【0001】[0001]
【発明の属する技術分野】本発明は炭化水素又は水素等
を燃料とする燃焼タービンに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion turbine using hydrocarbon or hydrogen as a fuel.
【0002】[0002]
【従来の技術】図6に従来の水素燃焼タービンのサイク
ルシステムを示す。2. Description of the Related Art FIG. 6 shows a conventional cycle system of a hydrogen combustion turbine.
【0003】同図において、01は圧縮機,02は燃焼
器,03は燃焼タービン,04,05は再生熱交換器,
06は復水タービン,07は復水器,08は背圧タービ
ン,09,010は給水加熱器、そして011は必要に
応じて使用されるタービン冷却空気供給経路である。[0003] In the figure, 01 is a compressor, 02 is a combustor, 03 is a combustion turbine, 04 and 05 are regenerative heat exchangers,
06 is a condenser turbine, 07 is a condenser, 08 is a back pressure turbine, 09 and 010 are feed water heaters, and 011 is a turbine cooling air supply path used as needed.
【0004】このような構成の下で、圧縮機01で圧縮
されたガスは、燃焼器02において供給されたH2とO
2と混合されて燃焼され、高温の燃焼ガス(蒸気)とな
って燃焼タービン03を駆動する。そしてこの燃焼ター
ビン03で所定の仕事を終えた燃焼ガス、即ち蒸気は、
燃焼タービン03の下流側の再生熱交換器04で給水を
加熱した後分岐し、その一方の経路では再生熱交換器0
5を経て再び圧縮機01に吸気される。[0004] Under such a configuration, the gas compressed by the compressor 01 is supplied with H2 and O2 supplied in the combustor 02.
The fuel gas is mixed with the fuel gas2 and burned, and becomes high-temperature combustion gas (steam) to drive the combustion turbine 03. The combustion gas that has completed a predetermined work in the combustion turbine 03, that is, steam,
After the feedwater is heated by the regenerative heat exchanger 04 downstream of the combustion turbine 03, the feedwater branches off.
After that, the air is sucked into the compressor 01 again.
【0005】また、前記再生熱交換器04の後流で分岐
した他方の経路では、蒸気を復水タービン06に供給
し、同復水タービン06を駆動する。同復水タービン0
6を駆動した後の蒸気は、復水器07で凝縮されて復水
となり、その後給水加熱器09,010、再生熱交換器
05、04で加熱されて蒸気となり、背圧タービン08
を駆動し、その排気は燃焼器02に戻される。[0005] In the other path branched downstream of the regenerative heat exchanger 04, steam is supplied to the condensing turbine 06 to drive the condensing turbine 06. Condensing turbine 0
6 is condensed in a condenser 07 to become condensed water, and is then heated in feedwater heaters 09 and 010 and regenerative heat exchangers 05 and 04 to become steam, and a back pressure turbine 08
And the exhaust gas is returned to the combustor 02.
【0006】[0006]
【発明が解決しようとする課題】前記した従来の水素燃
焼タービンのサイクルシステムにおいては、燃焼器02
で発生した燃焼ガス、即ち蒸気は、再生熱交換器04,
05において復水タービン06からの復水を加熱して蒸
気化し、背圧タービン08の駆動源とする。一方、この
結果として再生熱交換器05を出た燃焼ガスは、熱を奪
われて、常温となり湿分も除去されることになるが、こ
れは積極的な冷却・除湿を行うものではない。In the above-described conventional cycle system for a hydrogen combustion turbine, the combustor 02
The combustion gas, ie, steam, generated in the regenerative heat exchanger 04,
At 05, the condensate from the condensate turbine 06 is heated and vaporized and used as a drive source for the back pressure turbine 08. On the other hand, as a result, the combustion gas that has exited the regenerative heat exchanger 05 is deprived of heat, becomes normal temperature, and the moisture is also removed. However, this does not actively cool and dehumidify.
【0007】従って前記燃焼ガスは、このサイクルシス
テムの実際の運転状況で決まる熱回収等のバランス上の
温度で冷却・除湿されて圧縮機に吸気されている。Accordingly, the combustion gas is cooled and dehumidified at a balanced temperature such as heat recovery determined by the actual operation state of the cycle system, and is taken into the compressor.
【0008】即ち、圧縮機01の吸気は、サイクルシス
テムの運転変動に追従してその温度・圧力が変動するの
で、再生熱交換器04、05での熱回収が常時十分に行
なわれるとは言い難いこと、及びこれに加えて前記変動
により吸気の温度・圧力が所定の値・レベルに固定され
たものではないので、これに続く燃焼過程以下の作動
が、必ずしも安定したものではない等の問題点がある。That is, since the temperature and pressure of the intake air of the compressor 01 fluctuate in accordance with the operation fluctuation of the cycle system, it can be said that the heat recovery in the regenerative heat exchangers 04 and 05 is always sufficiently performed. Difficulty and, in addition, the temperature and pressure of the intake air are not fixed at predetermined values and levels due to the fluctuation, so that the operation following the combustion process is not always stable. There is a point.
【0009】本発明はこのような従来のものの問題点を
解消すべく再生熱交換器04、05以外に冷却部を加え
て熱回収効果を大きくし、かつ圧縮機01の吸気を安定
した一定の条件に維持することを狙って提案するもので
ある。According to the present invention, in order to solve the problems of the prior art, a cooling section is added in addition to the regenerative heat exchangers 04 and 05 to increase the heat recovery effect and to stabilize the intake air of the compressor 01 at a constant level. It is proposed to maintain the conditions.
【0010】[0010]
【課題を解決するための手段】本発明は前記課題を解決
するべくなされたもので、圧縮機の吸気側に冷却室を設
け、低温媒体で燃焼ガスを冷却・除湿し、これにより生
じた凝縮水をプラントクーラの冷却水として供給する燃
焼タービンサイクルシステムを提供し、圧縮機の吸気側
に設けた冷却室に燃焼ガスを導き、これを冷却しかつ除
湿することにより、圧縮機に供給される吸気を所定の圧
力、温度域で低温に維持し、圧縮機及び爾後の行程を安
定的かつ効率的に作動させ、しかも冷却室で生じる凝縮
水はプラントクーラで使用して無駄なく熱回収し、シス
テム全体の熱効率を向上させるものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. A cooling chamber is provided on the intake side of a compressor, and a combustion gas is cooled and dehumidified by a low-temperature medium. Provide a combustion turbine cycle system that supplies water as cooling water for a plant cooler, guide combustion gas to a cooling chamber provided on the intake side of the compressor, cool and dehumidify the combustion gas, and supply the combustion gas to the compressor. The intake air is maintained at a low temperature at a predetermined pressure and temperature range, the compressor and the subsequent strokes are operated stably and efficiently, and the condensed water generated in the cooling chamber is used in a plant cooler to recover heat without waste. This is to improve the thermal efficiency of the entire system.
【0011】また、本発明は、燃焼タービンの排気系に
燃焼ガスを熱媒として復水を蒸気化する復水再生熱交換
器を設け、その下流に圧縮機の吸気側に連なる冷却室を
設けて低温媒体で燃焼ガスを積極的に冷却するととも
に、前記復水再生熱交換器の後流から水素燃焼ガスの一
部を復水タービンに供給する燃焼タービンサイクルシス
テムを提供し、燃焼タービンの燃焼ガスは、まず復水再
生熱交換器で、熱媒として働いて復水を蒸気化し、次い
でその後流で分岐して一方を圧縮機の吸気側に連通した
冷却室に導き、これを冷却して圧縮機の吸気を一定温度
域で低温になるようにすることによって圧縮機以降を安
定して効率良く作動させ、また前記分岐した他方は復水
タービンに供給して作動させ、システム全体を効率良く
かつ安定的に作動させるものである。Further, according to the present invention, a condensate regenerating heat exchanger for evaporating condensate using combustion gas as a heat medium is provided in an exhaust system of a combustion turbine, and a cooling chamber connected to an intake side of a compressor is provided downstream thereof. To provide a combustion turbine cycle system that actively cools the combustion gas with a low-temperature medium and supplies a portion of the hydrogen combustion gas from the downstream of the condensate regeneration heat exchanger to the condensate turbine. The gas first acts as a heat medium in the condensate regeneration heat exchanger to vaporize the condensate, then branches off in the subsequent flow and leads one to a cooling chamber communicating with the intake side of the compressor, which cools it. By making the intake air of the compressor a low temperature in a certain temperature range, the compressor and the following are operated stably and efficiently, and the other branch is supplied to the condensate turbine and operated to efficiently operate the entire system. And stable operation Is shall.
【0012】また、本発明は前記復水再生熱交換器で生
成された蒸気は背圧タービンに供給され、前記冷却室で
生じた凝縮水はプラントクーラ及び温排水冷却熱交換器
に供給する燃焼タービンサイクルシステムに係わり、前
記した燃焼タービンの燃焼ガスの保有する熱量は復水再
生熱交換器において復水を蒸気化し、これを背圧タービ
ンで回収すると共に、圧縮機吸気側の冷却室で生じた凝
縮水をシステム系内のプラントクーラ及び温排水冷熱交
換器等に導いて、同凝縮水の保有する冷熱を回収し、全
体の熱効率を向上させるものである。Further, in the present invention, the steam generated in the condensate regenerative heat exchanger is supplied to a back pressure turbine, and the condensed water generated in the cooling chamber is supplied to a plant cooler and a hot waste water cooling heat exchanger. In relation to the turbine cycle system, the amount of heat held by the combustion gas of the combustion turbine is converted into vaporized condensate in the condensate regenerative heat exchanger, recovered by the back pressure turbine, and generated in the cooling chamber on the compressor intake side. The condensed water is led to a plant cooler and a hot / drain cold / heat exchanger in the system to collect the cold energy of the condensed water and improve the overall thermal efficiency.
【0013】更にまた、本発明は、前記冷却室では氷を
冷却面として前記燃焼ガスと接触させる燃焼タービンサ
イクルシステムを提供し、圧縮機の吸気側に配置した冷
却室では、燃焼ガスを氷と接触させて積極的かつ徹底的
に冷却することにより、圧縮機の吸気温度をより低く、
かつより確実に低下させ、圧縮機以降の熱効率を大巾、
かつ確実に向上させるものである。Still further, the present invention provides a combustion turbine cycle system in which ice is used as a cooling surface in the cooling chamber and comes into contact with the combustion gas. In the cooling chamber arranged on the intake side of the compressor, the combustion gas is mixed with ice. Active and thorough cooling by contacting, lowers the intake air temperature of the compressor,
And more reliably reduce the thermal efficiency after the compressor,
And it is surely improved.
【0014】[0014]
【発明の実施の形態】本発明の実施の第1形態を図1に
基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG.
【0015】51は圧縮機、53は燃焼タービン、56
は蒸気タービン、57は発電機で、これ等は機械的に軸
連結されている。55は炭化水素燃焼器で、圧縮機51
と燃焼タービン53を結ぶ経路に配設されている。Reference numeral 51 denotes a compressor; 53, a combustion turbine;
Is a steam turbine, and 57 is a generator, which are mechanically connected to the shaft. 55 is a hydrocarbon combustor, and the compressor 51
And a combustion turbine 53.
【0016】また、52は冷却室で、炭化水素燃焼器5
3と圧縮機51を結ぶ経路で圧縮機51の吸気側に配設
されている。Reference numeral 52 denotes a cooling chamber, which is a hydrocarbon combustor 5.
The compressor 51 is disposed on the intake side of the compressor 51 in a path connecting the compressor 3 and the compressor 51.
【0017】このような構成の下において、炭化水素燃
焼器55では圧縮機51から供給されるガスと、外部か
ら供給される炭化水素CmHn及び酸素O2とが反応し
て燃焼ガス、即ち蒸気とCO2(一部CO)を生成し、経
路54を経てこれを燃焼タービン53に供給して仕事を
させる。[0017] In Under such configuration, a gas supplied from a hydrocarbon combustor 55 in the compressor 51, the hydrocarbon Cm Hn and the oxygen O2 and react with each combustion gas supplied from the outside, That is, steam and CO2 (partially CO) are generated and supplied to the combustion turbine 53 via the path 54 to perform work.
【0018】燃焼タービン53で仕事をし、排出された
燃焼ガスは冷却室52で、冷却媒体60により冷却・除
湿され、圧縮機51の吸気側に循環供給される。なお、
冷却室52と圧縮機51との間では図中に略示するよう
に経路58を経て不凝縮ガスを抽出し、マスバランスを
とるようにしている。また冷却室52で生ずる凝縮水は
経路59から抽出し、図示省略のプラントクーラ等の冷
却水として供給されるものである。The combustion gas discharged after working in the combustion turbine 53 is cooled and dehumidified by the cooling medium 60 in the cooling chamber 52 and circulated and supplied to the intake side of the compressor 51. In addition,
A non-condensable gas is extracted between the cooling chamber 52 and the compressor 51 via a path 58 as schematically shown in the figure, and a mass balance is obtained. Condensed water generated in the cooling chamber 52 is extracted from a passage 59 and supplied as cooling water for a plant cooler (not shown).
【0019】このように本実施の形態では、圧縮機51
に供給される吸気は冷却室52で冷却されるので、圧縮
機51の入口温度を下げて圧縮動力を低減し、更にその
後流では燃焼タービン53の出口圧力を下げることに寄
与して同タービンの膨張比、即ちタービン動力を増加さ
せるものである。As described above, in the present embodiment, the compressor 51
Is cooled in the cooling chamber 52, so that the inlet temperature of the compressor 51 is reduced to reduce the compression power, and further in the downstream flow, the outlet pressure of the combustion turbine 53 is reduced, and This is to increase the expansion ratio, that is, the turbine power.
【0020】また、同冷却室52から取り出した低温の
凝縮水をプラントクーラの冷却水として用いるものであ
り、系内で生じた冷熱を回収して有効活用し、総合的に
熱効率を向上させるものである。In addition, low-temperature condensed water taken out from the cooling chamber 52 is used as cooling water for a plant cooler, and cool heat generated in the system is recovered and effectively used to improve overall thermal efficiency. It is.
【0021】次に図2に基づいて本発明の実施の第2形
態について説明する。本実施の形態は水素燃焼タービン
を用いたものであり、水素燃焼器71に供給された水素
H2と酸素O2が圧縮機74からの供給ガスを含めて反
応し、生成した燃焼ガス、即ち蒸気は燃焼タービン72
で仕事をした後排気系に入る。Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, a hydrogen combustion turbine is used, and the hydrogen H2 and oxygen O2 supplied to the hydrogen combustor 71 react with each other including the supply gas from the compressor 74 to generate combustion gas, that is, The steam is supplied to the combustion turbine 72
After work in the exhaust system.
【0022】燃焼タービン72の排気系には、燃焼ガス
の回収熱で復水を蒸気化する復水再生熱交換器73を設
けるとともに圧縮機74の吸気側には、冷却室75を設
ける。そして同冷却室75では氷他の低温媒体を循環さ
せることによって、燃焼ガスを徹底的に冷却・除湿す
る。The exhaust system of the combustion turbine 72 is provided with a condensate regeneration heat exchanger 73 for evaporating condensed water by the recovered heat of the combustion gas, and a cooling chamber 75 is provided on the intake side of the compressor 74. In the cooling chamber 75, the combustion gas is thoroughly cooled and dehumidified by circulating ice and other low-temperature media.
【0023】またタービン排気系の再生熱交換器73の
後流からは、前記冷却室75へ向かう経路と分岐した経
路により水素燃焼ガス(蒸気)の一部を復水タービン7
6に供給し、発電機77トレーンの動力源としている。Further, from the downstream side of the regenerative heat exchanger 73 of the turbine exhaust system, a part of the hydrogen combustion gas (steam) is separated from the condensing turbine 7 by a path branched from the path toward the cooling chamber 75.
6 and used as a power source for the generator 77 train.
【0024】一方、前記再生熱交換器73には復水ター
ビン76の復水が給水され、ここで生成された蒸気は背
圧タービン78の動力源となり、また冷却室75で生じ
た凝縮水はヘダ83を介して潤滑油冷却器、空気冷却
器、発電機冷却機等々を含む各種熱交換器(プラントク
ーラ)79の冷却水として用いると共に、温排水冷却熱
交換器80の冷却水としても用いられる。On the other hand, the regenerated heat exchanger 73 is supplied with condensed water of a condensing turbine 76, the steam generated here serves as a power source of a back pressure turbine 78, and the condensed water generated in the cooling chamber 75 is Used as cooling water for various heat exchangers (plant coolers) 79 including a lubricating oil cooler, an air cooler, a generator cooler, and the like via the hedder 83, and also used as cooling water for the hot waste water cooling heat exchanger 80. Can be
【0025】なお、図中81は給水加熱器、82は昇圧
ポンプで、同昇圧ポンプ82は復水再生熱交換器73の
蒸気圧に見合った容量で給水を送給するものである。In the drawing, reference numeral 81 denotes a feed water heater, and reference numeral 82 denotes a booster pump. The booster pump 82 feeds feed water with a capacity corresponding to the vapor pressure of the condensate regeneration heat exchanger 73.
【0026】本実施の形態に於ては、冷却室75で圧縮
機74への吸気を冷却し、また冷却室75で生成される
凝縮水を各種熱交換器79及び温排水冷却熱交換器80
へ供給して冷熱を回収し、これらにより前記した実施の
第1形態と同様にタービンの効率向上から冷熱の有効活
用にまで及び、プラントの総合的な熱効率向上に寄与す
るものである。In this embodiment, the intake air to the compressor 74 is cooled in the cooling chamber 75, and the condensed water generated in the cooling chamber 75 is transferred to various heat exchangers 79 and the hot waste water cooling heat exchanger 80.
And recovers the cold heat to thereby contribute to the overall thermal efficiency improvement of the plant, from the improvement of the efficiency of the turbine to the effective use of the cold heat as in the first embodiment described above.
【0027】次に図3ないし図5により、前記した実施
の第1及び第2形態の冷却室52,75に夫々適用する
冷却室の形態について説明する。Next, referring to FIG. 3 to FIG. 5, the form of the cooling chamber applied to the cooling chambers 52 and 75 of the first and second embodiments will be described.
【0028】冷却室1内の上部には、吸気室2と、吸気
ダクト3を連通する仕切ダクト4が設けられていて、仕
切ダクト4の入口側には、温度調節用ダンパーCV−1
が設けられている。A partition duct 4 communicating the intake chamber 2 and the intake duct 3 is provided in the upper part of the cooling chamber 1, and a temperature control damper CV-1 is provided at the entrance side of the partition duct 4.
Is provided.
【0029】冷却室1内の下部には、冷却熱交換器5が
設置されていて冷却熱交換器の管側の出入口は、冷却室
1の外に設けられた冷凍設備6に接続されている。また
冷却室1の外には、冷水タンク7も設置されていて、冷
却室1と連通する冷水配管8が設けられている。A cooling heat exchanger 5 is provided at a lower portion in the cooling chamber 1, and an inlet / outlet on a tube side of the cooling heat exchanger is connected to a refrigeration facility 6 provided outside the cooling chamber 1. . A cooling water tank 7 is also provided outside the cooling chamber 1, and a cooling water pipe 8 communicating with the cooling chamber 1 is provided.
【0030】同冷水配管8には冷水移送ポンプ9及び液
位制御弁CV−2が配設されている。冷水タンク7には
吸気ダクト3の噴射ノズル10に連通する冷水噴射管1
1が設けられていて、その管路に冷水噴射ポンプ12及
び冷水噴射制御弁CV−4が配設されている。The chilled water piping 8 is provided with a chilled water transfer pump 9 and a liquid level control valve CV-2. The cold water tank 7 has a cold water injection pipe 1 communicating with the injection nozzle 10 of the intake duct 3.
1 is provided, and a chilled water injection pump 12 and a chilled water injection control valve CV-4 are provided in the pipeline.
【0031】また冷水噴射ポンプ12の下流側から分岐
し冷却室1に連通する水投入配管13が設けられてい
て、その管路に水投入制御弁CV−3が配設されてい
る。そして圧縮機吸気室2に配設した温度検出器14と
圧力検出器15の検出信号、及びガスタービン発電出力
信号Sを吸気温度制御装置16に入力し、その出力信号
により仕切りダクト4の温度調節用ダンパーCV−1、
冷水管路8の液位制御弁CV−2、水投入配管13の水
投入制御弁CV−3、及び冷水噴射管11の冷水噴射制
御弁CV−4を制御するとともに、上記の温度調節に加
え吸気圧力15を所定値とする圧力調節を複合させて制
御させる。A water inlet pipe 13 is provided which branches off from the downstream side of the cold water injection pump 12 and communicates with the cooling chamber 1, and a water inlet control valve CV-3 is provided in the pipe. Then, the detection signals of the temperature detector 14 and the pressure detector 15 disposed in the compressor intake chamber 2 and the output signal S of the gas turbine power generation are input to the intake air temperature control device 16, and the output signals control the temperature of the partition duct 4. Damper CV-1,
In addition to controlling the liquid level control valve CV-2 of the chilled water pipe 8, the water injection control valve CV-3 of the water injection pipe 13, and the chilled water injection control valve CV-4 of the chilled water injection pipe 11, Control is performed by combining pressure adjustment for setting the intake pressure 15 to a predetermined value.
【0032】符号17は、液位制御弁CV−2を制御す
る液面発信器であり、同液位制御弁CV−2はこの液面
信号と前記吸気温度制御装置16との二系統で制御され
る。ここで水投入制御弁CV−3は、吸気温度制御装置
16から水位変更指令を受け、液面発振器17の液面信
号が所定水位を検知するまで同吸気温度制御装置16の
指令により操作される。また、この操作は必要に応じて
冷水管路8の液位制御弁CV−2を連動させることもあ
る。なお冷却室1で氷を作るには一定時間、冷却熱交換
器5を水中に没して冷媒を冷凍設備6から供給しなけれ
ばならない。Reference numeral 17 denotes a liquid level transmitter for controlling the liquid level control valve CV-2. The liquid level control valve CV-2 is controlled by two systems including the liquid level signal and the intake air temperature control device 16. Is done. Here, the water input control valve CV-3 receives a water level change command from the intake temperature control device 16 and is operated by the command of the intake temperature control device 16 until the liquid level signal of the liquid level oscillator 17 detects a predetermined water level. . In addition, this operation may interlock the liquid level control valve CV-2 of the chilled water pipe 8 as necessary. To make ice in the cooling chamber 1, the cooling heat exchanger 5 must be immersed in water for a certain period of time to supply the refrigerant from the refrigeration facility 6.
【0033】従ってDSS(Daily Start
and Stop)プラントで夜間停止、昼間発電の場
合は夜間停止中に氷を作れば良いが、連続発電のプラン
トに対応するには複数個の冷却室を設けてそれを切替操
作するような工夫が必要となる。Therefore, DSS (Daily Start)
In the case of night stop and daytime power generation in a plant, ice can be made during the night stoppage, but in order to cope with a continuous power generation plant, a plurality of cooling chambers are provided and switching operation is performed. Required.
【0034】図4は連続発電プラントへの適用を考慮し
たもので、(a)に正面、(b)に側面を示すように前
記した図3の冷却室1を2個採用し、各冷却室1A,1
Bを併列配置して、その一方を稼動中には他方を休止し
て製氷を行わせるようにしたものである。FIG. 4 shows an application to a continuous power plant. Two cooling chambers 1 shown in FIG. 3 are adopted as shown in FIG. 1A, 1
B is arranged in parallel, and while one of them is in operation, the other is stopped to perform ice making.
【0035】なお、一方の冷却室1Aには流路切換ダン
パCV−5,CV−8を、他方の冷却室1Bには他の流
路切換ダンパCV−6,CV−7を配設し、各流路切換
ダンパCV−5〜CV−8を切換制御して冷却室1A又
は冷却室1Bの選択を行うものである。なおCV−1は
温度調節用ダンパで両方の冷却室1A,1Bにまたがっ
て設けられ、吐出の仕上がり空気温度調節を行う。It should be noted that one cooling chamber 1A is provided with flow path switching dampers CV-5 and CV-8, and the other cooling chamber 1B is provided with other flow path switching dampers CV-6 and CV-7. The switching control of each of the flow path switching dampers CV-5 to CV-8 is performed to select the cooling chamber 1A or the cooling chamber 1B. CV-1 is a damper for temperature adjustment which is provided over both cooling chambers 1A and 1B, and adjusts a finished air temperature of discharge.
【0036】またCV−10,CV−11,CV−1
2,CV−13は夫々冷媒流路切換弁で、冷凍設備6に
連通する系路に配設され、前記冷却室1A,1Bの選択
に準じて制御されるものである。CV-10, CV-11, CV-1
Reference numerals 2 and CV-13 denote refrigerant flow switching valves, respectively, which are disposed in a system path communicating with the refrigeration facility 6, and are controlled in accordance with the selection of the cooling chambers 1A and 1B.
【0037】図5は前記図4のものが併列配置をとった
のに対し冷却室1A,1Bを直列配置としたものであ
る。なお、冷却作用を行う稼動中と製氷作用を行う休止
中とを区分するように、(a)に冷却室1Aが冷却作用
中で冷却室1Bが製氷作用中のもの、(b)には反対に
冷却室1Aが製氷作用中で冷却室1Bが冷却作用中のも
のを示している。FIG. 5 shows an arrangement in which the cooling chambers 1A and 1B are arranged in series, while the arrangement in FIG. 4 is arranged in parallel. It should be noted that the cooling chamber 1A is in the cooling operation and the cooling chamber 1B is in the ice-making operation in FIG. FIG. 2 shows a state where the cooling chamber 1A is performing an ice making operation and the cooling chamber 1B is performing a cooling operation.
【0038】なお、このように冷却室1A,1Bを直列
配列としたことにより前記図4の併例配列のものと比
べ、温度調節用ダンパCV−9が1個増設され、温度調
節用ダンパCV−1とCV−9とは一方が温度調整して
いるときは他方を全開するように相反的に制御するよう
にした点を付加しただけで、その他は前記図4のものと
全て同一である。By arranging the cooling chambers 1A and 1B in series as described above, one temperature control damper CV-9 is additionally provided as compared with the arrangement of the example shown in FIG. 4, and the temperature control damper CV is provided. -1 and CV-9 are the same as those shown in FIG. 4 except that the point that one is controlled reciprocally so that the other is fully opened when one is temperature-controlled is added. .
【0039】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.
【0040】[0040]
【発明の効果】以上、本発明によれば、圧縮機の吸気を
冷却室に通してこれを冷却・除湿することにより、圧縮
機動力の低減や燃焼タービン動力の増強を図り、また、
冷却室の凝縮水をプラントクーラの冷却水として利用
し、冷熱域まで含めて熱効率を大巾に、かつ安定して向
上し得たものである。As described above, according to the present invention, the power of the compressor is reduced and the power of the combustion turbine is increased by passing the intake air of the compressor through the cooling chamber to cool and dehumidify it.
By using the condensed water in the cooling chamber as cooling water for the plant cooler, the thermal efficiency including the cold region can be improved significantly and stably.
【0041】また、請求項2の発明によれば、燃焼ター
ビンで仕事をした余剰の燃焼ガスから復水再生熱交換器
で熱回収し、その下流では冷却室で燃焼ガスを積極的に
冷却して圧縮機に帰還する吸気が低温となって圧縮機の
効率を向上させるようにし、更に復水タービンでも仕事
をさせるというように燃焼ガスの熱量を十分回収し熱効
率の向上を図るものである。According to the second aspect of the present invention, heat is recovered from the surplus combustion gas worked by the combustion turbine by the condensate regeneration heat exchanger, and the combustion gas is actively cooled in the cooling chamber downstream thereof. Thus, the intake air returning to the compressor has a low temperature so that the efficiency of the compressor is improved, and the condensing turbine is also operated so that the calorific value of the combustion gas is sufficiently recovered to improve the thermal efficiency.
【0042】また、請求項3の発明によれば、復水再生
熱交換器で汲み上げた燃焼ガス中の熱量は背圧タービン
で完全に回収し、また、冷却室で副次的に得た凝縮水か
ら冷熱をプラントクーラ及び温排水冷却熱交換器等によ
り回収し、高熱域から低熱域まで、くまなく熱回収を行
い、熱効率の向上をなしえたものである。According to the third aspect of the invention, the amount of heat in the combustion gas pumped up by the condensate regenerative heat exchanger is completely recovered by the back pressure turbine, and the condensate obtained secondarily in the cooling chamber. It recovers cold heat from water using a plant cooler and a hot waste water cooling heat exchanger, etc., recovers heat from high to low heat areas and improves heat efficiency.
【0043】更にまた請求項4の発明によれば、冷却室
においては燃焼ガスを、氷を冷却面としてこれと接触さ
せて冷却させることにより以下のような効果を奏しうる
ものである。 (1)氷との直接接触であるので、吸気を0℃近くまで
冷却することが可能となる。 (2)吸気冷却による凝縮水は水分が氷表面に付着或い
は冷却室内水面に捕集され、ガスタービンへ流入する水
分を少くできる。 (3)夜間電力で製氷するとき電力の平準化が図れる。 (4)温度調節によって冷水タンクに溜められた冷水は
他の冷却器などの冷却水として使用することもでき、応
用範囲が拡張する。そして、特に復水器から環境に排出
される温排水を低減でき、また、各種クーラの冷却水を
0℃〜数℃で供給できるためクーラの小型化も図れるも
のである。According to the fourth aspect of the present invention, the following effects can be obtained by cooling the combustion gas in the cooling chamber by bringing the cooling gas into contact with ice as a cooling surface. (1) Since it is in direct contact with ice, it is possible to cool the intake air to near 0 ° C. (2) Water condensed by the intake air cooling adheres to the ice surface or is collected on the water surface of the cooling room, so that the water flowing into the gas turbine can be reduced. (3) Electricity can be leveled when making ice with nighttime electric power. (4) The chilled water stored in the chilled water tank by temperature control can be used as cooling water for other coolers and the like, and the range of application is expanded. In particular, it is possible to reduce hot waste water discharged to the environment from the condenser, and to supply cooling water for various coolers at 0 ° C. to several ° C., so that the coolers can be downsized.
【図1】本発明の実施の第1形態に係る燃焼システムの
系統図。FIG. 1 is a system diagram of a combustion system according to a first embodiment of the present invention.
【図2】本発明の実施の第2形態に係る燃焼システムの
系統図。FIG. 2 is a system diagram of a combustion system according to a second embodiment of the present invention.
【図3】本発明の実施の第1,第2形態に適用する冷却
室の冷却システム系統図。FIG. 3 is a cooling system diagram of a cooling chamber applied to the first and second embodiments of the present invention.
【図4】図3の冷却システムにおける冷却室の変形例を
示し、(a)は正面図、(b)は側面図。4A and 4B show a modification of the cooling chamber in the cooling system of FIG. 3, wherein FIG. 4A is a front view and FIG. 4B is a side view.
【図5】図4の更に異る変形例を示し、(a),(b)
は夫々作動系を切換えた状態を示す正面図。FIGS. 5A and 5B show still another modified example of FIG. 4, wherein FIGS.
FIG. 2 is a front view showing a state in which the operation systems are switched.
【図6】従来の燃焼システムの系統図。FIG. 6 is a system diagram of a conventional combustion system.
51 圧縮機 52 冷却室 53 燃焼タービン 55 燃焼器 56 背圧タービン 73 再生熱交換器 74 圧縮機 75 冷却室 76 復水タービン 77 発電機 78 背圧タービン 79 プラントクーラー 80 温排水冷却熱交換器 51 Compressor 52 Cooling Chamber 53 Combustion Turbine 55 Combustor 56 Back Pressure Turbine 73 Regeneration Heat Exchanger 74 Compressor 75 Cooling Chamber 76 Condensing Turbine 77 Generator 78 Back Pressure Turbine 79 Plant Cooler 80 Hot Drain Cooling Heat Exchanger
フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 7/143 F02C 7/143Continued on the front page (51) Int.Cl.6 Identification code FI F02C 7/143 F02C 7/143
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27806496AJPH10121912A (en) | 1996-10-21 | 1996-10-21 | Combustion turbine cycle system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27806496AJPH10121912A (en) | 1996-10-21 | 1996-10-21 | Combustion turbine cycle system |
| Publication Number | Publication Date |
|---|---|
| JPH10121912Atrue JPH10121912A (en) | 1998-05-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27806496AWithdrawnJPH10121912A (en) | 1996-10-21 | 1996-10-21 | Combustion turbine cycle system |
| Country | Link |
|---|---|
| JP (1) | JPH10121912A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100472167C (en) | 2005-10-10 | 2009-03-25 | 中冶赛迪工程技术股份有限公司 | A circulating cooling system |
| KR20120012785A (en)* | 2009-02-26 | 2012-02-10 | 팔머 랩스, 엘엘씨 | Apparatus and methods for combusting fuel at high temperatures and pressures, systems and equipment associated therewith |
| US8986002B2 (en) | 2009-02-26 | 2015-03-24 | 8 Rivers Capital, Llc | Apparatus for combusting a fuel at high pressure and high temperature, and associated system |
| US9068743B2 (en) | 2009-02-26 | 2015-06-30 | 8 Rivers Capital, LLC & Palmer Labs, LLC | Apparatus for combusting a fuel at high pressure and high temperature, and associated system |
| JP2016070127A (en)* | 2014-09-29 | 2016-05-09 | 川崎重工業株式会社 | gas turbine |
| JP2016102415A (en)* | 2014-11-27 | 2016-06-02 | 東京電力株式会社 | Turbine plant and intake air cooling method for turbine plant |
| US10859264B2 (en) | 2017-03-07 | 2020-12-08 | 8 Rivers Capital, Llc | System and method for combustion of non-gaseous fuels and derivatives thereof |
| CN113330263A (en)* | 2019-01-22 | 2021-08-31 | 乔治洛德方法研究和开发液化空气有限公司 | Gas liquefaction method and gas liquefaction device |
| US11199327B2 (en) | 2017-03-07 | 2021-12-14 | 8 Rivers Capital, Llc | Systems and methods for operation of a flexible fuel combustor |
| US11572828B2 (en) | 2018-07-23 | 2023-02-07 | 8 Rivers Capital, Llc | Systems and methods for power generation with flameless combustion |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100472167C (en) | 2005-10-10 | 2009-03-25 | 中冶赛迪工程技术股份有限公司 | A circulating cooling system |
| KR20120012785A (en)* | 2009-02-26 | 2012-02-10 | 팔머 랩스, 엘엘씨 | Apparatus and methods for combusting fuel at high temperatures and pressures, systems and equipment associated therewith |
| US8986002B2 (en) | 2009-02-26 | 2015-03-24 | 8 Rivers Capital, Llc | Apparatus for combusting a fuel at high pressure and high temperature, and associated system |
| US9068743B2 (en) | 2009-02-26 | 2015-06-30 | 8 Rivers Capital, LLC & Palmer Labs, LLC | Apparatus for combusting a fuel at high pressure and high temperature, and associated system |
| US9416728B2 (en) | 2009-02-26 | 2016-08-16 | 8 Rivers Capital, Llc | Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device |
| JP2016070127A (en)* | 2014-09-29 | 2016-05-09 | 川崎重工業株式会社 | gas turbine |
| US20170211473A1 (en)* | 2014-09-29 | 2017-07-27 | Kawasaki Jukogyo Kabushiki Kaisha | Gas turbine |
| JP2016102415A (en)* | 2014-11-27 | 2016-06-02 | 東京電力株式会社 | Turbine plant and intake air cooling method for turbine plant |
| US10859264B2 (en) | 2017-03-07 | 2020-12-08 | 8 Rivers Capital, Llc | System and method for combustion of non-gaseous fuels and derivatives thereof |
| US11199327B2 (en) | 2017-03-07 | 2021-12-14 | 8 Rivers Capital, Llc | Systems and methods for operation of a flexible fuel combustor |
| US11435077B2 (en) | 2017-03-07 | 2022-09-06 | 8 Rivers Capital, Llc | System and method for combustion of non-gaseous fuels and derivatives thereof |
| US11828468B2 (en) | 2017-03-07 | 2023-11-28 | 8 Rivers Capital, Llc | Systems and methods for operation of a flexible fuel combustor |
| US12259136B2 (en) | 2017-03-07 | 2025-03-25 | 8 Rivers Capital, Llc | Systems and methods for operation of a flexible fuel combustor |
| US11572828B2 (en) | 2018-07-23 | 2023-02-07 | 8 Rivers Capital, Llc | Systems and methods for power generation with flameless combustion |
| CN113330263A (en)* | 2019-01-22 | 2021-08-31 | 乔治洛德方法研究和开发液化空气有限公司 | Gas liquefaction method and gas liquefaction device |
| CN113330263B (en)* | 2019-01-22 | 2023-08-04 | 乔治洛德方法研究和开发液化空气有限公司 | Gas liquefaction method and gas liquefaction device |
| Publication | Publication Date | Title |
|---|---|---|
| RU2215165C2 (en) | Method of regeneration of heat of exhaust gases in organic energy converter by means of intermediate liquid cycle (versions) and exhaust gas heat regeneration system | |
| US3788066A (en) | Refrigerated intake brayton cycle system | |
| US6615585B2 (en) | Intake-air cooling type gas turbine power equipment and combined power plant using same | |
| CA1218240A (en) | Regenerative gas turbine cycle | |
| KR960010276B1 (en) | Indirect contact chiller air-precooler system | |
| RU2126491C1 (en) | Device for cooling gas turbine cooler of gas-and-steam turbine plant | |
| US5622044A (en) | Apparatus for augmenting power produced from gas turbines | |
| US4037413A (en) | Power plant with a closed cycle comprising a gas turbine and a work gas cooling heat exchanger | |
| US6422019B1 (en) | Apparatus for augmenting power produced from gas turbines | |
| RU99128094A (en) | EXHAUST GAS HEAT REGENERATION IN AN ORGANIC ENERGY CONVERTER USING THE INTERMEDIATE LIQUID CYCLE | |
| RU2062332C1 (en) | Combined-cycle plant | |
| WO2002040916A2 (en) | Gas pipeline compressor stations with kalina cycles® | |
| GB2280224A (en) | Method of and apparatus for augmenting power produced from gas turbines | |
| CN112856544B (en) | Method and system for improving flexibility of thermoelectric unit by combining exhaust gas waste heat recovery and heat storage | |
| US6119445A (en) | Method of and apparatus for augmenting power produced from gas turbines | |
| CN1060335A (en) | Evacuator heat exchangers for combined cycle power plants | |
| US20180087408A1 (en) | Hybrid type power generation system | |
| JPH10121912A (en) | Combustion turbine cycle system | |
| JP2003161164A (en) | Combined cycle power plant | |
| JPH05296009A (en) | Exhaust heat recovery system for steam turbine equipment | |
| KR100814615B1 (en) | Cogeneration System Using Absorption and Compression Cycles | |
| CN114001489A (en) | A solar-injection refrigeration power-cooling combined supply system | |
| JP3696931B2 (en) | Power generation facility using liquid air | |
| JPH0354327A (en) | Surplus power utilizing system | |
| US4444021A (en) | Heat pump systems for residential use |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20040106 |