延を調整した信号からこの高域成分を減算し、そ
の出力に、インパルス応答特性が同図(a)の信号を得
る。FIG. 3 shows a configuration example of the pre-filter and the post-filter. FIG. 7A shows the impulse response characteristics of the filter, which is a 3 × 3 2 × 3 tap in both the horizontal and vertical directions.
It is a dimensional filter. Note that the pre-filter is
1/16, the post filter multiplied by 1/8 is the tap coefficient. This filter can be realized by the configuration shown in FIG. A vertical HPF is realized by a combination of a 1H delay 14, a coefficient weighting unit 15, and an addition unit 16, and a horizontal HPF is realized by a combination of a one-pixel delay unit 17, a coefficient weighting unit 18, and an addition unit 19.
F is realized, and high-frequency components of horizontal and vertical frequencies are extracted by this cascade connection. Then, the subtraction section 21 subtracts the high frequency component from the signal whose time delay has been adjusted by the delay section 20, and obtains a signal whose impulse response characteristic is as shown in FIG.
【0025】以上に述べた如く、本実施例ではメモリ部
にはサブナイキスト標本化した信号系列を記憶する。こ
のため、従来の方法に較べてメモリの容量を1/2に削減
したIP変換の信号処理回路が実現でき、コスト低減に
顕著な効果が得られる。As described above, in the present embodiment, the sub-Nyquist-sampled signal sequence is stored in the memory unit. For this reason, a signal processing circuit for IP conversion in which the memory capacity is reduced by half compared with the conventional method can be realized, and a remarkable effect in cost reduction can be obtained.
【0026】次に、本発明における画像信号のIP変換
の信号処理回路の第2の実施例について、図4に示すブ
ロック構成図で説明する。同図の1はプリフィルタ、2
はダウンサンプル部、3はアップサンプル部、4はポス
トフィルタ、5は1H遅延、6,8は加算部、7は動き
係数加重部、9は1フィ−ルド遅延、10は減算部、1
1は動き検出部、12はMAX選択部、13はα加重
部、22は遅延部である。Next, a second embodiment of a signal processing circuit for IP conversion of an image signal according to the present invention will be described with reference to a block diagram shown in FIG. 1 is a prefilter, 2
Is a down sampling section, 3 is an up sampling section, 4 is a post filter, 5 is a 1H delay, 6, 8 is an addition section, 7 is a motion coefficient weighting section, 9 is a 1 field delay, 10 is a subtraction section,
1 is a motion detecting unit, 12 is a MAX selecting unit, 13 is an α weighting unit, and 22 is a delay unit.
【0027】飛び越し走査系の画像信号の輝度信号Yの
一方は、プリフィルタ1に入力し、サブナイキスト標本
化で折り返し歪となる水平垂直の高域成分を除去する。
ダウンサンプル部2は、標本点の2:1のサブサンプリン
グ処理を行い、サブナイキスト標本化した信号系列を生
成する。この輝度信号Yの他方は、遅延部22で時間遅
延を調整し、伝送走査線信号系列の輝度信号YMとして出
力する。One of the luminance signals Y of the image signal of the interlaced scanning system is input to the pre-filter 1 to remove horizontal and vertical high-frequency components that are aliasing distortions by sub-Nyquist sampling.
The down-sampling unit 2 performs a 2: 1 sub-sampling process on the sampling points to generate a signal sequence that is sub-Nyquist-sampled. The other of the luminance signals Y is adjusted in time delay by the delay unit 22, and is output as a luminance signal YM of a transmission scanning line signal sequence.
【0028】アップサンプル部3は、標本点の2:1のア
ップサンプリング処理を行う。そして、サブナイキスト
標本化で抜けた標本点には零の信号を挿入する。ポスト
フィルタ4は、サブナイキスト標本化で抜けた標本点の
信号を、近傍の標本点の信号で補間する信号処理を行
い、入力と同じ標本点構造の輝度信号を再生する。The up-sampling section 3 performs a 2: 1 up-sampling process on the sample points. Then, a zero signal is inserted into the sample points that have been missed in the sub-Nyquist sampling. The post filter 4 performs signal processing for interpolating the signal of the sample point that has been dropped by the sub-Nyquist sampling with the signal of the nearby sample point, and reproduces the luminance signal having the same sample point structure as the input.
【0029】この再生した信号と、1H遅延5で1ライ
ン期間遅延させた信号は、加算部6で信号加算と係数値
1/2の加重を行い、フィ−ルド内補間による動画像に適
した補間信号を生成する。The reproduced signal and the signal delayed by one line period by the 1H delay 5 are subjected to signal addition and coefficient value in the adder 6.
A weight of 1/2 is applied to generate an interpolation signal suitable for a moving image by intra-field interpolation.
【0030】また、メモリ部9で1フィ−ルド期間相当
(263H)遅延させたサブナイキスト標本化の信号系列は、
アップサンプル部3、ポストフィルタ4で復号処理を行
い、1フィ−ルド前の輝度信号を再生し、フィ−ルド間
補間の静止画像に適した補間信号を生成する。Also, the memory unit 9 corresponds to one field period.
(263H) The signal sequence of the delayed sub-Nyquist sampling is
The decoding processing is performed by the up-sampling unit 3 and the post filter 4, and the luminance signal one field before is reproduced to generate an interpolation signal suitable for a still image of the inter-field interpolation.
【0031】更に、メモリ部9で1フィ−ルド期間相当
(262H)遅延させた1フレ−ム前のサブナイキスト標本化
の信号系列と、現フレ−ムのサブナイキスト標本化の信
号系列は、減算部10で減算演算を行い、1フレ−ム間
の差分信号を検出する。動き検出部11は、この差分信
号の絶対値の大小に応じて、0から1までの値の動き情報
係数を設定する。動きの検出漏れを回避するため、MA
X選択部12で、1フィ−ルド前の動きの情報も使用し
て、最終的な動き係数Kを設定する。すなわち、α加重
部13で係数α(0<α<1)を加重した信号をメモリ部9で
1フィ−ルド期間相当(262H)遅延させた信号、更に1H
遅延5で1ライン期間遅延させた信号(ト−タル263Hの
遅延)と、動き情報係数の間で、最大値を検出し、この
最大値を最終的な動き係数K(0≦K≦1,静止時:K=0)とし
て出力する。Further, the memory unit 9 corresponds to one field period.
(262H) The subtraction unit 10 performs a subtraction operation on the delayed sub-Nyquist sampled signal sequence one frame before and the current frame sub-Nyquist sampled signal sequence. Detect the difference signal. The motion detection unit 11 sets a motion information coefficient having a value from 0 to 1 according to the magnitude of the absolute value of the difference signal. MA to avoid motion detection omission
The X selector 12 sets the final motion coefficient K using the information of the motion one field before. That is, the signal obtained by delaying the signal obtained by weighting the coefficient α (0 <α <1) by the α weighting unit 13 by one field period (262H) in the memory unit 9 and further by 1H
A maximum value is detected between the signal (total 263H delay) delayed by one line period by the delay 5 and the motion information coefficient, and this maximum value is determined as the final motion coefficient K (0 ≦ K ≦ 1, When stationary: K = 0) is output.
【0032】動き係数加重部7−1と7−2は、それぞ
れ係数値K、1-Kを加重し、加算部8で両者の信号を加算
して、補間走査線信号系列の輝度信号YIを生成する。The motion coefficient weighting sections 7-1 and 7-2 weight the coefficient values K and 1-K, respectively, add the two signals in the adding section 8, and generate the luminance signal YI of the interpolated scanning line signal sequence. Generate.
【0033】飛び越し走査系の画像信号の色差信号Cに
対しては、フィ−ルド内補間で補間信号を生成する。す
なわち、信号Cを伝送走査線信号系列の色差信号CMとし
て出力するとともに、この信号と、1H遅延5で1ライ
ン期間遅延させた信号を、加算部6で信号加算と係数値
1/2の加重を行い、補間走査線信号系列の色差信号CIを
生成する。For the color difference signal C of the interlaced scanning image signal, an interpolation signal is generated by intra-field interpolation. That is, the signal C is output as the color difference signal CM of the transmission scanning line signal sequence, and this signal and the signal delayed by one line period by the 1H delay 5 are added by the adder 6 to signal addition and coefficient value.
A weight of 1/2 is applied to generate a color difference signal CI of the interpolated scanning line signal sequence.
【0034】本実施例における各ブロック部は、前述し
た第1の実施例と同様に構成すればよく、説明は省略す
る。Each block in this embodiment may be configured in the same manner as in the first embodiment described above, and description thereof will be omitted.
【0035】以上に述べた如く、本実施例では、従来の
方法に較べてメモリの容量を1/2に削減したIP変換の
信号処理回路が実現でき、コスト低減に顕著な効果が得
られる。As described above, in this embodiment, an IP conversion signal processing circuit in which the memory capacity is reduced by half compared with the conventional method can be realized, and a remarkable effect on cost reduction can be obtained.
【0036】次に、本発明における画像信号のIP変換
の信号処理回路の第3の実施例について、図5に示すブ
ロック構成図で説明する。同図の1はプリフィルタ、2
はダウンサンプル部、3はアップサンプル部、4はポス
トフィルタ、5は1H遅延、6,8は加算部、7は動き
係数加重部、9は1フィ−ルド遅延、10は減算部、1
1は動き検出部、12はMAX選択部、13はα加重
部、22は遅延部である。Next, a third embodiment of the signal processing circuit for IP conversion of an image signal according to the present invention will be described with reference to a block diagram shown in FIG. 1 is a prefilter, 2
Is a down sampling section, 3 is an up sampling section, 4 is a post filter, 5 is a 1H delay, 6, 8 is an addition section, 7 is a motion coefficient weighting section, 9 is a 1 field delay, 10 is a subtraction section,
1 is a motion detecting unit, 12 is a MAX selecting unit, 13 is an α weighting unit, and 22 is a delay unit.
【0037】飛び越し走査系の画像信号の輝度信号Yの
一方は、プリフィルタ1に入力し、サブナイキスト標本
化で折り返し歪となる水平垂直の高域成分を除去する。
ダウンサンプル部2は、標本点の2:1のサブサンプリン
グ処理を行い、サブナイキスト標本化した信号系列を生
成する。One of the luminance signals Y of the image signal of the interlaced scanning system is input to the pre-filter 1 to remove horizontal and vertical high-frequency components which are aliasing due to sub-Nyquist sampling.
The down-sampling unit 2 performs a 2: 1 sub-sampling process on the sampling points to generate a signal sequence that is sub-Nyquist-sampled.
【0038】この輝度信号Yの他方は、遅延部22で時
間遅延を調整し、伝送走査線信号系列の輝度信号YMとし
て出力する。また、この信号と、1H遅延5で1ライン
期間遅延させた信号は、加算部6で信号加算と係数値1/
2の加重を行い、フィ−ルド内補間による動画像に適し
た補間信号を生成する。The other of the luminance signals Y is adjusted in time delay by the delay section 22 and is output as a luminance signal YM of a transmission scanning line signal sequence. Further, this signal and the signal delayed by one line period by the 1H delay 5 are added by the adder 6 to the signal addition and the coefficient value 1 /.
A weight of 2 is applied to generate an interpolation signal suitable for a moving image by intra-field interpolation.
【0039】また、サブナイキスト標本化の信号系列
は、メモリ部9で1フィ−ルド期間相当(263H)遅延さ
せ、アップサンプル部3で標本点の2:1のアップサンプ
リング処理を行う。ポストフィルタ4は、サブナイキス
ト標本化で抜けた標本点の信号を、近傍の標本点の信号
で補間する信号処理を行う。そして、1フィ−ルド前の
輝度信号を再生し、フィ−ルド間補間の静止画像に適し
た補間信号を生成する。The signal sequence of the sub-Nyquist sampling is delayed by one field period (263H) in the memory unit 9 and the up-sampling unit 3 performs a 2: 1 up-sampling process of the sampling points. The post-filter 4 performs signal processing for interpolating the signal of the sample point that has been dropped by the sub-Nyquist sampling with the signal of a nearby sample point. Then, the luminance signal one field before is reproduced, and an interpolation signal suitable for a still image of inter-field interpolation is generated.
【0040】更に、メモリ部9で1フィ−ルド期間相当
(262H)遅延させた1フレ−ム前のサブナイキスト標本化
の信号系列と、現フレ−ムのサブナイキスト標本化の信
号系列は、減算部10で減算演算を行い、1フレ−ム間
の差分信号を検出する。動き検出部11は、この差分信
号の絶対値の大小に応じて、0から1までの値の動き情報
係数を設定する。動きの検出漏れを回避するため、MA
X選択部12で、1フィ−ルド前の動きの情報も使用し
て、最終的な動き係数Kを設定する。すなわち、α加重
部13で係数α(0<α<1)を加重した信号をメモリ部9で
1フィ−ルド期間相当(262H)遅延させた信号、更に1H
遅延5で1ライン期間遅延させた信号(ト−タル263Hの
遅延)と、動き情報係数の間で、最大値を検出し、この
最大値を最終的な動き係数K(0≦K≦1,静止時:K=0)とし
て出力する。Further, the memory section 9 corresponds to one field period.
(262H) The subtraction unit 10 performs a subtraction operation on the delayed sub-Nyquist sampled signal sequence one frame before and the current frame sub-Nyquist sampled signal sequence. Detect the difference signal. The motion detection unit 11 sets a motion information coefficient having a value from 0 to 1 according to the magnitude of the absolute value of the difference signal. MA to avoid motion detection omission
The X selector 12 sets the final motion coefficient K using the information of the motion one field before. That is, the signal obtained by delaying the signal obtained by weighting the coefficient α (0 <α <1) by the α weighting unit 13 by one field period (262H) in the memory unit 9 and further by 1H
A maximum value is detected between the signal (total 263H delay) delayed by one line period by the delay 5 and the motion information coefficient, and this maximum value is determined as the final motion coefficient K (0 ≦ K ≦ 1, When stationary: K = 0) is output.
【0041】動き係数加重部7−1と7−2は、それぞ
れ係数値K、1-Kを加重し、加算部8で両者の信号を加算
して、補間走査線信号系列の輝度信号YIを生成する。The motion coefficient weighting sections 7-1 and 7-2 weight the coefficient values K and 1-K, respectively, add the two signals in the adding section 8, and generate the luminance signal YI of the interpolation scanning line signal sequence. Generate.
【0042】飛び越し走査系の画像信号の色差信号Cに
対しては、フィ−ルド内補間で補間信号を生成する。す
なわち、信号Cを伝送走査線信号系列の色差信号CMとし
て出力するとともに、この信号と、1H遅延5で1ライ
ン期間遅延させた信号を、加算部6で信号加算と係数値
1/2の加重を行い、補間走査線信号系列の色差信号CIを
生成する。For the color difference signal C of the image signal of the interlaced scanning system, an interpolation signal is generated by intra-field interpolation. That is, the signal C is output as the color difference signal CM of the transmission scanning line signal sequence, and this signal and the signal delayed by one line period by the 1H delay 5 are added by the adder 6 to signal addition and coefficient value.
A weight of 1/2 is applied to generate a color difference signal CI of the interpolated scanning line signal sequence.
【0043】本実施例における各ブロック部は、前述し
た第1の実施例と同様に構成すればよく、説明は省略す
る。Each block in this embodiment may be configured in the same manner as in the first embodiment described above, and description thereof will be omitted.
【0044】以上に述べた如く、本実施例では、従来の
方法に較べてメモリの容量を1/2に削減したIP変換の
信号処理回路が実現でき、コスト低減に顕著な効果が得
られる。As described above, in this embodiment, an IP conversion signal processing circuit in which the memory capacity is reduced by half compared with the conventional method can be realized, and a remarkable effect on cost reduction can be obtained.
【0045】次に本発明における画像信号のフォ−マッ
ト変換の信号処理回路に関して説明する。Next, a signal processing circuit for format conversion of an image signal according to the present invention will be described.
【0046】図6は、この第1の実施例のブロック構成
図である。図中の23はIP変換部、24は倍速化部、
25は選択部、26は水平スケ−リング部、27は垂直
スケ−リング部、28はメモリ部、29は画質改善部、
30は多重部、31はマイコン部、32はコントロ−ル
部である。FIG. 6 is a block diagram of the first embodiment. 23 in the figure is an IP conversion unit, 24 is a double speed unit,
25 is a selection unit, 26 is a horizontal scaling unit, 27 is a vertical scaling unit, 28 is a memory unit, 29 is an image quality improvement unit,
Reference numeral 30 denotes a multiplexing unit, 31 denotes a microcomputer unit, and 32 denotes a control unit.
【0047】入力画像信号系列S1(4:2:2系,あるいは4:
2:0系のコンポ−ネント輝度、色差信号)は、IP変換部
23と選択部25に入力する。The input image signal sequence S1 (4: 2: 2 system or 4:
The 2: 0 system component luminance and color difference signals) are input to the IP conversion unit 23 and the selection unit 25.
【0048】IP変換部23は、前述の第1乃至第3の
実施例の信号処理回路で構成し、飛び越し走査系の入力
画像信号に対して、飛び越し走査で抜けた走査線の信号
を動き適応型の補間処理で生成し、伝送走査線信号系列
SMと補間走査線信号系列SIとを出力する。The IP conversion unit 23 is composed of the signal processing circuits of the first to third embodiments described above. The IP conversion unit 23 performs motion adaptation on a signal of a scanning line which is skipped by interlaced scanning with respect to an input image signal of an interlaced scanning system. Transmission scan line signal series
An SM and an interpolated scanning line signal sequence SI are output.
【0049】倍速化部24は、信号系列SMとSIをそれぞ
れ水平方向に時間軸の1/2圧縮と時系列多重の信号処
理を行い、順次走査系の画像信号系列SPを出力する。The speed doubling section 24 performs signal processing of 信号 compression on the time axis and time-sequential multiplexing of the signal sequences SM and SI in the horizontal direction, respectively, and outputs an image signal sequence SP of a sequential scanning system.
【0050】選択部25は、入力画像信号が飛び越し走
査系の現行TV信号では信号系列SP、順次走査系のED
TV信号やパソコン画像信号およびHDTV信号では信
号系列S1をそれぞれ選択し、これを信号系列S2に出力す
る。The selection unit 25 determines whether the input image signal is a signal sequence SP for the current TV signal of the interlaced scanning system and an ED of the progressive scanning system.
For a TV signal, a personal computer image signal, and an HDTV signal, a signal sequence S1 is selected, and this is output to a signal sequence S2.
【0051】水平スケ−リング部26は、K−L変換
(K個の画素をL個の画素に変換)の信号処理で水平拡
大(K<L)や水平縮小(K>L)を行い、信号系列S3
を出力する。The horizontal scaling section 26 performs horizontal enlargement (K <L) and horizontal reduction (K> L) by signal processing of KL conversion (conversion of K pixels into L pixels). Signal sequence S3
Is output.
【0052】垂直スケ−リング部27は、K−L変換
(K個のラインをL個のラインに変換)の信号処理で垂
直拡大(K<L)や垂直縮小(K>L)を行う。なお、
入力信号によっては、メモリ部28のメモリの動作制御
を行い、方式変換(例えば、PAL−NTSC変換)
や、同期整合の信号処理、表示系によってはPALフィ
−ルド倍速の信号処理も併せて行う。そして、フォ−マ
ット変換した画像信号系列S4を出力する。The vertical scaling section 27 performs vertical enlargement (K <L) and vertical reduction (K> L) in the signal processing of KL conversion (conversion of K lines into L lines). In addition,
Depending on the input signal, the operation of the memory of the memory unit 28 is controlled, and the format conversion (for example, PAL-NTSC conversion) is performed.
In addition, signal processing for synchronization matching and signal processing at a PAL field double speed depending on the display system are also performed. Then, the image signal sequence S4 after the format conversion is output.
【0053】画質改善部29は、輝度信号の黒レベル補
正、白レベル補正などの画質改善や、色空間変換などの
信号処理を行い、3原色RGB信号に変換する。また、
表示系がリニア特性のディスプレイでは、逆γ変換の信
号処理を行う。そして、3原色画像信号系列S5を出力す
る。The image quality improving unit 29 performs image processing such as black level correction and white level correction of a luminance signal and signal processing such as color space conversion, and converts the signal into three primary color RGB signals. Also,
In a display having a linear display system, signal processing of inverse γ conversion is performed. Then, a three-primary-color image signal sequence S5 is output.
【0054】多重部30は、信号系列S5にマルチ画面表
示(例えば、2画面表示、PIP表示、マルチウィンド
表示など)のための3原色画像信号系列S7を多重する信
号処理を行う。そして、表示系のフォ−マットに合致し
た画像信号系列S6を出力する。The multiplexing section 30 performs signal processing for multiplexing the signal sequence S5 with a three primary color image signal sequence S7 for multi-screen display (for example, two-screen display, PIP display, multi-window display, etc.). Then, an image signal sequence S6 matching the display system format is output.
【0055】マイコン部31は、画像情報信号SPI(入
力画像信号の種類、表示系のフォ−マット、画面表示の
モ−ドなどの情報)をもとに、各ブロック部における信
号処理のパラメタを設定する。The microcomputer unit 31 converts the signal processing parameters in each block unit based on the image information signal SPI (information such as the type of input image signal, display system format, and screen display mode). Set.
【0056】コントロ−ル部32は、各ブロック部にお
ける信号処理に必要な同期信号や、制御信号や、クロッ
ク信号などを生成する。また、マルチ画面表示の際の同
期整合処理に必要な情報SDを出力する。The control section 32 generates a synchronization signal, a control signal, a clock signal, and the like necessary for signal processing in each block section. Also, it outputs information SD necessary for the synchronization matching process at the time of multi-screen display.
【0057】以下では、各ブロック部の実施形態につい
て説明する。Hereinafter, embodiments of each block will be described.
【0058】倍速化部の一構成例図を図7に示す。同図
(a)は構成、(b)はラインメモリの動作である。FIG. 7 shows an example of the structure of the speed doubling section. Same figure
(a) shows the configuration, and (b) shows the operation of the line memory.
【0059】伝送走査線信号系列の信号SM(Y),SM(C)は
ラインメモリ33−1、補間走査線信号系列の信号SI
(Y),SI(C)はラインメモリ33−2に、同図(b)に示す書
き込み動作(以下WT動作と略称)で、飛び越し走査系の動
作速度で1ライン期間の信号を記憶する。The signals SM (Y) and SM (C) of the transmission scanning line signal series are stored in the line memory 33-1 and the interpolation scanning line signal series signal SI.
(Y) and SI (C) store signals for one line period in the line memory 33-2 at the operation speed of the interlaced scanning system in the write operation (hereinafter abbreviated as WT operation) shown in FIG.
【0060】ラインメモリからの読出し動作(以下RD動
作と略称)は、順次走査系の動作速度で1ライン期間
(飛び越し走査系の1/2の時間)で、ラインメモリ33
−1と33−2とを交互に読み出す。そして、多重部3
4で時系列に多重し、その出力に順次走査系の画像信号
系列の輝度信号SP(Y)と、色差信号SP(C)とを得る。The read operation from the line memory (hereinafter abbreviated as RD operation) is performed in one line period (1/2 time of the interlaced scan system) at the operation speed of the sequential scan system.
-1 and 33-2 are alternately read. And the multiplexing unit 3
In step 4, the signals are multiplexed in a time series, and a luminance signal SP (Y) and a color difference signal SP (C) of an image signal sequence of a sequential scanning system are obtained at the output.
【0061】次に、図8に水平スケ−リング部の一構成
例を示す。同図(a)は構成を示し、図中の35は水平L
PF、36,40,42,43はスイッチ、37は1画素
遅延、38は係数加重部、39は加算部、41は1Hメ
モリである。また、同図(b)は、各種信号処理における
スイッチ類の選択制御を示す。Next, FIG. 8 shows an example of the configuration of the horizontal scaling section. FIG. 3A shows the configuration, in which 35 is a horizontal L
PF, 36, 40, 42, 43 are switches, 37 is one pixel delay, 38 is a coefficient weighting section, 39 is an addition section, and 41 is a 1H memory. FIG. 2B shows selection control of switches in various signal processing.
【0062】水平縮小の信号処理では、SW1,SW2,SW4は
端子a、SW3は端子bに接続する。そして、順次走査系の
画像信号の輝度信号S2(Y)は、まず、縮小処理で折り返
し歪となる水平高域周波数成分を除去するため、水平L
PF35で低域通過の周波数特性で帯域制限を行う。次
に、1画素遅延37と係数加重部38と加算部39とで
構成する演算部で、2点線形補間の特性による画素のK
−L変換(K>L)の演算を行う。すなわち、入力信号
と、1画素遅延37で1画素遅延した信号に対し、係数
加重部38では係数値β,1-βを加重し、加算部39で
両者を加算し、この出力にK−L変換でK画素から生成
したL画素の信号を得る。なお、β,1-βは、K画素を
周期に画素毎に変化する。1Hメモリ41では、間欠的
なWT動作でこのL画素の信号を記憶する。そして、RD動
作で連続的に信号の読出しを行う。そして、43のSW
4の出力に、L/K倍に水平縮小した信号系列S3(Y)を得
る。In signal processing for horizontal reduction, SW1, SW2, and SW4 are connected to a terminal a, and SW3 is connected to a terminal b. Then, the luminance signal S2 (Y) of the image signal of the progressive scanning system is first converted to a horizontal L level in order to remove a horizontal high frequency component which is aliasing in the reduction processing.
The band is limited by the PF 35 using the low-pass frequency characteristics. Next, an arithmetic unit composed of a one-pixel delay 37, a coefficient weighting unit 38, and an adding unit 39 calculates the K
Perform an operation of -L conversion (K> L). That is, the coefficient weighting section 38 weights the coefficient value β, 1−β with respect to the input signal and the signal delayed by one pixel by the one-pixel delay 37, and adds the two in the addition section 39. The signal of the L pixel generated from the K pixel by the conversion is obtained. Note that β, 1-β changes for each pixel in a cycle of K pixels. The 1H memory 41 stores the signal of this L pixel by intermittent WT operation. Then, the signal is continuously read out by the RD operation. And 43 SW
4, a signal sequence S3 (Y) horizontally reduced by L / K times is obtained.
【0063】水平拡大の信号処理では、SW1,SW2は端子
b、SW3,SW4は端子aに接続する。そして、順次走査系の
画像信号の輝度信号S2(Y)は、まず、1Hメモリ41
に、WT動作で連続的に信号を記憶する。そして、RD動作
では一部期間で2度読み出しの動作を行い、L画素の期
間でK個の画素の信号を読み出す。次に、1画素遅延3
7と係数加重部38と加算部39とで構成する演算部
で、2点線形補間の特性による画素のK−L変換(K<
L)の演算を行う。すなわち、入力信号と、1画素遅延
37で1画素遅延した信号に対し、係数加重部38では
係数値β,1-βを加重し、加算部39で両者を加算し、
この出力にK−L変換でK画素から生成したL画素の信
号を得る。なお、β,1-βは、L画素を周期に画素毎に
変化する。そして、43のSW4の出力に、L/K倍に水
平拡大した信号系列S3(Y)を得る。In the horizontal expansion signal processing, SW1 and SW2 are connected to terminals.
b, SW3, SW4 are connected to terminal a. Then, the luminance signal S2 (Y) of the progressive scanning image signal is
Next, the signal is continuously stored by the WT operation. In the RD operation, a read operation is performed twice in a partial period, and signals of K pixels are read in a period of L pixels. Next, one pixel delay 3
7; a coefficient weighting unit 38; and an adding unit 39. The calculating unit includes a KL conversion (K <K <
L) is calculated. That is, the coefficient weighting unit 38 weights the coefficient value β, 1−β with respect to the input signal and the signal delayed by one pixel by the one-pixel delay 37, and adds the two in the addition unit 39,
An L pixel signal generated from K pixels by KL conversion is obtained from this output. Note that β, 1-β changes for each pixel in a cycle of L pixels. Then, a signal sequence S3 (Y) horizontally expanded L / K times is obtained at the output of SW4 43.
【0064】スル−の信号処理では、SW4を端子bに接続
する。そして、43のSW4の出力に、縮小拡大の処理
を行わない信号系列S3(Y)を得る。In the through signal processing, SW4 is connected to the terminal b. Then, a signal sequence S3 (Y) not subjected to the reduction / enlargement processing is obtained at the output of SW4 of 43.
【0065】順次走査系の画像信号の色差信号S2(C)に
対しても、輝度信号と同一の構成による信号処理を行
い、水平縮小、水平拡大あるいはスル−の信号系列S3
(C)を得る。The color difference signal S2 (C) of the progressive scanning image signal is also subjected to signal processing having the same configuration as that of the luminance signal, and is subjected to horizontal reduction, horizontal expansion or through signal series S3.
Obtain (C).
【0066】次に、図9に垂直スケ−リング部の一構成
例を示す。同図(a)は構成を示し、図中の44は垂直L
PF、45,49,50,51はスイッチ、46は1ライ
ン遅延、47は係数加重部、48は加算部、28はメモ
リ部である。また、同図(b)は、各種信号処理における
スイッチ類の選択制御を示す。Next, FIG. 9 shows an example of the configuration of the vertical scaling section. FIG. 11A shows the configuration, and reference numeral 44 in the figure denotes a vertical L
PF, 45, 49, 50, and 51 are switches, 46 is a one-line delay, 47 is a coefficient weighting unit, 48 is an addition unit, and 28 is a memory unit. FIG. 2B shows selection control of switches in various signal processing.
【0067】垂直縮小の信号処理では、SW1,SW2,SW4は
端子a、SW3は端子bに接続する。そして、順次走査系の
画像信号の輝度信号S3(Y)は、まず、縮小処理で折り返
し歪となる垂直高域周波数成分を除去するため、垂直L
PF44で低域通過の周波数特性で帯域制限を行う。次
に、1ライン遅延46と係数加重部47と加算部48と
で構成する演算部で、2点線形補間の特性によるライン
のK−L変換(K>L)の演算を行う。すなわち、入力
信号と、1ライン遅延46で1ライン遅延した信号に対
し、係数加重部47では係数値β,1-βを加重し、加算
部48で両者を加算し、この出力にK−L変換でKライ
ンから生成したLラインの信号を得る。なお、β,1-β
は、Kラインを周期にライン毎に変化する。メモリ部2
8のM-1では、図10(a)に示す様に、1フィ−ルド期間
を周期にWT動作、RD動作を行う。WT動作では、K−L変
換で生成した信号を間欠的に書き込み記憶する。一方、
RD動作では(1-L/K)フィ−ルド期間遅れた時点より連続
的に信号を読み出す。そして、51のSW4の出力に、
L/K倍に垂直縮小した信号系列S4(Y)を得る。以上に述べ
た垂直縮小の信号処理に必要なメモリ容量は、(1-L/K)
フィ−ルド期間分あればよい。In signal processing for vertical reduction, SW1, SW2, and SW4 are connected to a terminal a, and SW3 is connected to a terminal b. Then, the luminance signal S3 (Y) of the image signal of the progressive scanning system is first converted into a vertical L signal in order to remove a vertical high frequency component which is aliasing in the reduction processing.
The PF 44 limits the band with the low-pass frequency characteristics. Next, an operation unit including a one-line delay 46, a coefficient weighting unit 47, and an addition unit 48 performs an operation of KL conversion (K> L) of a line based on characteristics of two-point linear interpolation. That is, the coefficient weighting section 47 weights the coefficient values β and 1−β with respect to the input signal and the signal delayed by one line by the one-line delay 46, adds the two to each other in the adding section 48, and outputs the KL to the output. The signal of the L line generated from the K line by the conversion is obtained. Note that β, 1-β
Changes every line in a cycle of K lines. Memory part 2
In M-1 of FIG. 8, as shown in FIG. 10A, the WT operation and the RD operation are performed in a cycle of one field period. In the WT operation, a signal generated by the KL conversion is intermittently written and stored. on the other hand,
In the RD operation, a signal is continuously read from a point in time delayed by (1-L / K) field period. And, to the output of SW4 of 51,
A signal sequence S4 (Y) vertically reduced L / K times is obtained. The memory capacity required for the vertical reduction signal processing described above is (1-L / K)
It only has to be for the field period.
【0068】垂直拡大の信号処理では、SW1,SW2は端子
b、SW3,SW4は端子aに接続する。メモリ部28のM-1で
は、図10(b)に示す様に、1フィ−ルド期間を周期と
するWT動作、RD動作を行う。そして、順次走査系の画像
信号の輝度信号S3(Y)は、まず、WT動作で連続的に信号
を記憶する。一方、RD動作では一部期間で2度読み出し
の動作を行いKラインの期間にLラインの信号を読み出
す。次に、1ライン遅延46と係数加重部47と加算部
48とで構成する演算部で、2点線形補間の特性による
ラインのL−K変換(L<K)の演算を行う。すなわ
ち、入力信号と、1ライン遅延46で1ライン遅延した
信号に対し、係数加重部47では係数値β,1-βを加重
し、加算部48で両者を加算し、この出力にL−K変換
でLラインから生成したKラインの信号を得る。なお、
β,1-βは、Kラインを周期にライン毎に変化する。そ
して、51のSW4の出力に、K/L倍に垂直拡大した信
号系列S4(Y)を得る。以上に述べた垂直拡大の信号処理
に必要なメモリ容量は、(1-L/K)フィ−ルド期間分あれ
ばよい。In the vertical magnification signal processing, SW1 and SW2 are connected to terminals.
b, SW3, SW4 are connected to terminal a. As shown in FIG. 10B, the M-1 of the memory unit 28 performs the WT operation and the RD operation with a period of one field period. Then, as the luminance signal S3 (Y) of the image signal of the progressive scanning system, first, the signal is continuously stored by the WT operation. On the other hand, in the RD operation, a read operation is performed twice in a partial period, and a signal on the L line is read in a period on the K line. Next, an arithmetic unit including a one-line delay 46, a coefficient weighting unit 47, and an adding unit 48 performs an LK conversion (L <K) of a line based on the characteristics of two-point linear interpolation. That is, the coefficient weighting unit 47 weights the coefficient values β and 1-β with respect to the input signal and the signal delayed by one line by the one-line delay 46, and adds the two in the addition unit 48. The signal of the K line generated from the L line by the conversion is obtained. In addition,
β, 1-β changes every line in a cycle of K lines. Then, a signal sequence S4 (Y) vertically expanded by K / L times is obtained at the output of SW4 51. The memory capacity required for the above-described vertical expansion signal processing may be sufficient for the (1-L / K) field period.
【0069】PALフィ−ルド倍速の信号処理は、順次
走査系に変換したPAL信号(以下625/50/1:1と略称)
を100フィ−ルド/秒の飛び越し走査系の信号(以下625
/100/2:1と略称)に変換するもので、SW2,SW3を端子b、
SW4を端子aに接続して実現する。メモリ部28のM-1で
は、図10(c)に示す様なWT動作、RD動作を行う。順次
走査系のPAL信号の輝度信号S3(Y)は、1フィ−ルド
期間を周期に、WT動作で連続的に信号を記憶する。一
方、RD動作では、0.5フィ−ルド期間遅れた時点から、
順次走査系の奇数走査線の信号系列(図中の○-O)、偶
数走査線の信号系列(図中の○-E)の順に信号の読出し
を行う。そして、51のSW4の出力に、PALフィ−
ルド倍速した信号系列S4(Y)を得る。以上に述べたPA
Lフィ−ルド倍速の信号処理に必要なメモリ容量は、0.
5フィ−ルド期間分あればよい。The PAL field double-speed signal processing is performed on a PAL signal (hereinafter abbreviated as 625/50/1: 1) converted into a sequential scanning system.
To a 100-field / second interlaced scanning signal (hereafter 625
/ 100/2: 1), with SW2 and SW3 connected to terminal b,
This is realized by connecting SW4 to terminal a. In M-1 of the memory unit 28, the WT operation and the RD operation as shown in FIG. The luminance signal S3 (Y) of the PAL signal of the progressive scanning system is continuously stored by the WT operation with a period of one field period. On the other hand, in the RD operation, after a delay of 0.5 field period,
The signals are read out in the order of the signal sequence of the odd-numbered scanning lines (○ -O in the figure) and the signal sequence of the even-numbered scanning lines (○ -E in the figure) of the progressive scanning system. The PAL filter is output to the output of SW4 51.
Thus, a signal sequence S4 (Y) doubled in speed is obtained. PA mentioned above
The memory capacity required for L-field double-speed signal processing is 0.
It suffices for 5 field periods.
【0070】NTSC−PALフィ−ルド倍速の信号処
理は、順次走査系に変換したNTSC信号(以下525/60
/1:1と略称)を625/100/2:1系の信号に変換するもの
で、SW1,SW2を端子b、SW3を端子c、SW4を端子aに接続し
て実現する。順次走査系のNTSC信号の輝度信号S3
(Y)は、図10(d)に示す様に、メモリ部のM-1に、NT
SC1フィ−ルド期間を周期とするWT動作で、連続的に
信号を記憶する。一方、RD動作では、PAL1フィ−ル
ド期間を周期に、一部期間で2度読み出しの動作を行い
6ラインの期間に5ラインの信号を読み出す。次に、1
ライン遅延46と係数加重部47と加算部48とで構成
する演算部で、2点線形補間の特性によるラインの5−
6変換の演算で垂直拡大を行う。すなわち、入力信号
と、1ライン遅延46で1ライン遅延した信号に対し、
係数加重部47では係数値β,1-βを加重し、加算部4
8で両者を加算し、この出力に5−6変換で5ラインか
ら生成した6ラインの信号を得る。なお、β,1-βは、
6ラインを周期にライン毎に変化する。メモリ部28の
M-2では、PAL1フィ−ルド期間を周期に、WT動作で
連続的にこの信号を記憶する。一方、RD動作では、0.5
フィ−ルド期間遅れた時点から、順次走査系の奇数走査
線の信号系列(図中の○-O)、偶数走査線の信号系列
(図中の○-E)の順に信号の読出しを行う。そして、5
1のSW4の出力に、NTSC−PALフィ−ルド倍速
した信号系列S4(Y)を得る。以上に述べたNTSC−P
ALフィ−ルド倍速の信号処理に必要なメモリ容量は、
NTSC−PAL変換に1フィ−ルド期間分、フィ−ル
ド倍速変換に0.5フィ−ルド期間分あればよい。The signal processing at the NTSC-PAL field double speed is performed by an NTSC signal (hereinafter referred to as 525/60) converted to a progressive scanning system.
/ 1: 1) is converted to a 625/100/2: 1 system signal. SW1 and SW2 are connected to terminal b, SW3 is connected to terminal c, and SW4 is connected to terminal a. The luminance signal S3 of the NTSC signal of the progressive scanning system
(Y), as shown in FIG. 10 (d), NT
Signals are continuously stored in a WT operation having a cycle of the SC1 field period. On the other hand, in the RD operation, a read operation is performed twice in a partial period with a period of the PAL1 field period, and signals of five lines are read in a period of six lines. Then, 1
An arithmetic unit composed of a line delay 46, a coefficient weighting unit 47, and an adding unit 48.
The vertical enlargement is performed by the calculation of 6 conversion. That is, for the input signal and the signal delayed by one line by the one-line delay 46,
The coefficient weighting section 47 weights the coefficient values β, 1-β,
At step 8, the signals are added, and a signal of 6 lines generated from 5 lines by 5-6 conversion is obtained from the output. Note that β, 1-β is
It changes every line every six lines. Of the memory unit 28
In M-2, this signal is continuously stored in the WT operation with the PAL1 field period as a cycle. On the other hand, in RD operation, 0.5
From the time when the field period is delayed, the signals are read out in the order of the signal sequence of the odd-numbered scanning lines (○ -O in the drawing) and the signal sequence of the even-numbered scanning lines (○ -E in the drawing) of the sequential scanning system. And 5
1, a signal sequence S4 (Y) at NTSC-PAL field double speed is obtained at the output of SW4. NTSC-P described above
The memory capacity required for AL field double speed signal processing is
It is sufficient that one field period is used for NTSC-PAL conversion and 0.5 field period is used for double-speed field conversion.
【0071】PAL−NTSC変換の信号処理は、625/
50/1:1系の信号を525/60/1:1系の信号に変換するもの
で、SW1,SW2を端子a、SW3を端子b、SW4を端子aに接続し
て実現する。順次走査系のPAL信号の輝度信号S3(Y)
は、垂直LPF44で低域通過の周波数特性で帯域制限
を行う。次に、1ライン遅延46と係数加重部47と加
算部48とで構成する演算部で、2点線形補間の特性に
よるラインの6−5変換の演算で垂直縮小を行う。すな
わち、入力信号と、1ライン遅延46で1ライン遅延し
た信号に対し、係数加重部47では係数値β,1-βを加
重し、加算部48で両者を加算し、この出力に6−5変
換で6ラインから生成した5ラインの信号を得る。な
お、β,1-βは、6ラインを周期にライン毎に変化す
る。メモリ部28のM-1では、図10(e)に示す様に、P
AL1フィ−ルド期間を周期とするWT動作で、6−5変
換で生成した信号を間欠的に書き込み記憶する。一方、
RD動作ではNTSC1フィ−ルド期間を周期に信号を読
み出す。そして、51のSW4の出力に、PAL−NT
SC変換した信号系列S4(Y)を得る。以上に述べたPA
L−NTSC変換の信号処理に必要なメモリ容量は、1
フィ−ルド期間分あればよい。The signal processing of the PAL-NTSC conversion is 625 /
It converts 50/1: 1 system signals to 525/60/1: 1 system signals, and is realized by connecting SW1 and SW2 to terminal a, SW3 to terminal b, and SW4 to terminal a. Luminance signal S3 (Y) of PAL signal of progressive scanning system
Performs band limitation with a low-pass frequency characteristic by the vertical LPF 44. Next, an operation unit including a one-line delay 46, a coefficient weighting unit 47, and an addition unit 48 performs vertical reduction by an operation of 6-5 conversion of a line based on characteristics of two-point linear interpolation. That is, the coefficient weighting section 47 weights the coefficient values β and 1-β with respect to the input signal and the signal delayed by one line by the one-line delay 46, and adds the two at the adding section 48. The signal of five lines generated from six lines by conversion is obtained. Note that β, 1-β changes every line in a cycle of six lines. In M-1 of the memory unit 28, as shown in FIG.
The signal generated by the 6-5 conversion is intermittently written and stored in the WT operation having a cycle of the AL1 field period. on the other hand,
In the RD operation, a signal is read in a cycle of the NTSC1 field period. Then, PAL-NT is output to the output of SW4 51.
An SC-converted signal sequence S4 (Y) is obtained. PA mentioned above
The memory capacity required for signal processing of L-NTSC conversion is 1
It only has to be for the field period.
【0072】スル−の信号処理では、SW4を端子bに接続
する。そして、51のSW4の出力に、縮小拡大の処理
を行わない信号系列S4(Y)を得る。In the through signal processing, SW4 is connected to the terminal b. Then, a signal sequence S4 (Y) that does not undergo reduction / enlargement processing is obtained at the output of SW4 51.
【0073】順次走査系の画像信号の色差信号S3(C)に
対しても、輝度信号と同一の構成による信号処理を行
い、垂直縮小、垂直拡大、PALフィ−ルド倍速変換、
NTSC−PALフィ−ルド倍速変換、PAL−NTS
C変換あるいはスル−の信号系列S4(C)を得る。The color difference signal S3 (C) of the progressive scanning image signal is also subjected to signal processing with the same configuration as that of the luminance signal to reduce the vertical scale, the vertical scale, the PAL field double speed conversion,
NTSC-PAL field double speed conversion, PAL-NTS
A C-converted or through signal sequence S4 (C) is obtained.
【0074】以上に述べた様に、垂直スケ−リング部で
は、極めて少ないメモリ容量で、フォ−マット変換に必
要な各種の信号処理を行うことができる。As described above, the vertical scaling section can perform various signal processing required for format conversion with an extremely small memory capacity.
【0075】次に、水平スケ−リング部や垂直スケ−リ
ング部で使用する2点線形補間の特性のK−L変換の代
表的な例を図11に示す。同図(a)の4−3変換は、後
述する図13のノ−マルモ−ドで使用する。図中のマト
リクスは、4点の入力系列X1,X2,X3,X4と、3点の出力
系列Y1,Y2,Y3との対応関係を示す。従って、前述した演
算部では、係数値(β,1-β)は(1,0),(2/3,1/3),(1/3,2/
3)と変化し、出力系列を生成する。また、同図(b)の3
−4変換は、後述する図13のシネマモ−ドで使用す
る。この場合は、4点の入力系列X1,X2,X3,X4(但し、X4
は次の入力系列のX1にも使用)と、4点の出力系列Y1,Y
2,Y3,Y4との対応関係が、同図に示すマトリクスで表さ
れる。従って、前述した演算部では、係数値(β,1-β)
は(0,1),(1/4,3/4),(2/4,2/4),(3/4,1/4)と変化し、出
力系列を生成する。一方、同図(c)は前述のPAL−N
TSC変換に使用する6−5変換、同図(d)は前述のN
TSC−PAL変換に使用する5−6変換の例である。Next, FIG. 11 shows a typical example of the KL conversion of the characteristics of two-point linear interpolation used in the horizontal scaling unit and the vertical scaling unit. The 4-3 conversion shown in FIG. 9A is used in a normal mode shown in FIG. The matrix in the figure shows the correspondence between four input sequences X1, X2, X3, and X4 and three output sequences Y1, Y2, and Y3. Therefore, in the above-described calculation unit, the coefficient values (β, 1-β) are (1, 0), (2/3, 1/3), (1/3, 2 /
3) to generate an output sequence. Also, 3 in FIG.
The -4 conversion is used in the cinema mode shown in FIG. In this case, the input sequence of four points X1, X2, X3, X4 (however, X4
Is also used for X1 of the next input series) and four output series Y1, Y
The correspondence between 2, 2, Y3, and Y4 is represented by a matrix shown in FIG. Therefore, in the above-described calculation unit, the coefficient value (β, 1−β)
Changes to (0, 1), (1/4, 3/4), (2/4, 2/4), (3/4, 1/4) to generate an output sequence. On the other hand, FIG.
The 6-5 conversion used for the TSC conversion, FIG.
It is an example of 5-6 conversion used for TSC-PAL conversion.
【0076】次に、画質改善部の一構成例を図12に示
す。フォ−マット変換処理した画像信号系列の輝度信号
S4(Y)は、輝度処理部52に入力して輪郭補正や黒レベ
ル補正や白レベル補正の信号処理を行う。また、フォ−
マット変換処理した画像信号系列の色差信号S4(C)は、
画素補間部53に入力し、輝度信号と同じ標本点の構造
を有する色差信号U,Vに復調する信号処理を行う。色空
間変換部54は、輝度色差系から3原色RGB系への変
換処理を行う。また、逆γ処理部55は、リニアな特性
を有する表示系のための逆ガンマ補正の信号処理を行
う。選択部56は、CRTなどのガンマ特性を有する表
示系では色空間変換部の信号、LCDやPDPなどリニ
アな特性の表示系では逆γ処理部の信号を選択し、3原
色画像信号系列S5として出力する。Next, an example of the configuration of the image quality improving section is shown in FIG. Luminance signal of image signal sequence after format conversion processing
S4 (Y) is input to the luminance processing unit 52 to perform signal processing for contour correction, black level correction, and white level correction. Also,
The color difference signal S4 (C) of the image signal sequence subjected to the matte conversion processing is
The signal is input to the pixel interpolator 53 and subjected to signal processing for demodulation into color difference signals U and V having the same sampling point structure as the luminance signal. The color space conversion unit 54 performs a conversion process from a luminance color difference system to a three primary color RGB system. Further, the inverse γ processing unit 55 performs inverse gamma correction signal processing for a display system having linear characteristics. The selection unit 56 selects a signal of a color space conversion unit in a display system having a gamma characteristic such as a CRT, and a signal of an inverse γ processing unit in a display system of a linear characteristic such as an LCD or a PDP. Output.
【0077】次に、フォ−マット変換での代表的な画像
処理の一例を図13に示す。同図(a)は、アスペクト比1
6:9の画面にアスペクト比4:3の画像を表示するため、画
像を水平に圧縮するもので、ノ−マルモ−ドと略称す
る。同図(b)は、レタ−ボックス画像をアスペクト比16:
9の画面に表示するため、画像を垂直に拡大するもの
で、シネマモ−ドと略称する。同図(c)は、アスペクト
比4:3の画像の左右を徐々に拡大し、アスペクト比16:9
の画面一杯に表示するもので、スム−ズワイドと略称す
る。同図(d)は、水平に圧縮したアスペクト比4:3の画像
を、アスペクト比16:9の画面一杯に表示するもので、フ
ルモ−ドと略称する。同図(e)は、水平垂直方向に任意
の倍率で圧縮して表示するものである。また、同図(f)
は、水平垂直方向に任意の倍率で拡大して表示(ズ−ム
モ−ドと略称)するものである。Next, an example of typical image processing in format conversion is shown in FIG. FIG. 3A shows an aspect ratio of 1.
In order to display an image having an aspect ratio of 4: 3 on a 6: 9 screen, the image is compressed horizontally, and is abbreviated as normal mode. FIG. 4B shows a letter box image having an aspect ratio of 16:
The image is vertically enlarged to be displayed on the screen 9 and is abbreviated as cinema mode. In the figure (c), the left and right sides of an image with an aspect ratio of 4: 3 are gradually enlarged, and the aspect ratio is 16: 9.
And is abbreviated as smooth wide. FIG. 1 (d) shows a horizontally compressed image with an aspect ratio of 4: 3, which is displayed on the entire screen with an aspect ratio of 16: 9, and is abbreviated as full mode. FIG. 11E shows a display compressed at an arbitrary magnification in the horizontal and vertical directions. Also, FIG.
Is to enlarge and display at an arbitrary magnification in the horizontal and vertical directions (abbreviated as zoom mode).
【0078】次に、本実施例のフォ−マット変換の信号
処理回路で行う信号処理の概略を、代表的な表示系を例
に、図14、図15、図16に纏めて示す。Next, the outline of the signal processing performed by the signal processing circuit for format conversion of this embodiment is shown in FIGS. 14, 15 and 16 by taking a typical display system as an example.
【0079】図14は、525/60/1:1,アスペクト比16:9
の表示系に対するIP変換部、水平、垂直スケ−リング
部での信号処理の内容である。FIG. 14 shows 525/60/1: 1, aspect ratio 16: 9.
5 shows the contents of signal processing in the IP conversion unit and the horizontal and vertical scaling units for the display system of FIG.
【0080】525/60/2:1系(現行NTSC方式に相当)
の入力信号は、IP変換部で順次走査に変換した信号に
対して、各種表示モ−ドに対応したフォ−マット変換を
行う。525/60/2: 1 system (corresponding to the current NTSC system)
The input signal is subjected to format conversion corresponding to various display modes with respect to the signal converted into the sequential scanning by the IP conversion unit.
【0081】525/60/1:1系(EDTV方式に相当)の入
力信号は、順次走査系であるのでIP変換は行わず、表
示モ−ドに応じて、スル−、拡大、縮小の処理を行う。The input signal of the 525/60/1: 1 system (corresponding to the EDTV system) is a progressive scanning system, so that IP conversion is not performed, and through, enlargement, and reduction processing is performed according to the display mode. I do.
【0082】1125/60/2:1系(HDTVに相当)の入力
信号は、垂直スケ−リング部で17−16変換を行い、
飛び越し走査系から順次走査系に変換する。また、表示
モ−ドに応じて、拡大、縮小の処理を行う。An input signal of the 1125/60/2: 1 system (corresponding to HDTV) is subjected to 17-16 conversion in a vertical scaling section,
Conversion is performed from the interlaced scanning system to the sequential scanning system. Further, enlargement / reduction processing is performed according to the display mode.
【0083】625/50/2:1系(現行PAL方式に相当)の
入力信号は、IP変換部で順次走査に変換した信号に対
して、垂直スケ−リング部でフレ−ムレ−ト変換、6−
5変換を行う。併せて、各種表示モ−ドに対応したフォ
−マット変換を行う。The input signal of the 625/50/2: 1 system (corresponding to the current PAL system) is obtained by converting the signal converted into the sequential scan by the IP conversion unit into a frame rate conversion by the vertical scaling unit. 6-
5 Perform conversion. At the same time, format conversion corresponding to various display modes is performed.
【0084】PC系(パソコン画像)の入力信号は、60
フレ−ム/秒の順次走査系の信号であるので、IP変換
は行わず、水平、垂直スケ−リング部でノ−マルモ−ド
表示の処理を行う。すなわち、VGA系(640x480)では
水平4−3変換、SVGA系(800x600)では水平4−3
変換と垂直5−4変換、XGA系(1024x768)では水平4
−3変換と垂直8−5変換を行う。The input signal of the PC system (personal computer image) is 60
Since the signal is a frame / second progressive scan signal, normal mode display processing is performed in the horizontal and vertical scaling units without performing IP conversion. That is, in the VGA system (640x480), the horizontal 4-3 conversion is performed, and in the SVGA system (800x600), the horizontal 4-3 conversion is performed.
Conversion and vertical 5-4 conversion, horizontal 4 in XGA system (1024x768)
-3 conversion and vertical 8-5 conversion are performed.
【0085】図15は、625/100/2:1,アスペクト比16:9
の表示系に対するIP変換部、水平、垂直スケ−リング
部での信号処理の内容である。FIG. 15 shows 625/100/2: 1, aspect ratio 16: 9.
5 shows the contents of signal processing in the IP conversion unit and the horizontal and vertical scaling units for the display system of FIG.
【0086】525/60/2:1系(現行NTSC方式に相当)
の入力信号は、IP変換部で順次走査に変換した信号に
対して、垂直スケ−リング部でフレ−ムレ−ト変換、5
−6変換、フィ−ルド倍速変換を行う。併せて、各種表
示モ−ドに対応したフォ−マット変換を行う。525/60/2: 1 system (corresponding to the current NTSC system)
The input signal of (1) is subjected to frame rate conversion by the vertical scaling unit with respect to the signal converted into the sequential scanning by the IP conversion unit.
-6 conversion and field double speed conversion are performed. At the same time, format conversion corresponding to various display modes is performed.
【0087】525/60/1:1系(EDTV方式に相当)の入
力信号は、順次走査系であるのでIP変換は行わず、垂
直スケ−リング部でフレ−ムレ−ト変換、5−6変換、
フィ−ルド倍速変換を行う。また、表示モ−ドに応じ
て、スル−、拡大、縮小の処理を行う。The input signal of the 525/60/1: 1 system (corresponding to the EDTV system) is a progressive scanning system, so that IP conversion is not performed, and frame rate conversion is performed in the vertical scaling section, and 5-6. conversion,
Field double speed conversion is performed. Further, through, enlargement, and reduction processes are performed in accordance with the display mode.
【0088】1125/60/2:1系(HDTVに相当)の入力
信号は、垂直スケ−リング部でフレ−ムレ−ト変換、1
5−16変換、フィ−ルド倍速変換を行う。また、表示
モ−ドに応じて、拡大、縮小の処理を行う。The input signal of the 1125/60/2: 1 system (corresponding to HDTV) is subjected to frame rate conversion, 1 in the vertical scaling section.
5-16 conversion and field double speed conversion are performed. Further, enlargement / reduction processing is performed according to the display mode.
【0089】625/50/2:1系(現行PAL方式に相当)の
入力信号は、IP変換部で順次走査に変換した信号に対
して、垂直スケ−リング部でフィ−ルド倍速変換を行
う。また、各種表示モ−ドに対応したフォ−マット変換
を行う。The input signal of the 625/50/2: 1 system (corresponding to the current PAL system) is subjected to field double conversion by the vertical scaling unit with respect to the signal converted into the sequential scanning by the IP conversion unit. . In addition, format conversion corresponding to various display modes is performed.
【0090】PC系(パソコン画像)の入力信号は、60
フレ−ム/秒の順次走査系の信号であるので、IP変換
は行わず、垂直スケ−リング部でフレ−ムレ−ト変換、
フィ−ルド倍速変換を行う。また、ノ−マルノ−ド表示
のための処理を行う。すなわち、VGA系(640x480)で
は水平4−3変換と垂直5−6変換、SVGA系(800x6
00)では水平4−3変換、XGA系(1024x768)では水平
4−3変換と垂直4−3変換を行う。The input signal of the PC system (personal computer image) is 60
Since it is a signal of a frame / second progressive scanning system, the IP conversion is not performed, and the frame rate conversion and the frame rate conversion are performed by the vertical scaling unit.
Field double speed conversion is performed. Further, processing for normal node display is performed. That is, in the VGA system (640x480), horizontal 4-3 conversion and vertical 5-6 conversion, and in the SVGA system (800x6
00), horizontal 4-3 conversion and vertical 4-3 conversion are performed in the XGA system (1024 × 768).
【0091】図16は、1125/60/2:1,アスペクト比16:9
の表示系に対するIP変換部、水平、垂直スケ−リング
部での信号処理の内容である。FIG. 16 shows a case where 1125/60/2: 1 and the aspect ratio are 16: 9.
5 shows the contents of signal processing in the IP conversion unit and the horizontal and vertical scaling units for the display system of FIG.
【0092】525/60/2:1系(現行NTSC方式に相当)
の入力信号は、IP変換部で順次走査に変換した信号に
対して、各種表示モ−ドに対応したフォ−マット変換を
行う。なお、垂直スケ−リング部では16−17変換を
併せて行い、飛び越し走査系の信号に変換する。525/60/2: 1 system (corresponding to the current NTSC system)
The input signal is subjected to format conversion corresponding to various display modes with respect to the signal converted into the sequential scanning by the IP conversion unit. In the vertical scaling section, 16-17 conversion is also performed to convert to interlaced scanning signals.
【0093】525/60/1:1系(EDTV方式に相当)の入
力信号は、順次走査系であるのでIP変換は行わず、表
示モ−ドに応じて、スル−、拡大、縮小の処理を行う。
なお、垂直スケ−リング部では16−17変換を併せて
行い、飛び越し走査系の信号に変換する。Since the input signal of the 525/60/1: 1 system (corresponding to the EDTV system) is a progressive scanning system, it is not subjected to IP conversion, and is subjected to through, enlargement, and reduction processing in accordance with the display mode. I do.
In the vertical scaling section, 16-17 conversion is also performed to convert to interlaced scanning signals.
【0094】1125/60/2:1系(HDTVに相当)の入力
信号は、表示モ−ドに応じて、拡大、縮小の処理を行
う。The input signal of the 1125/60/2: 1 system (corresponding to HDTV) is subjected to enlargement / reduction processing according to the display mode.
【0095】625/50/2:1系(現行PAL方式に相当)の
入力信号は、IP変換部で順次走査に変換した信号に対
して、垂直スケ−リング部でフレ−ムレ−ト変換、16
−15変換を行い、飛び越し走査系の信号に変換する。
併せて、各種表示モ−ドに対応したフォ−マット変換を
行う。The input signal of the 625/50/2: 1 system (corresponding to the current PAL system) is obtained by converting the signal converted into the progressive scan by the IP conversion section into the frame rate conversion by the vertical scaling section. 16
Perform -15 conversion to convert to interlaced scanning signals.
At the same time, format conversion corresponding to various display modes is performed.
【0096】PC系(パソコン画像)の入力信号は、60
フレ−ム/秒の順次走査系の信号であるので、IP変換
は行わず、水平、垂直スケ−リング部でノ−マルモ−ド
表示の処理を行う。すなわち、VGA系(640x480)では
水平4−3変換と垂直16−17変換、SVGA系(800
x600)では水平4−3変換と垂直20−17変換、XG
A系(1024x768)では水平4−3変換と垂直32−21変
換を行う。The input signal of the PC system (personal computer image) is 60
Since the signal is a frame / second progressive scan signal, normal mode display processing is performed in the horizontal and vertical scaling units without performing IP conversion. That is, in the VGA system (640x480), the horizontal 4-3 conversion and the vertical 16-17 conversion, and the SVGA system (800
x600), horizontal 4-3 conversion and vertical 20-17 conversion, XG
The A system (1024x768) performs horizontal 4-3 conversion and vertical 32-21 conversion.
【0097】以上に述べた如く、本実施例によれば、信
号処理に伴う画質の劣化が少なく、かつ、使用するメモ
リ容量が極めて少なく、また、コスト低減に適した画像
信号のフォ−マット変換の信号処理回路を実現すること
ができる。As described above, according to this embodiment, the image quality is not deteriorated due to the signal processing, the memory capacity used is extremely small, and the format conversion of the image signal suitable for cost reduction is performed. Can be realized.
【0098】次に、第2の実施例について、図17のブ
ロック構成図で説明する。本実施例は、2系列に分割し
て水平、垂直スケ−リング部の信号処理を行うに好適な
ものである。同図の23はIP変換部、57は2チャネ
ル化部、25は選択部、26は水平スケ−リング部、5
8は垂直スケ−リング部、59はメモリ部、24は倍速
化部、29は画質改善部、30は多重部、31はマイコ
ン部、32はコントロ−ル部である。Next, a second embodiment will be described with reference to the block diagram of FIG. The present embodiment is suitable for performing signal processing in the horizontal and vertical scaling units by dividing into two streams. 23 is an IP conversion unit, 57 is a two-channel conversion unit, 25 is a selection unit, 26 is a horizontal scaling unit, 5
8 is a vertical scaling section, 59 is a memory section, 24 is a double speed section, 29 is an image quality improving section, 30 is a multiplexing section, 31 is a microcomputer section, and 32 is a control section.
【0099】入力画像信号系列S1(4:2:2系,あるいは4:
2:0系のコンポ−ネント輝度、色差信号)は、IP変換部
23と2チャネル化部57に入力する。The input image signal sequence S1 (4: 2: 2 system or 4:
The 2: 0 system component luminance and color difference signals) are input to the IP converter 23 and the two-channel converter 57.
【0100】IP変換部23は、前述の第1乃至第3の
実施例の信号処理回路で構成し、飛び越し走査系の入力
画像信号に対して、飛び越し走査で抜けた走査線の信号
を動き適応型の補間処理で生成し、伝送走査線信号系列
SMと補間走査線信号系列SIとを出力する。The IP conversion unit 23 is constituted by the signal processing circuits of the first to third embodiments described above. The IP conversion unit 23 performs motion adaptation on a signal of a scanning line which is skipped by interlaced scanning with respect to an input image signal of an interlaced scanning system. Transmission scan line signal series
An SM and an interpolated scanning line signal sequence SI are output.
【0101】2チャネル化部57は、順次走査系の入力
画像信号に対して、2系列の飛び越し走査系の信号系列
SM',SI'を生成する。The two-channeling section 57 converts a two-interlaced signal sequence of an interlaced scanning system into an input image signal of a sequential scanning system.
Generate SM 'and SI'.
【0102】選択部25は、入力画像信号が飛び越し走
査系の現行TV信号では信号系列SM,SI、順次走査系の
EDTV信号やパソコン画像信号およびHDTV信号で
は信号系列SM',SI'をそれぞれ選択し、これを信号系列S
2M,S2Iとして出力する。The selecting section 25 selects the signal series SM and SI for the current TV signal of the interlaced scanning system and the signal series SM 'and SI' for the EDTV signal or the personal computer image signal and the HDTV signal of the progressive scanning system. And the signal sequence S
Output as 2M, S2I.
【0103】水平スケ−リング部26は、信号系列S2M,
S2IのそれぞれにK−L変換(K個の画素をL個の画素
に変換)の信号処理で水平拡大(K<L)や水平縮小
(K>L)を行い、信号系列S3M,S3Iを出力する。The horizontal scaling section 26 generates a signal sequence S2M,
Performs horizontal expansion (K <L) or horizontal reduction (K> L) by signal processing of KL conversion (conversion of K pixels to L pixels) for each of S2Is, and outputs signal sequences S3M and S3I I do.
【0104】垂直スケ−リング部58は、信号系列S3M,
S3Iに対してK−L変換(K個のラインをL個のライン
に変換)の信号処理で垂直拡大(K<L)や垂直縮小
(K>L)を行う。なお、入力信号によっては、メモリ
部59のメモリの動作制御を行い、方式変換(例えば、
PAL−NTSC変換)や、同期整合や、PALフィ−
ルド倍速の信号処理も併せて実行する。そして、フォ−
マット変換した画像信号系列S4M,S4Iを出力する。The vertical scaling section 58 generates a signal sequence S3M,
Vertical expansion (K <L) and vertical reduction (K> L) are performed on the S3I by signal processing of KL conversion (conversion of K lines into L lines). In addition, depending on the input signal, the operation of the memory of the memory unit 59 is controlled, and the format conversion (for example,
PAL-NTSC conversion), synchronization matching, PAL file
The double-speed signal processing is also performed. And fore
The image signal sequences S4M and S4I that have been subjected to mat conversion are output.
【0105】倍速化部24は、信号系列S4MとS4Iをそれ
ぞれ水平方向に時間軸の1/2圧縮と時系列多重の信号
処理を行い、順次走査系の画像信号系列S4を出力する。The speed doubling unit 24 performs signal processing of 1/2 compression on the time axis and time-series multiplexing of the signal sequences S4M and S4I in the horizontal direction, respectively, and outputs an image signal sequence S4 of a sequential scanning system.
【0106】画質改善部29は、輝度信号の黒レベル補
正、白レベル補正などの画質改善や、色空間変換などの
信号処理を行い、3原色RGB信号に変換する。また、
表示系がリニア特性のディスプレイでは、逆γ変換の信
号処理を行う。そして、3原色画像信号系列S5を出力す
る。The image quality improving unit 29 performs image processing such as black level correction and white level correction of the luminance signal and signal processing such as color space conversion, and converts the signal into three primary color RGB signals. Also,
In a display having a linear display system, signal processing of inverse γ conversion is performed. Then, a three-primary-color image signal sequence S5 is output.
【0107】多重部30は、信号系列S5にマルチ画面表
示(例えば、2画面表示、PIP表示、マルチウィンド
表示など)のための3原色画像信号系列S7を多重する信
号処理を行う。そして、表示系のフォ−マットに合致し
た画像信号系列S6を出力する。The multiplexing section 30 performs signal processing for multiplexing the signal sequence S5 with a three primary color image signal sequence S7 for multi-screen display (for example, two-screen display, PIP display, multi-window display, etc.). Then, an image signal sequence S6 matching the display system format is output.
【0108】マイコン部31は、画像情報信号SPI(入
力画像信号の種類、表示系のフォ−マット、画面表示の
モ−ドなどの情報)をもとに、各ブロック部における信
号処理のパラメタを設定する。The microcomputer section 31 converts the parameters of signal processing in each block section based on the image information signal SPI (information such as the type of input image signal, the format of the display system, and the mode of screen display). Set.
【0109】コントロ−ル部32は、各ブロック部にお
ける信号処理に必要な同期信号や、制御信号や、クロッ
ク信号などを生成する。また、マルチ画面表示の際の同
期整合処理に必要な情報SDを出力する。The control unit 32 generates a synchronization signal, a control signal, a clock signal, and the like necessary for signal processing in each block unit. Also, it outputs information SD necessary for the synchronization matching process at the time of multi-screen display.
【0110】以下、本実施例に特有なブロック部につい
て説明する。Hereinafter, a block part specific to this embodiment will be described.
【0111】図18は、2チャネル化部の一構成例図
で、同図(a)に構成、(b)にラインメモリの動作を示す。FIGS. 18A and 18B show an example of the configuration of the two-channel unit. FIG. 18A shows the configuration, and FIG. 18B shows the operation of the line memory.
【0112】順次走査系の入力画像信号の輝度信号S1
(Y)と色差信号S1(C)は、それぞれラインメモリ60−
1,60−2に入力する。The luminance signal S1 of the input image signal of the progressive scanning system
(Y) and the color difference signal S1 (C) are respectively stored in the line memory 60-
1, 60-2.
【0113】ラインメモリ60−1は、同図(b)に示す
様に、WT動作で第1の飛び越し走査系に相当する走査線
の信号(図の,,…の走査線)を記憶する。一方、RD
動作はWT動作の2倍の期間で行い、信号を読み出す。そ
して、この出力に飛び越し走査系の信号系列SM'(Y),SM'
(C)を得る。The line memory 60-1 stores the signals of the scanning lines corresponding to the first interlaced scanning system in the WT operation (the scanning lines of,...) In the WT operation, as shown in FIG. Meanwhile, RD
The operation is performed in a period twice as long as the WT operation, and a signal is read. Then, the signal sequence SM ′ (Y), SM ′ of the interlaced scanning system is added to this output.
Obtain (C).
【0114】ラインメモリ60−2は、WT動作で第2の
飛び越し走査系に相当する走査線の信号(図では,,
…の走査線)を記憶する。一方、RD動作はWT動作の2倍
の期間で行い、信号を読み出す。そして、この出力に飛
び越し走査系の信号系列SI'(Y),SI'(C)を得る。In the WT operation, the line memory 60-2 receives a signal of a scanning line corresponding to the second interlaced scanning system (in FIG.
.. Scanning lines). On the other hand, the RD operation is performed in a period twice as long as the WT operation, and the signal is read. Then, a signal sequence SI ′ (Y), SI ′ (C) of the interlaced scanning system is obtained from this output.
【0115】次に、垂直スケ−リング部の一構成例を図
19に示す。同図(a)は構成を示し、図中の59はメモ
リ部、61は垂直LPF、62,66,67,68はスイ
ッチ、63は1ライン遅延、64は係数加重部、65は
加算部である。また、同図(b)は、各種信号処理におけ
るスイッチ類の選択制御を示す。Next, FIG. 19 shows an example of the configuration of the vertical scaling section. FIG. 11A shows the configuration, in which 59 is a memory unit, 61 is a vertical LPF, 62, 66, 67, and 68 are switches, 63 is a one-line delay, 64 is a coefficient weighting unit, and 65 is an addition unit. is there. FIG. 2B shows selection control of switches in various signal processing.
【0116】垂直縮小の信号処理では、SW1,SW2,SW4は
端子a、SW3は端子bに接続する。そして、2系列の画像
信号の輝度信号S3M(Y),S3I(Y)は、まず、縮小処理で折
り返し歪となる垂直高域周波数成分を除去するため、垂
直LPF61で低域通過の周波数特性で帯域制限を行
う。次に、1ライン遅延63と係数加重部64と加算部
65とで構成する演算部で、2点線形補間の特性による
ラインのK−L変換(K>L)の演算を行う。すなわ
ち、1つの系は、S3M(Y),S3I(Y)の信号に対し、係数加
重部64で係数値β,1-βを加重し、加算部65で両者
を加算する。もう一方の系は、信号S3M(Y)を1ライン遅
延63で1ライン遅延した信号とS3I(Y)の信号に対し、
係数加重部64では係数値γ,1-γを加重し、加算部6
5で両者を加算する。そして、この出力にK−L変換で
Kラインから生成したLラインの信号からなる2系列の
信号を得る。なお、係数値β,1-βとγ,1-γは、それぞ
れライン毎に変化する。例えば、4−3変換では、係数
値(β,1-β)は、(1,0),(1/3,2/3),(2/3,1/3),(1,0),…,
係数値(γ,1-γ)は、(2/3,1/3),(1,0),(1/3,2/3),(2/3,
1/3),…とライン毎に変化する。メモリ部59のM1で
は、図20(a)に示す様に、1フィ−ルド期間を周期にW
T動作、RD動作を行う。WT動作では、K−L変換で生成
した2系列の信号を間欠的に書き込み記憶する。一方、
RD動作では(1-L/K)フィ−ルド期間遅れた時点より連続
的に2系列の信号を読み出す。そして、68のSW4の
出力に、L/K倍に垂直縮小した2系列の信号系列S4M(Y),
S4I(Y)を得る。以上に述べた垂直縮小の信号処理に必要
なメモリ容量は、(1-L/K)フィ−ルド期間分あればよ
い。In signal processing for vertical reduction, SW1, SW2, and SW4 are connected to a terminal a, and SW3 is connected to a terminal b. Then, the luminance signals S3M (Y) and S3I (Y) of the two series of image signals are first subjected to low-pass frequency characteristics by the vertical LPF 61 in order to remove vertical high-frequency components that are aliasing in the reduction processing. Perform band limiting. Next, a calculation unit including a one-line delay 63, a coefficient weighting unit 64, and an addition unit 65 performs a KL conversion (K> L) of a line based on the characteristics of two-point linear interpolation. That is, in one system, the coefficient values β, 1−β are weighted by the coefficient weighting unit 64 on the S3M (Y), S3I (Y) signals, and both are added by the adding unit 65. In the other system, a signal obtained by delaying the signal S3M (Y) by one line by a one-line delay 63 and a signal of S3I (Y) are
The coefficient weighting unit 64 weights the coefficient values γ, 1−γ,
At 5 the two are added. Then, on this output, two series of signals consisting of the L line signals generated from the K lines by KL conversion are obtained. Note that the coefficient values β, 1-β and γ, 1-γ change for each line. For example, in the 4-3 conversion, the coefficient value (β, 1−β) is (1, 0), (1/3, 2/3), (2/3, 1/3), (1, 0) ,…,
The coefficient values (γ, 1-γ) are (2 / 3,1 / 3), (1,0), (1 / 3,2 / 3), (2/3,
1/3), ... changes for each line. In M1 of the memory unit 59, as shown in FIG.
Perform T operation and RD operation. In the WT operation, two series of signals generated by the KL conversion are intermittently written and stored. on the other hand,
In the RD operation, two series of signals are continuously read from a point in time delayed by (1-L / K) field period. Then, two signal series S4M (Y), vertically reduced L / K times, are output to the output of SW4 68.
Obtain S4I (Y). The memory capacity necessary for the above-described vertical reduction signal processing may be the (1-L / K) field period.
【0117】垂直拡大の信号処理では、SW1,SW2は端子
b、SW3,SW4は端子aに接続する。メモリ部59のM1で
は、図20(b)に示す様に、1フィ−ルド期間を周期と
するWT動作、RD動作を行う。そして、2系列の画像信号
の輝度信号S3M(Y),S3I(Y)は、まず、WT動作で連続的に
信号を記憶する。一方、RD動作では一部期間で2度読み
出しの動作を行いKラインの期間にLラインの2系列の
信号を読み出す。次に、1ライン遅延63と係数加重部
64と加算部65とで構成する演算部で、2点線形補間
の特性によるラインのL−K変換(L<K)の演算を行
う。すなわち、1つの系は、S3M(Y),S3I(Y)の信号に対
し、係数加重部64で係数値β,1-βを加重し、加算部
65で両者を加算する。もう一方の系は、信号S3M(Y)を
1ライン遅延63で1ライン遅延した信号とS3I(Y)の信
号に対し、係数加重部64では係数値γ,1-γを加重
し、加算部65で両者を加算する。そして、この出力に
L−K変換でLラインから生成したKラインの信号から
なる2系列の信号を得る。なお、係数値β,1-βとγ,1-
γは、それぞれライン毎に変化する。例えば、3−4変
換では、係数値(β,1-β)は、(1,0),(2/4,2/4),(1,0),
…,係数値(γ,1-γ)は、(1/4,3/4),(3/4,1/4),(1/4,3/
4),…とライン毎に変化する。そして、68のSW4の
出力に、K/L倍に垂直拡大した2系列の信号系列S4M(Y),
S4I(Y)を得る。以上に述べた垂直拡大の信号処理に必要
なメモリ容量は、(1-L/K)フィ−ルド期間分あればよ
い。In the vertical expansion signal processing, SW1 and SW2 are connected to terminals.
b, SW3, SW4 are connected to terminal a. At M1 of the memory unit 59, as shown in FIG. 20B, the WT operation and the RD operation are performed with one field period as a cycle. First, the luminance signals S3M (Y) and S3I (Y) of the two series of image signals are continuously stored by the WT operation. On the other hand, in the RD operation, a read operation is performed twice in a partial period, and two series of signals on the L line are read in the period of the K line. Next, a calculation unit including a one-line delay 63, a coefficient weighting unit 64, and an addition unit 65 performs LK conversion (L <K) of the line based on the characteristics of two-point linear interpolation. That is, in one system, the coefficient values β, 1−β are weighted by the coefficient weighting unit 64 on the S3M (Y), S3I (Y) signals, and both are added by the adding unit 65. In the other system, a coefficient weighting unit 64 weights a coefficient value γ, 1-γ to a signal obtained by delaying the signal S3M (Y) by one line by a one-line delay 63 and a signal of S3I (Y), and At 65, both are added. Then, a two-series signal composed of K-line signals generated from L-lines by LK conversion is obtained from this output. Note that coefficient values β, 1-β and γ, 1-
γ changes for each line. For example, in the 3-4 transform, the coefficient values (β, 1-β) are (1, 0), (2/4, 2/4), (1, 0),
…, The coefficient values (γ, 1-γ) are (1/4, 3/4), (3/4, 1/4), (1/4, 3 /
4), ... changes for each line. Then, two signal series S4M (Y), vertically expanded by K / L times, are output to the output of SW4 68.
Obtain S4I (Y). The memory capacity required for the above-described vertical expansion signal processing may be sufficient for the (1-L / K) field period.
【0118】PALフィ−ルド倍速の信号処理は、順次
走査系に変換したPAL信号(以下625/50/1:1と略称)
を100フィ−ルド/秒の飛び越し走査系の信号(以下625
/100/2:1と略称)に変換するもので、SW2,SW3を端子b、
SW4を端子aに接続して実現する。メモリ部59のM1で
は、図20(c)に示す様なWT動作、RD動作を行う。2系
列のPAL信号の輝度信号S3M(Y),S3I(Y)は、1フィ−
ルド期間を周期に、WT動作で連続的に信号を記憶する。
一方、RD動作では、0.5フィ−ルド期間遅れた時点か
ら、一方の信号系列(図中の○-O)、他方の信号系列
(図中の○-E)の順に信号の読出しを行う。そして、6
8のSW4の出力に、PALフィ−ルド倍速した2系列
の信号系列SM4(Y),S4I(Y)を得る。以上に述べたPAL
フィ−ルド倍速の信号処理に必要なメモリ容量は、1フ
ィ−ルド期間分あればよい。The PAL field double-speed signal processing is performed on a PAL signal (hereinafter abbreviated as 625/50/1: 1) converted into a sequential scanning system.
To a 100-field / second interlaced scanning signal (hereafter 625
/ 100/2: 1), with SW2 and SW3 connected to terminal b,
This is realized by connecting SW4 to terminal a. In M1 of the memory unit 59, the WT operation and the RD operation as shown in FIG. The luminance signals S3M (Y) and S3I (Y) of the two series of PAL signals are
The signal is continuously stored by the WT operation with the cycle of the threshold period.
On the other hand, in the RD operation, signals are read out in order of one signal sequence ((-O in the drawing) and the other signal sequence (○ -E in the drawing) from the point of time delayed by 0.5 field period. And 6
In the output of SW4 of No. 8, two signal sequences SM4 (Y) and S4I (Y) at PAL field double speed are obtained. PAL described above
The memory capacity required for the field double speed signal processing may be one field period.
【0119】NTSC−PALフィ−ルド倍速の信号処
理は、順次走査系に変換したNTSC信号(以下525/60
/1:1と略称)を625/100/2:1系の信号に変換するもの
で、SW1,SW2を端子b、SW3を端子c、SW4を端子aに接続し
て実現する。2系列のNTSC信号の輝度信号S3M(Y),S
3I(Y)は、図20(d)に示す様に、メモリ部59のM1に、
NTSC1フィ−ルド期間を周期とするWT動作で、連続
的に信号を記憶する。一方、RD動作では、PAL1フィ
−ルド期間を周期に、一部期間で2度読み出しの動作を
行い6ラインの期間に5ラインの2系列の信号を読み出
す。次に、1ライン遅延63と係数加重部64と加算部
65とで構成する演算部で、2点線形補間の特性による
ラインの5−6変換の演算で垂直拡大を行う。すなわ
ち、1つの系は、S3M(Y),S3I(Y)の信号に対し、係数加
重部64で係数値β,1-βを加重し、加算部65で両者
を加算する。もう一方の系は、信号S3M(Y)を1ライン遅
延63で1ライン遅延した信号とS3I(Y)の信号に対し、
係数加重部64では係数値γ,1-γを加重し、加算部6
5で両者を加算する。そして、この出力に5−6変換で
5ラインから生成した6ラインの信号からなる2系列の
信号を得る。なお、係数値β,1-βとγ,1-γは、それぞ
れライン毎に変化する。メモリ部59のM2では、PAL
1フィ−ルド期間を周期に、WT動作で連続的に信号を記
憶する。一方、RD動作では、0.5フィ−ルド期間遅れた
時点から、一方の信号系列(図中の○-O)、他方の信号
系列(図中の○-E)の順に信号の読出しを行う。そし
て、68のSW4の出力に、NTSC−PALフィ−ル
ド倍速した2系列の信号系列SM4(Y),S4I(Y)を得る。以
上に述べたNTSC−PALフィ−ルド倍速の信号処理
に必要なメモリ容量は、NTSC−PAL変換に1フィ
−ルド期間分、フィ−ルド倍速変換に1フィ−ルド期間
分あればよい。The signal processing at the NTSC-PAL field double speed is performed on an NTSC signal (hereinafter referred to as 525/60) converted to a progressive scanning system.
/ 1: 1) is converted to a 625/100/2: 1 system signal. SW1 and SW2 are connected to terminal b, SW3 is connected to terminal c, and SW4 is connected to terminal a. Luminance signal S3M (Y), S of two NTSC signals
3I (Y) is stored in M1 of the memory unit 59 as shown in FIG.
The signal is continuously stored in the WT operation having the period of the NTSC1 field period. On the other hand, in the RD operation, the read operation is performed twice in a partial period with the PAL1 field period as a cycle, and two lines of signals of five lines are read in a period of six lines. Next, in a calculation unit including a one-line delay 63, a coefficient weighting unit 64, and an addition unit 65, vertical enlargement is performed by calculation of 5-6 conversion of a line based on characteristics of two-point linear interpolation. That is, in one system, the coefficient values β, 1−β are weighted by the coefficient weighting unit 64 on the S3M (Y), S3I (Y) signals, and both are added by the adding unit 65. In the other system, a signal obtained by delaying the signal S3M (Y) by one line by a one-line delay 63 and a signal of S3I (Y) are
The coefficient weighting unit 64 weights the coefficient values γ, 1−γ,
At 5 the two are added. Then, a two-series signal composed of six lines of signals generated from five lines by 5-6 conversion is obtained from this output. Note that the coefficient values β, 1-β and γ, 1-γ change for each line. In M2 of the memory unit 59, PAL
The signal is continuously stored by the WT operation in a cycle of one field period. On the other hand, in the RD operation, signals are read out in order of one signal sequence ((-O in the drawing) and the other signal sequence (○ -E in the drawing) from the point of time delayed by 0.5 field period. Then, two signal sequences SM4 (Y) and S4I (Y) at NTSC-PAL field double speed are obtained at the output of SW4 68. The memory capacity required for the above-described NTSC-PAL field double-speed signal processing may be one field period for NTSC-PAL conversion and one field period for field double-speed conversion.
【0120】PAL−NTSC変換の信号処理は、625/
50/1:1系の信号を525/60/1:1系の信号に変換するもの
で、SW1,SW2を端子a、SW3を端子b、SW4を端子aに接続し
て実現する。2系列のPAL信号の輝度信号S3M(Y),S3I
(Y)は、垂直LPF61で低域通過の周波数特性で帯域
制限を行う。次に、1ライン遅延63と係数加重部64
と加算部65とで構成する演算部で、2点線形補間の特
性によるラインの6−5変換の演算で垂直縮小を行う。
すなわち、1つの系は、S3M(Y),S3I(Y)の信号に対し、
係数加重部64で係数値β,1-βを加重し、加算部65
で両者を加算する。もう一方の系は、信号S3M(Y)を1ラ
イン遅延63で1ライン遅延した信号とS3I(Y)の信号に
対し、係数加重部64では係数値γ,1-γを加重し、加
算部65で両者を加算する。そして、この出力に6−5
変換で6ラインから生成した5ラインの信号からなる2
系列の信号を得る。なお、係数値β,1-βとγ,1-γは、
それぞれライン毎に変化する。メモリ部59のM1では、
図20(e)に示す様に、PAL1フィ−ルド期間を周期
とするWT動作で、6−5変換で生成した2系列の信号を
間欠的に書き込み記憶する。一方、RD動作ではNTSC
1フィ−ルド期間を周期に2系列の信号を読み出す。そ
して、68のSW4の出力に、PAL−NTSC変換し
た信号系列S4M(Y),S4I(Y)を得る。以上に述べたPAL
−NTSC変換の信号処理に必要なメモリ容量は、PA
L1フィ−ルド期間分あればよい。The signal processing of the PAL-NTSC conversion is 625 /
It converts 50/1: 1 system signals to 525/60/1: 1 system signals, and is realized by connecting SW1 and SW2 to terminal a, SW3 to terminal b, and SW4 to terminal a. Luminance signals S3M (Y), S3I of two series of PAL signals
In (Y), the vertical LPF 61 performs band limitation using low-pass frequency characteristics. Next, a one-line delay 63 and a coefficient weighting unit 64
And an adder 65, which performs vertical reduction by 6-5 conversion of the line based on the characteristics of two-point linear interpolation.
That is, one system is for S3M (Y) and S3I (Y) signals.
A coefficient weighting section 64 weights the coefficient values β, 1−β, and an addition section 65
Add both. In the other system, a coefficient weighting unit 64 weights a coefficient value γ, 1-γ with respect to a signal obtained by delaying the signal S3M (Y) by one line by one line delay 63 and a signal of S3I (Y), and At 65, both are added. And this output is 6-5
2 composed of signals of 5 lines generated from 6 lines by conversion
Get the sequence signal. Note that the coefficient values β, 1-β and γ, 1-γ are
Each changes for each line. In M1 of the memory unit 59,
As shown in FIG. 20 (e), two series of signals generated by the 6-5 conversion are intermittently written and stored by the WT operation having a cycle of the PAL1 field period. On the other hand, in RD operation, NTSC
Two series of signals are read out with a period of one field period. Then, PAL-NTSC converted signal sequences S4M (Y) and S4I (Y) are obtained at the output of SW4 68. PAL described above
-The memory capacity required for NTSC conversion signal processing is PA
What is necessary is just for the L1 field period.
【0121】スル−の信号処理では、SW4を端子bに接続
する。そして、68のSW4の出力に、縮小拡大の処理
を行わない2系列の信号系列S4M(Y),S4I(Y)を得る。In the through signal processing, SW4 is connected to terminal b. Then, at the output of SW4 68, two signal sequences S4M (Y) and S4I (Y) that are not subjected to reduction / enlargement processing are obtained.
【0122】2系列の画像信号の色差信号S3M(C)、S3I
(C)に対しても、輝度信号と同一の構成による信号処理
を行い、垂直縮小、垂直拡大、PALフィ−ルド倍速変
換、NTSC−PALフィ−ルド倍速変換、PAL−N
TSC変換あるいはスル−の2系列の信号系列S4M(C)、S
4I(C)を得る。The color difference signals S3M (C) and S3I of the two series of image signals
For (C), signal processing is performed using the same configuration as that of the luminance signal, and vertical reduction, vertical enlargement, PAL field double-speed conversion, NTSC-PAL field double-speed conversion, and PAL-N are performed.
TSC conversion or through two signal sequences S4M (C), S
4I (C) is obtained.
【0123】以上に述べた如く、本実施例によれば、極
めて少ないメモリ容量で、前述の図13や図14,図1
5,図16に示した各種のフォ−マット変換を行う信号
処理回路を実現することができる。そして、特に、超高
精細ディスプレイのような極めて高速の信号処理が要求
される表示系に対して有効である。As described above, according to the present embodiment, an extremely small memory capacity is used and the above-described FIGS.
5. A signal processing circuit for performing various format conversions shown in FIG. 16 can be realized. In particular, the present invention is effective for a display system requiring an extremely high-speed signal processing such as an ultra-high-definition display.
【0124】[0124]
【発明の効果】本発明によれば、飛び越し走査系の画像
信号を順次走査系の画像信号に変換するIP変換や、複
数方式の画像信号を表示部の所定フォ−マットの信号に
変換するフォ−マット変換の信号処理回路を、高品質な
画質を維持し、かつ、信号処理に要するメモリの容量が
極めて少なく、コスト低減に適した形態で実現すること
ができる。そして、マルチメディア対応の各種情報機器
端末の機能向上ならびにコスト低減に顕著な効果があ
る。According to the present invention, an IP conversion for converting an image signal of an interlaced scanning system into an image signal of a progressive scanning system and a format for converting an image signal of a plurality of systems into a signal of a predetermined format of a display unit. -A signal processing circuit for mat conversion can be realized in a form which maintains high quality image quality, requires a very small memory capacity for signal processing, and is suitable for cost reduction. This has a remarkable effect on improving the functions of various types of information equipment terminals supporting multimedia and reducing costs.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の第1の実施例のブロック構成図。FIG. 1 is a block diagram of a first embodiment of the present invention.
【図2】サブナイキスト標本化の一特性例図。FIG. 2 is a characteristic example diagram of sub-Nyquist sampling.
【図3】プリフィルタ、ポストフィルタの一構成例図。FIG. 3 is a configuration example diagram of a pre-filter and a post-filter.
【図4】本発明の第2の実施例のブロック構成図。FIG. 4 is a block diagram of a second embodiment of the present invention.
【図5】本発明の第3の実施例のブロック構成図。FIG. 5 is a block diagram of a third embodiment of the present invention.
【図6】本発明のフォ−マット変換回路の第1の実施例
のブロック構成図。FIG. 6 is a block diagram showing a format conversion circuit according to a first embodiment of the present invention;
【図7】倍速化部の一構成例図。FIG. 7 is a diagram illustrating a configuration example of a speed doubling unit.
【図8】水平スケ−リング部の一構成例図。FIG. 8 is a diagram illustrating a configuration example of a horizontal scaling unit.
【図9】垂直スケ−リング部の一構成例図。FIG. 9 is a diagram illustrating a configuration example of a vertical scaling unit.
【図10】垂直スケ−リング部の信号処理とメモリ動作
の概略図。FIG. 10 is a schematic diagram of signal processing and memory operation of a vertical scaling unit.
【図11】K−L変換の一特性例図。FIG. 11 is a diagram showing an example of characteristics of KL conversion.
【図12】画質改善部の一構成例図。FIG. 12 is a diagram illustrating a configuration example of an image quality improvement unit.
【図13】画像処理の一例図。FIG. 13 illustrates an example of image processing.
【図14】525/60/1:1(アスヘ゜クト16:9)表示系における信号
処理。FIG. 14 shows signal processing in a 525/60/1: 1 (aspect 16: 9) display system.
【図15】625/100/2:1(アスヘ゜クト16:9)表示系における信
号処理。FIG. 15 shows signal processing in a 625/100/2: 1 (aspect 16: 9) display system.
【図16】1125/60/2:1(アスヘ゜クト16:9)表示系における信
号処理。FIG. 16 shows signal processing in a 1125/60/2: 1 (aspect 16: 9) display system.
【図17】本発明のフォ−マット変換回路の第2の実施
例のブロック構成図。FIG. 17 is a block diagram showing a format conversion circuit according to a second embodiment of the present invention;
【図18】2チャネル化部の一構成例図。FIG. 18 is a diagram illustrating a configuration example of a two-channel unit.
【図19】垂直スケ−リング部の一構成例図。FIG. 19 is a diagram illustrating a configuration example of a vertical scaling unit.
【図20】垂直スケ−リング部の信号処理とメモリ動作
の概略図。FIG. 20 is a schematic diagram of signal processing and memory operation of a vertical scaling unit.
1…プリフィルタ、2…ダウンサンプル部、3…アップ
サンプル部、4…ポストフィルタ、5,14…1H遅
延、6,8,16,19,39,48,65…加算部、7…動
き係数加重部、9…1フィ−ルド遅延、10,21…減
算部、11…動き検出部、12…MAX選択部、13…
α加重部、15,18,38,47,64…係数加重部、1
7,37…1画素遅延、20,22…遅延部、23…IP
変換部、24…倍速化部、25,56…選択部、26…
水平スケ−リング部、27,58…垂直スケ−リング
部、28,59…メモリ部、29…画質改善部、30,3
4…多重部、31…マイコン部、32…コントロ−ル
部、33,60…ラインメモリ、35…水平LPF、3
6,45,62…SW1、40,49,66…SW2、41
…1Hメモリ、42,50,67…SW3、43,51,6
8…SW4、44,61…垂直LPF、46,63…1ラ
イン遅延、52…輝度処理部、53…画素補間部、54
…色空間変換部、55…逆γ処理部、57…2チャネル
化部。DESCRIPTION OF SYMBOLS 1 ... Pre-filter, 2 ... Down sampling part, 3 ... Up sampling part, 4 ... Post filter, 5,14 ... 1H delay, 6,8,16,19,39,48,65 ... Addition part, 7 ... Motion coefficient Weighting section, 9 1-field delay, 10, 21 Subtraction section, 11 Motion detection section, 12 MAX selection section, 13
α weight part, 15, 18, 38, 47, 64 ... coefficient weight part, 1
7,37 ... 1 pixel delay, 20,22 ... delay section, 23 ... IP
Conversion unit, 24 ... double speed unit, 25, 56 ... selection unit, 26 ...
Horizontal scaling section, 27, 58 Vertical scaling section, 28, 59 Memory section, 29 Image quality improvement section, 30, 3
4 multiplex unit, 31 microcomputer unit, 32 control unit, 33, 60 line memory, 35 horizontal LPF, 3
6, 45, 62 ... SW1, 40, 49, 66 ... SW2, 41
... 1H memory, 42,50,67 ... SW3,43,51,6
8 SW4, 44, 61 Vertical LPF, 46, 63 1 line delay, 52 Luminance processing unit, 53 Pixel interpolating unit, 54
... color space conversion unit, 55 ... inverse gamma processing unit, 57 ... 2-channel conversion unit.
フロントページの続き (72)発明者 中嶋 満雄 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所マルチメディアシステム 開発本部内 (72)発明者 杉山 雅人 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所マルチメディアシステム 開発本部内 (72)発明者 栗田 俊之 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像情報メディア事業部 内Continued on the front page (72) Inventor Mitsuo Nakajima 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Multimedia System Development Division of Hitachi, Ltd. (72) Inventor Masato Sugiyama 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Toshiyuki Kurita 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture In-house Information and Media Division of Hitachi, Ltd.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8300037AJPH10145817A (en) | 1996-11-12 | 1996-11-12 | Signal processing circuit for IP conversion and format conversion of image signal |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8300037AJPH10145817A (en) | 1996-11-12 | 1996-11-12 | Signal processing circuit for IP conversion and format conversion of image signal |
| Publication Number | Publication Date |
|---|---|
| JPH10145817Atrue JPH10145817A (en) | 1998-05-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8300037APendingJPH10145817A (en) | 1996-11-12 | 1996-11-12 | Signal processing circuit for IP conversion and format conversion of image signal |
| Country | Link |
|---|---|
| JP (1) | JPH10145817A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7068320B2 (en) | 2001-04-27 | 2006-06-27 | Sharp Kabushiki Kaisha | Image processing circuit, image display device, and an image processing method |
| JP2008187736A (en)* | 2001-04-27 | 2008-08-14 | Sharp Corp | Image processing circuit, image display device, and image processing method |
| US8068173B2 (en) | 2009-09-30 | 2011-11-29 | Kabushiki Kaisha Toshiba | Color difference signal format conversion device and method |
| US8218076B2 (en) | 2006-12-25 | 2012-07-10 | Kabushiki Kaisha Toshiba | Image display apparatus, image signal processing apparatus, and image signal processing method |
| JP2016515356A (en)* | 2013-03-13 | 2016-05-26 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Integrated spatial downsampling of video data |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7068320B2 (en) | 2001-04-27 | 2006-06-27 | Sharp Kabushiki Kaisha | Image processing circuit, image display device, and an image processing method |
| US7408588B2 (en) | 2001-04-27 | 2008-08-05 | Shapr Kabushiki Kaisha | Image processing circuit, image display device, and an image processing method |
| JP2008187736A (en)* | 2001-04-27 | 2008-08-14 | Sharp Corp | Image processing circuit, image display device, and image processing method |
| US7916213B2 (en) | 2001-04-27 | 2011-03-29 | Sharp Kabushiki Kaisha | Image processing circuit, image display device, and an image processing method |
| JP2012010367A (en)* | 2001-04-27 | 2012-01-12 | Sharp Corp | Image processing circuit and image processing method |
| US8502917B2 (en) | 2001-04-27 | 2013-08-06 | Sharp Kabushiki Kaisha | Image processing circuit, image display device, and an image processing method |
| US8218076B2 (en) | 2006-12-25 | 2012-07-10 | Kabushiki Kaisha Toshiba | Image display apparatus, image signal processing apparatus, and image signal processing method |
| US8068173B2 (en) | 2009-09-30 | 2011-11-29 | Kabushiki Kaisha Toshiba | Color difference signal format conversion device and method |
| JP2016515356A (en)* | 2013-03-13 | 2016-05-26 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Integrated spatial downsampling of video data |
| Publication | Publication Date | Title |
|---|---|---|
| JP3953561B2 (en) | Image signal format conversion signal processing method and circuit | |
| US5914753A (en) | Apparatus and method to convert computer graphics signals to television video signals with vertical and horizontal scaling requiring no frame buffers | |
| US6556193B1 (en) | De-interlacing video images using patch-based processing | |
| US4733300A (en) | Contour signal correction circuit for television receiver | |
| US6456329B1 (en) | De-interlacing of video signals | |
| US20030071917A1 (en) | Motion adaptive de-interlacing method and apparatus | |
| US6295091B1 (en) | Method and apparatus for de-interlacing video fields for superior edge preservation | |
| JPH11220701A (en) | Scanning line conversion device and flicker removal device | |
| JP3322613B2 (en) | Video signal converter | |
| JPH03117287A (en) | video signal processing equipment | |
| JP2000115722A (en) | Motion picture format converter and its method | |
| JP2001518758A (en) | Flicker filtering and overscan compensation | |
| JPH10145817A (en) | Signal processing circuit for IP conversion and format conversion of image signal | |
| JP3972938B2 (en) | Display device | |
| JP4470323B2 (en) | Image conversion apparatus and method | |
| WO1997001929A1 (en) | Circuit for interpolating scan lines of a video signal and method of using same | |
| JP4392531B2 (en) | Image signal processing apparatus and processing method, and image display apparatus | |
| JP4016646B2 (en) | Progressive scan conversion apparatus and progressive scan conversion method | |
| JPH1098694A (en) | Scan conversion method and circuit for image signal | |
| EP0802671B1 (en) | Digital signal processing circuit for a television receiver | |
| JP3545577B2 (en) | Scanning line converter | |
| JP2687905B2 (en) | Video signal converter | |
| JP2002218415A (en) | Video signal processor and video display device | |
| JP3388974B2 (en) | Variable compression / expansion circuit | |
| KR100307726B1 (en) | Apparatus and method for converting non-interlaced computer graphics signals into interlaced video signals |