Movatterモバイル変換


[0]ホーム

URL:


JPH0948861A - Cation exchange membrane - Google Patents

Cation exchange membrane

Info

Publication number
JPH0948861A
JPH0948861AJP7202037AJP20203795AJPH0948861AJP H0948861 AJPH0948861 AJP H0948861AJP 7202037 AJP7202037 AJP 7202037AJP 20203795 AJP20203795 AJP 20203795AJP H0948861 AJPH0948861 AJP H0948861A
Authority
JP
Japan
Prior art keywords
membrane
anion
exchange membrane
cation exchange
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7202037A
Other languages
Japanese (ja)
Other versions
JP3522398B2 (en
Inventor
Taketo Kawashima
武人 川嶋
Masato Hamada
正人 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co LtdfiledCriticalAsahi Chemical Industry Co Ltd
Priority to JP20203795ApriorityCriticalpatent/JP3522398B2/en
Publication of JPH0948861ApublicationCriticalpatent/JPH0948861A/en
Application grantedgrantedCritical
Publication of JP3522398B2publicationCriticalpatent/JP3522398B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PROBLEM TO BE SOLVED: To obtain the subject exchange membrane having excellent monofunctional ion selective permeability, its durability and a low membrane potential in an electrodialysis, and capable of saving electric power consumption in the case of using to a salt manufacture by an electrodialysis. SOLUTION: A polymer substance having an anion exchanging group and <=0.2 solubility to sea water at 25 deg.C is penetrated into a cation exchange membrane matrix to a 100-500nm depth. Then, an anion exchange layer having 10-50nm thickness is formed outside the membrane matrix to obtain a cation exchange membrane having excellent monofunctional ion selective permeability and electrically low potential membrane in an electrodialysis.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として、イオン交
換膜を用いて海水を電気透析により濃縮する際に、多価
陽イオン(Mg2+、Ca2+)よりも一価陽イオン(Na
+、K+)を選択的に透過させる性質を有し、この性質
が長時間持続し、かつ電気透析時の膜電圧の極めて低い
新規な陽イオン交換膜に関するものである。
TECHNICAL FIELD The present invention mainly relates to monovalent cations (Na 2) rather than polyvalent cations (Mg2+ , Ca2+ ) when seawater is concentrated by electrodialysis using an ion exchange membrane.
The present invention relates to a novel cation exchange membrane which has a property of selectively permeating+ , K+ ), lasts for a long time, and has an extremely low membrane voltage during electrodialysis.

【0002】[0002]

【従来の技術】従来、陽イオン交換膜に、一価イオンを
多価イオンよりも選択的に透過させる性質、すなわち一
価イオン選択透過性を与えるには、陽イオン交換膜の表
面に陰イオン交換性の物質を存在させることが知られて
いる。又、この一価イオン選択透過性を持続させる方法
も知られている。例えば、特公昭53−44155号公
報では、陰イオン交換基を有し、水に不溶な架橋高分子
の微粒子の懸濁液で、陽イオン交換膜を処理して、陽イ
オン交換膜の表面に、これを付着させることで、持続性
の高い一価陽イオン選択透過性を付与する方法が示され
ている。しかしながら、この方法では、架橋高分子の水
または無機塩水溶液で陽イオン交換膜を処理する際に、
高温にして膜の基材を伸ばした状態で架橋高分子の微粒
子の一部を基材中に取り込ませ、架橋高分子の微粒子を
膜に保持させるので、実質的に高温に耐えられる膜でな
ければ浸透濃度の低下などを引き起こし、適用できない
という不都合があった。又、例えば特公平5−8557
4号公報では、第四級アンモニウム塩基類と3個以上の
ビニルベンジル基を有するビニル化合物の重合体を、表
面に存在させた陽イオン交換膜が示されている。この公
知陽イオン交換膜は、一価イオン選択透過性が付与され
るにあたって、交流1000サイクルで測定される膜の
電気抵抗の上昇もあまり無く、良好な一価イオン選択透
過性が長時間持続する。しかしながら、海水を電気透析
により濃縮する際の膜電圧が高い場合があり、一価イオ
ン選択透過性が長時間持続し、かつ、電気透析時の膜電
圧がより低い一層良好な陽イオン交換膜が求められてい
る。
2. Description of the Related Art Conventionally, in order to provide a cation exchange membrane with the property of selectively permeating monovalent ions over polyvalent ions, that is, the selective permeation of monovalent ions, anions on the surface of cation exchange membranes have been used. It is known to have exchangeable substances present. Also known is a method of maintaining the selective permeation of monovalent ions. For example, in Japanese Examined Patent Publication No. 53-44155, a cation-exchange membrane is treated with a suspension of fine particles of a cross-linked polymer having an anion-exchange group and insoluble in water, and the surface of the cation-exchange membrane is treated. , A method of imparting highly-persistent monovalent cation selective permeability by adhering the same is shown. However, in this method, when the cation exchange membrane is treated with water of the crosslinked polymer or an aqueous solution of an inorganic salt,
Since a part of the crosslinked polymer particles is taken into the base material while the base material of the film is stretched at a high temperature and the crosslinked polymer particles are retained in the film, it must be a film that can withstand high temperatures. For example, it has a disadvantage that it cannot be applied because it causes a decrease in permeation concentration. Also, for example, Japanese Patent Publication No. 5-8557
Japanese Patent Publication No. 4 discloses a cation exchange membrane in which a polymer of a quaternary ammonium salt group and a vinyl compound having three or more vinylbenzyl groups is present on the surface. This known cation exchange membrane does not show a significant increase in the electric resistance of the membrane as measured by 1000 cycles of alternating current when imparting the monovalent ion selective permeability, and the favorable monovalent ion selective permeability lasts for a long time. . However, there are cases in which the membrane voltage when concentrating seawater by electrodialysis is high, and monovalent ion selective permeability lasts for a long time, and a better cation exchange membrane with a lower membrane voltage during electrodialysis is used. It has been demanded.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、良好
な一価イオン選択透過性が長時間持続し、かつ、電気透
析時の膜電圧が極めて低い、新規な陽イオン交換膜を提
供することを目的とするものである。
The object of the present invention is to provide a novel cation exchange membrane having good monovalent ion selective permeability for a long time and having an extremely low membrane voltage during electrodialysis. That is the purpose.

【0004】[0004]

【課題を解決するための手段】本発明者らは、海水を電
気透析により濃縮する際の膜電圧が低い、一価イオン選
択透過性陽イオン交換膜を開発するために、鋭意研究を
重ねた結果、膜表面及び膜母体内部に存在させる陰イオ
ン交換基を有する高分子物質の溶解度が、良好な一価イ
オン選択透過性を長時間持続させる為に重要な要素であ
ること、更に、膜表面及び膜母体内部での陰イオン交換
基を有する高分子物質の存在状態が、電気透析時の膜電
圧に大きく影響を及ぼすことを見いだし、これらの知見
に基づいて本発明をなすに至った。すなわち、陰イオン
交換基を有し25℃の海水に対する溶解度が0.2以下
である高分子物質を、該高分子物質が膜母体内部に10
0〜500nmの厚みで浸入させ、膜母体外部に10〜
50nmの厚みで陰イオン交換層を形成するように、存
在させた陽イオン交換膜である。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to develop a monovalent ion-selective cation exchange membrane having a low membrane voltage when seawater is concentrated by electrodialysis. As a result, the solubility of the polymer substance having an anion exchange group present on the membrane surface and inside the membrane matrix is an important factor for maintaining good monovalent ion selective permeability for a long time. It was also found that the existence state of the polymer substance having an anion exchange group inside the membrane matrix greatly affects the membrane voltage during electrodialysis, and the present invention has been completed based on these findings. That is, a polymer substance having an anion-exchange group and having a solubility in seawater at 25 ° C. of 0.2 or less is used as the polymer substance within the membrane matrix.
Infiltrate with a thickness of 0 to 500 nm, and 10 to the outside of the membrane matrix.
It is a cation exchange membrane that is present so as to form an anion exchange layer with a thickness of 50 nm.

【0005】本発明で用いる高分子物質が有する陰イオ
ン交換基としては、4級アンモニウム基、第四級ピリジ
ニウム基、スルホニウム塩基、ホスホニウム塩基、第1
級、第2級もしくは第3級アミノ基、ピリジン基、イミ
ノ基等の1種又は2種以上であってもよい。一方、この
陰イオン交換性高分子物質の分子量は、膜母体内部に1
00〜500nmの厚みで浸入させ、膜母体外部に10
〜50nmの厚みで陰イオン交換層を形成させるために
は1,000〜100,000が好ましい。特に好まし
くは2,000〜10,000である。
As the anion exchange group contained in the polymer substance used in the present invention, a quaternary ammonium group, a quaternary pyridinium group, a sulfonium base, a phosphonium base, a first
It may be one or more of primary, secondary or tertiary amino group, pyridine group, imino group and the like. On the other hand, the molecular weight of this anion-exchange polymer is 1 in the membrane matrix.
Infiltrate with a thickness of 00 to 500 nm, and 10
In order to form the anion exchange layer with a thickness of ˜50 nm, 1,000 to 100,000 is preferable. Particularly preferably, it is 2,000 to 10,000.

【0006】本発明で用いる陽イオン交換膜は公知のも
のであれば特に限定されないが、例えば、芯材としてポ
リ塩化ビニル布を用いた電気透析時の膜電圧が低く、浸
透濃度が高い。特に、比較的高温に対する安定性が悪い
陽イオン交換膜を用いた場合の従来技術との比較では、
格段の効果が発揮される。本発明では、25℃の海水に
対する溶解度が0.2以下である陰イオン交換性高分子
物質の溶液に、陽イオン交換膜を浸漬することで、陰イ
オン交換性高分子物質が膜母体内部に100〜500n
mの厚みで浸入し、膜母体外部に10〜50nmの厚み
で陰イオン交換層を形成するように存在させる方法でも
できるし、溶解度が低下しうる陰イオン交換性高分子物
質の溶液に、陽イオン交換膜を浸漬し、同様な陰イオン
交換性高分子物質層を膜表面に形成させた後、この陰イ
オン交換性高分子物質の溶解度を低下させる処理を行っ
て、25℃の海水に対する溶解度が0.2以下とするこ
ともできる。陰イオン交換性高分子物質を陽イオン交換
膜に吸着させる際に、陰イオン交換性高分子物質層を膜
母体内部に100〜500nmの厚みで、膜母体外部に
10〜50nmの厚みで均一に形成させるためには、い
ずれにしても陰イオン交換性高分子物質を完全に溶解し
た溶液であることが肝心である。従って、あらかじめ2
5℃の海水に対する溶解度が0.2以下とした陰イオン
交換性高分子物質を用いる場合、陰イオン交換性高分子
物質を完全に溶解し、かつ陽イオン交換膜へ浸透濃度の
低下等の悪影響の無い溶媒を選択するために、25℃の
海水に対する溶解度は0.1以上であることが好まし
い。一方、膜上に存在している陰イオン交換性高分子物
質の海水に対する溶解度は低いほど、一価イオン選択透
過性の持続性が高くなるので、25℃の海水に対する溶
解度が0.2以下である陰イオン交換性高分子物質を用
いた場合であっても、必要に応じ溶解度を低下させる処
理を加えるのが好ましい。
The cation exchange membrane used in the present invention is not particularly limited as long as it is known, but for example, the membrane voltage during electrodialysis using a polyvinyl chloride cloth as the core material is low and the permeation concentration is high. In particular, in comparison with the prior art in the case of using a cation exchange membrane having poor stability against relatively high temperatures,
Significant effect is demonstrated. In the present invention, a cation exchange membrane is immersed in a solution of an anion exchange polymer having a solubility in seawater at 25 ° C. of 0.2 or less, so that the anion exchange polymer is placed inside the membrane matrix. 100-500n
It can be carried out by a method of infiltrating at a thickness of m and making it exist outside the membrane matrix so as to form an anion exchange layer at a thickness of 10 to 50 nm. After immersing the ion-exchange membrane and forming a similar anion-exchange polymer substance layer on the membrane surface, a treatment to reduce the solubility of this anion-exchange polymer substance is carried out, and the solubility in seawater at 25 ° C. Can be 0.2 or less. When adsorbing the anion-exchangeable polymer substance on the cation-exchange membrane, the anion-exchangeable polymer substance layer is uniformly formed to have a thickness of 100 to 500 nm inside the membrane matrix and a thickness of 10 to 50 nm outside the membrane matrix. In order to form it, it is essential in any case to be a solution in which the anion-exchange polymer substance is completely dissolved. Therefore, 2 in advance
When an anion-exchangeable polymer substance with a solubility in seawater at 5 ° C of 0.2 or less is used, it completely dissolves the anion-exchangeable polymer substance and adversely affects the cation exchange membrane, such as a decrease in permeation concentration. In order to select a solvent that does not have the above, the solubility in seawater at 25 ° C. is preferably 0.1 or more. On the other hand, the lower the solubility of the anion-exchangeable polymeric substance present on the membrane in seawater, the higher the persistence of the monovalent ion selective permeability. Even when a certain anion-exchangeable polymer substance is used, it is preferable to add a treatment for decreasing the solubility, if necessary.

【0007】本発明で用いる陰イオン交換性高分子物質
の製法は特に限定されないが、あらかじめ25℃の海水
に対する溶解度を調節する場合、一般的に、例えば以下
の方法で製造される。 1.塩基性窒素含有のビニル化合物モノマーの重合体の
四級化物の分子量、四級化剤種、四級化率を調節するこ
とで、好ましい溶解度の陰イオン交換性高分子物質を得
る。
The method for producing the anion-exchange polymer used in the present invention is not particularly limited, but when the solubility in seawater at 25 ° C. is adjusted in advance, it is generally produced by, for example, the following method. 1. By adjusting the molecular weight, the quaternizing agent species, and the quaternization rate of the quaternized product of the polymer of the vinyl compound monomer containing basic nitrogen, an anion exchange polymer substance having a preferable solubility is obtained.

【0008】塩基性窒素含有ビニル化合物としては、例
えば2−ビニルピリジン、4−ビニルピリジン等のビニ
ルピリジン誘導体、2−ビニルピペリジン等のビニルピ
ペリジン誘導体2−ビニルキノリン等のビニルキノリン
誘導体、2−ビニルベンズイミダゾール等のビニルイミ
ダゾール誘導体、ビニルカルバゾール誘導体、ビニルア
ニリン、ジメチルアミノエチルメタクリレート等があ
る。
Examples of the basic nitrogen-containing vinyl compound include vinylpyridine derivatives such as 2-vinylpyridine and 4-vinylpyridine, vinylpiperidine derivatives such as 2-vinylpiperidine, vinylquinoline derivatives such as 2-vinylquinoline, and 2-vinyl. Examples include vinylimidazole derivatives such as benzimidazole, vinylcarbazole derivatives, vinylaniline, and dimethylaminoethylmethacrylate.

【0009】これらの塩基性窒素含有ビニル化合物モノ
マーを用いて、どの様な分子量、四級化剤種、四級化率
の陰イオン交換性高分子物質にすれば、好ましい溶解度
にすることが出来るほかはモノマー種により異なるので
一概には言えないが、例えば、4−ビニルピリジンをア
ニオン重合により分子量3,000に重合し、ピリジン
基の3割をラウリルブロミドで、残り7割を塩化メチル
により四級ピリジニウム塩化することにより、25℃の
海水に対する溶解度が0.15の陰イオン交換性高分子
物質が製造される。 2.容易に陰イオン交換基を導入し得る基を有するビニ
ル化合物モノマー重合体に、陰イオン交換基を導入した
物の分子量、交換基種、交換基導入率を調節すること
で、好ましい溶解度の陰イオン交換性高分子物質を得
る。
By using these basic nitrogen-containing vinyl compound monomers to obtain an anion-exchangeable polymeric substance having any molecular weight, quaternizing agent species, and quaternization ratio, a preferable solubility can be obtained. Others are different depending on the monomer type, so it cannot be generally stated. For example, 4-vinylpyridine is polymerized by anionic polymerization to a molecular weight of 3,000, 30% of the pyridine group is lauryl bromide, and the remaining 70% is methyl chloride. Anion-exchangeable polymeric substance having a solubility in seawater at 25 ° C. of 0.15 is produced by chlorinating a high-grade pyridinium. 2. A vinyl compound monomer polymer having a group capable of easily introducing an anion-exchange group, by adjusting the molecular weight of the product having an anion-exchange group introduced, the exchange-group species, and the exchange-group introduction rate, an anion with a favorable solubility can be obtained. An exchangeable polymeric substance is obtained.

【0010】容易に陰イオン交換基を導入し得る基を有
するビニルモノマーとしては、例えばスチレン、ビニル
トルエン、クロルメチルスチレン、グリシジルメタクリ
レート、ビニルナフタレン等がある。これらの容易に陰
イオン交換基を導入し得る基を有するビニル化合物モノ
マーを用いて、どの様な分子量、交換基種、交換基導入
率の陰イオン交換性高分子物質にすれば、好ましい溶解
度にすることが出来るかはモノマー種、イオン交換基種
により異なるので一概には言えないが、例えば、スチレ
ンをアニオン重合により分子量5,000に重合し、ベ
ンゼン環の5割をクロロメチルエーテルにてクロルメチ
ル化後、トリメチルアミンにてアミノ化することによ
り、25℃の海水に対する溶解度が0.1の陰イオン交
換性高分子物質が製造される。
Examples of vinyl monomers having a group capable of easily introducing an anion exchange group include styrene, vinyltoluene, chloromethylstyrene, glycidyl methacrylate, vinylnaphthalene and the like. Using these vinyl compound monomers having a group capable of easily introducing an anion-exchange group, what kind of molecular weight, exchange-group species, and exchange-group introduction rate can be used to obtain an anion-exchangeable polymer substance having a preferable solubility. It is not possible to say unequivocally as it depends on the monomer species and ion exchange group species, but for example, styrene is polymerized by anionic polymerization to a molecular weight of 5,000, and 50% of the benzene ring is chloromethyl ether with chloromethyl ether. After conversion, it is aminated with trimethylamine to produce an anion-exchange polymer having a solubility in seawater of 25 ° C. of 0.1.

【0011】一方、陰イオン交換性高分子物質を陽イオ
ン交換膜表面に存在させた後、溶解度を低下させる方法
としては、例えば、陰イオン交換性高分子物質に、あら
かじめ容易に架橋処理し得る反応性官能基を導入してお
き、吸着処理後を行い、その後に架橋処理を行うことに
より、溶解度を低下させることができる。容易に架橋処
理し得る反応性官能基としては、例えば第一級アミン、
第二級アミン、第三級アミン等のアミノ基を始め、水酸
基、チオール基、カルボニル基、カルボキシル基、二重
結合および三重結合がある。例えば、分子量80,00
0のポリエチレンイミンに臭化アリルを付加した陰イオ
ン交換性高分子物質を、陽イオン交換膜の表面に存在さ
せた後、レドックス系の重合開始剤にてアリル基の二重
結合を架橋してやれば、膜表面に存在させた陰イオン交
換性高分子物質の25℃海水に対する溶解度を0.2以
下にすることができる。
On the other hand, as a method of decreasing the solubility after allowing the anion-exchange polymer substance to exist on the surface of the cation-exchange membrane, for example, the anion-exchange polymer substance can be easily cross-linked in advance. The solubility can be reduced by introducing a reactive functional group, performing an adsorption treatment, and then performing a crosslinking treatment. Examples of the reactive functional group that can be easily cross-linked include primary amines,
There are hydroxyl groups, thiol groups, carbonyl groups, carboxyl groups, double bonds and triple bonds, as well as amino groups such as secondary amines and tertiary amines. For example, molecular weight 80,000
If an anion-exchangeable polymeric substance obtained by adding allyl bromide to polyethyleneimine of 0 is made to exist on the surface of a cation-exchange membrane and then the double bond of the allyl group is crosslinked with a redox type polymerization initiator. The solubility of the anion-exchange polymer substance present on the membrane surface in seawater at 25 ° C can be 0.2 or less.

【0012】上記の様に製造された25℃の海水に対す
る溶解度が0.2以下、又は、溶解度を低下させうる陰
イオン交換性高分子物質は水、無機塩水溶液、又は、こ
れらとメタノール、アセトン、ジメチルスルホキシド等
の有機溶媒との混合溶媒に溶解させる。この際、陰イオ
ン交換性高分子物質の濃度は、陰イオン交換性高分子物
質層を膜母体内部に100〜500nmの厚みで、膜母
体外部に10〜50nmの厚みで形成させるためには、
数百〜数千ppmの範囲が好ましい。この際、25℃の
海水に対する溶解度が0.2以下である陰イオン交換性
高分子物質を完全に溶解するためには、無機塩水溶液と
有機溶媒との混合溶媒を用いるのが好ましい。ここで、
無機塩濃度及び有機溶媒濃度は、陰イオン交換性高分子
物質を完全に溶解し、かつ陽イオン交換膜の浸透濃度の
低下等の悪影響を及ぼさないようにするために、無機塩
濃度は0.1N〜0.5Nが好ましく、有機溶媒濃度は
1%〜5%が好ましい。一方、25℃の海水に対する溶
解度が0.2以上で、溶解度を低下しうる陰イオン交換
性高分子物質を用いる場合は、陽イオン交換膜の浸透濃
度の低下等の悪影響を及ぼさない範囲で、水、無機塩水
溶液、又は、これらと有機溶媒との混合溶媒のより広い
範囲から溶媒を選択することが出来る。
Solubility in seawater at 25 ° C. produced as described above is 0.2 or less, or an anion-exchangeable polymer substance capable of decreasing the solubility is water, an aqueous solution of an inorganic salt, or these and methanol or acetone. , Dissolved in a mixed solvent with an organic solvent such as dimethyl sulfoxide. At this time, in order to form the anion-exchangeable polymer substance layer with a thickness of 100 to 500 nm inside the membrane matrix and with a thickness of 10 to 50 nm outside the membrane matrix,
The range of several hundreds to several thousands ppm is preferable. At this time, it is preferable to use a mixed solvent of an aqueous solution of an inorganic salt and an organic solvent in order to completely dissolve the anion-exchange polymer having a solubility of 0.2 or less in seawater at 25 ° C. here,
The concentration of the inorganic salt and the concentration of the organic solvent are such that the concentration of the inorganic salt is 0., in order to completely dissolve the anion-exchange polymer substance and not to exert a bad influence such as a decrease in the permeation concentration of the cation exchange membrane. 1N to 0.5N is preferable, and the organic solvent concentration is preferably 1% to 5%. On the other hand, when an anion-exchangeable polymeric substance having a solubility in seawater at 25 ° C. of 0.2 or more and capable of lowering the solubility is used, in a range that does not have an adverse effect such as a reduction in the permeation concentration of the cation-exchange membrane, The solvent can be selected from a wider range of water, an aqueous solution of an inorganic salt, or a mixed solvent of these and an organic solvent.

【0013】このようにして得られた、陰イオン交換性
高分子物質を完全に溶解した溶液中に、陽イオン交換膜
を浸漬することによって、陽イオン交換膜の表面に陰イ
オン交換性高分子物質を吸着させる。この浸漬処理の温
度と時間は、陰イオン交換性高分子物質層を膜母体内部
に100〜500nmの厚みで、膜母体外部に10〜5
0nmの厚みで形成させるためには、温度は30℃〜5
0℃が好ましく、処理時間は1時間〜50時間程度の範
囲から適宜選ぶことができる。この際、陽イオン交換膜
表面に吸着させる陰イオン交換性高分子物質の量は、陽
イオン交換膜の種類によって異なるが、良好な一価イオ
ン選択透過性を確保し、かつ電気透析時の膜電圧を低く
保つためには、一般的に1〜3meq/m2程度が好ま
しい。
By dipping the cation-exchange membrane in the solution thus obtained in which the anion-exchange polymer substance is completely dissolved, the anion-exchange polymer is formed on the surface of the cation-exchange membrane. Adsorb substances. The temperature and time of this dipping treatment are such that the anion-exchangeable polymer material layer has a thickness of 100 to 500 nm inside the membrane matrix and 10 to 5 outside the membrane matrix.
In order to form a film having a thickness of 0 nm, the temperature is 30 ° C to 5 ° C.
The temperature is preferably 0 ° C., and the treatment time can be appropriately selected from the range of about 1 hour to 50 hours. At this time, the amount of the anion-exchange polymer substance to be adsorbed on the surface of the cation-exchange membrane varies depending on the type of the cation-exchange membrane, but it ensures good monovalent ion selective permeability, and the membrane during electrodialysis. Generally, about 1 to 3 meq / m2 is preferable to keep the voltage low.

【0014】浸漬処理を行って、陰イオン交換性高分子
物質を表面に存在させた陽イオン交換膜は、必要に応じ
て表面の陰イオン交換性高分子物質の海水に対する溶解
度を低下させる処理を行う。溶解度を低下させる方法と
しては既述の通りであるが、この際の溶媒、温度につい
ては吸着処理と同様、陽イオン交換膜の浸透濃度の低下
等の悪影響を及ぼさない条件であれば任意に選ぶことが
できる。
The cation-exchange membrane having the anion-exchange polymer substance present on the surface after the dipping treatment may be treated, if necessary, to reduce the solubility of the anion-exchange polymer substance in seawater. To do. Although the method for decreasing the solubility is as described above, the solvent and the temperature at this time are arbitrarily selected as long as the conditions do not have an adverse effect such as a decrease in the permeation concentration of the cation exchange membrane as in the adsorption treatment. be able to.

【0015】以上のようにして得られる、陰イオン交換
基を有し25℃の海水に対する溶解度が0.2以下であ
る高分子物質を、表面に存在させた陽イオン交換膜の表
面の陰イオン交換性高分子物層が、膜母体内部に100
〜500nmの厚みで、膜母体外部に10〜50nmの
厚みで形成されていることは、SIMS(2次イオン質
量分析)による表面の元素分析を用いることで確認する
ことができる。従来は、膜表面に存在させた陰イオン交
換性物質層の状態に関して知見を得るためのこのような
手法が確立されていなかったために、この点に関して
は、全く触れられていないか、推測の域を脱し得なかっ
た。しかしながら、最近の表面分析技術の向上により、
本発明のように、陽イオン交換膜表面の陰イオン交換性
物質層の状態を調節すること、すなわち陰イオン交換性
高分子物質層が、膜母体内部に100〜500nmの厚
みで、膜母体外部に10〜50nmの厚みで形成させる
ことで、電気透析時の膜電圧が極めて低く、かつ良好な
一価イオン選択透過性が長時間持続する陽イオン交換膜
を得ることが可能になった。陽イオン交換膜表面の陰イ
オン交換性高分子物質層が、膜母体内部に100〜50
0nmの厚みで、膜母体外部に10〜50nmの厚みで
形成していることは、電気透析時の膜電圧が極めて低
く、かつ良好な一価イオン選択透過性を長時間持続させ
るためには、必要かつ十分なものである。膜母体内部の
陰イオン交換性高分子物質層の厚みがこれ以下であれ
ば、一価イオン選択透過性の耐久性が悪くなり、膜母体
外部の陰イオン交換性高分子物質層の厚みがこれ以下で
あれば、一価イオン選択透過性自体が悪くなる。一方、
膜母体内外の陰イオン交換性高分子物質層の厚みがこれ
以上であると、膜抵抗の上昇を引き起こし、電気透析時
の膜電圧が高くなってしまう。従来技術で電気透析時の
膜電圧が高かった理由の一つに、上記の層が必要以上に
厚かった事が考えられる。
An anion on the surface of the cation exchange membrane is obtained by allowing the polymer substance having an anion exchange group and having a solubility in seawater at 25 ° C. of 0.2 or less to be present on the surface. The exchangeable polymer layer is 100 inside the membrane matrix.
It can be confirmed by using elemental analysis of the surface by SIMS (Secondary Ion Mass Spectroscopy) that the film is formed to a thickness of ˜500 nm and a thickness of 10 to 50 nm outside the film matrix. Conventionally, such a method for obtaining knowledge about the state of the anion-exchangeable substance layer existing on the membrane surface has not been established.Therefore, this point has not been touched at all or speculated. Couldn't be taken off. However, due to recent improvements in surface analysis technology,
As in the present invention, the state of the anion-exchangeable substance layer on the surface of the cation exchange membrane is adjusted, that is, the anion-exchangeable polymer substance layer has a thickness of 100 to 500 nm inside the membrane matrix, and is outside the membrane matrix. By forming the cation exchange membrane with a thickness of 10 to 50 nm, it is possible to obtain a cation exchange membrane that has a very low membrane voltage during electrodialysis and that has good monovalent ion selective permeability for a long time. The anion-exchange polymer layer on the surface of the cation-exchange membrane is 100 to 50 inside the membrane matrix.
The thickness of 0 nm and the thickness of 10 to 50 nm formed outside the membrane matrix mean that the membrane voltage during electrodialysis is extremely low and that good monovalent ion selective permeability is maintained for a long time. It is necessary and sufficient. If the thickness of the anion-exchangeable polymeric substance layer inside the membrane matrix is less than this, the durability of the monovalent ion selective permeation will be poor, and the thickness of the anion-exchangeable polymeric substance layer outside the membrane substrate will be this. If it is below, the monovalent ion selective permeability itself is deteriorated. on the other hand,
If the thickness of the anion-exchange polymer substance layer inside and outside the membrane matrix is larger than this, the membrane resistance is increased and the membrane voltage during electrodialysis becomes high. One of the reasons why the membrane voltage during electrodialysis was high in the prior art is that the above layers were thicker than necessary.

【0016】一方、陽イオン交換膜表面の陰イオン交換
性高分子物質層が、膜母体内部に100〜500nmの
厚みで、膜母体外部に10〜50nmの厚みで形成され
ている場合であっても、陰イオン交換性高分子物質の2
5℃の海水に対する溶解度が0.2よりも高い場合は、
一価イオン選択透過性の持続性が悪く、実用上問題にな
る。以上のように、陽イオン交換膜表面に存在する陰イ
オン交換性高分子物質の、25℃の海水に対する溶解度
が0.2以上であることと、この陰イオン交換性高分子
物質層が、膜母体内部に100〜500nmの厚みで、
膜母体外部に10〜50nmの厚みで形成されているこ
とを組み合わせることにより、従来技術と同等以上に良
好な一価イオン選択透過性が長時間持続し、しかも従来
技術では得られない電気透析時の膜電圧が極めて低い陽
イオン交換膜を、得ることができるようになった。
On the other hand, in the case where the anion-exchange polymer substance layer on the surface of the cation exchange membrane is formed with a thickness of 100 to 500 nm inside the membrane matrix and with a thickness of 10 to 50 nm outside the membrane matrix. Is also an anion-exchangeable polymeric substance 2
If the solubility in seawater at 5 ° C is higher than 0.2,
The durability of selective permeation of monovalent ions is poor, which poses a practical problem. As described above, the solubility of the anion-exchange polymer substance existing on the surface of the cation-exchange membrane in seawater at 25 ° C. is 0.2 or more, and the anion-exchange polymer substance layer is a membrane. With a thickness of 100-500 nm inside the matrix,
By combining the fact that it is formed with a thickness of 10 to 50 nm outside the membrane matrix, the monovalent ion selective permeability, which is as good as or better than that of the prior art, lasts for a long time, and during electrodialysis, which cannot be obtained by the prior art. It has become possible to obtain a cation exchange membrane having an extremely low membrane voltage of.

【0017】[0017]

【発明の実施の形態】次に実施例および比較例によって
本発明をさらに詳細に説明する。なお実施例中で使用す
る略号(F2、V/P)は次の意味を有する。 (1)F2:海水濃縮における陽イオン交換膜の一価陽
イオンに対する二価陽イオンの比選択透過性を示し、こ
の値が低いほど一価陽イオン選択透過性が高いことを示
し、(1)式で与えられる。
Now, the present invention will be described in further detail with reference to Examples and Comparative Examples. The abbreviations (F2 , V / P) used in the examples have the following meanings. (1) F2 : Shows the relative selective permeability of divalent cations to monovalent cations in a cation exchange membrane in seawater concentration, the lower the value, the higher the monovalent cation selective permeability, ( It is given by the equation (1).

【0018】[0018]

【数1】[Equation 1]

【0019】測定方法:陽イオン交換膜を旭化成工業
(株)製陰イオン交換膜A−172と共に旭化成工業
(株)製電気透析装置(商品名:アシライザー)SV−
7(有効通電面積0.5dm2)に組み込んで、稀釈液
に海水を用い、海水流速4cm/sec、温度25℃、
電流密度3A/dm2で電気透析を行い、各濃度を測定
し、上式を用いて算出する。 (2)V/P:電気透析時の1セル当たりのセル電圧で
陽イオン交換膜以外の部分の条件を一定にしておけば陽
イオン交換膜の電気透析時の膜電圧は、この値の高低に
よって評価できる。
Measurement method: A cation exchange membrane together with an anion exchange membrane A-172 manufactured by Asahi Kasei Kogyo Co., Ltd., an electrodialyzer manufactured by Asahi Kasei Kogyo Co., Ltd. (trade name: acylizer) SV-
7 (effective current-carrying area 0.5 dm2 ), using seawater as a diluting solution, seawater flow rate 4 cm / sec, temperature 25 ° C.,
Electrodialysis is performed at a current density of 3 A / dm2 , and each concentration is measured and calculated using the above formula. (2) V / P: Cell voltage per cell during electrodialysis If the conditions other than the cation exchange membrane are kept constant, the membrane voltage during electrodialysis of the cation exchange membrane will be higher or lower than this value. Can be evaluated by

【0020】測定方法:陽イオン交換膜を旭化成工業
(株)製陰イオン交換膜A−172と共に旭化成工業
(株)製電気透析装置SV−7(有効通電面積0.5d
2)に組み込んで、稀釈液にCl-濃度を0.4Nと
一定にコントロールした海水を用い、海水流速4cm/
sec、温度25℃、電流密度3A/dm2で電気透析
を行い、10対のセル電圧を測定し、その値を10で除
して求める。
Measurement method: A cation exchange membrane was used together with an anion exchange membrane A-172 manufactured by Asahi Kasei Kogyo Co., Ltd., an electrodialyzer SV-7 manufactured by Asahi Kasei Kogyo Co., Ltd. (effective energization area 0.5d).
m2 ), and using seawater whose Cl- concentration was kept constant at 0.4 N as a diluting solution, the seawater flow rate was 4 cm /
sec, temperature 25 ° C., current density 3 A / dm2 , electrodialysis was performed, 10 pairs of cell voltages were measured, and the value was divided by 10 to obtain the value.

【0021】一方、一価イオン選択透過性の耐久性は、
3ヶ月間の連続透析を行い、3ヶ月後のF2と初期のF
2を比較することによって評価した。
On the other hand, the durability of monovalent ion selective permeability is
After continuous dialysis for 3 months, F2 after 3 months and initial F2
It was evaluated by comparingtwo .

【0022】[0022]

【実施例1】 陽イオン交換膜の製造:スチレン89重量部、純度56
%のジビニルベンゼン11重量部、ジメチルフタレート
15重量部、ニトリルブタジエンゴム6重量部、ポリ塩
化ビニルパウダー15重量部、ベンゾイルパーオキサイ
ド2重量部を混合して得られるペースト状混合物をポリ
塩化ビニル製の布にコートし、ポリエチレンテレフタレ
ート製のフィルムに挟んで90℃で12時間重合した。
このフィルム状重合物を99.5%の硫酸で40℃で2
4時間スルホン化し、一価イオン選択透過性が付与され
る前の陽イオン交換膜を得た。
Example 1 Production of cation exchange membrane: 89 parts by weight of styrene, purity of 56
% Divinylbenzene, 15 parts by weight of dimethyl phthalate, 6 parts by weight of nitrile butadiene rubber, 15 parts by weight of polyvinyl chloride powder, and 2 parts by weight of benzoyl peroxide were mixed to obtain a paste-like mixture made of polyvinyl chloride. The cloth was coated, sandwiched between polyethylene terephthalate films, and polymerized at 90 ° C. for 12 hours.
This film polymer was treated with 99.5% sulfuric acid at 40 ° C. for 2 hours.
Sulfonation was carried out for 4 hours to obtain a cation exchange membrane before the selective permeation of monovalent ions was imparted.

【0023】陰イオン交換性高分子物質の製造:N−ビ
ニルイミダゾール100重量部、ベンゾイルパーオキサ
イド1重量部を窒素置換したアンプル中で60℃、2時
間加熱重合する。得られたポリマー94重量部を395
重量部のアセトン中に分散し1−ブロモノナン207重
量部を加え、40℃、72時間四級化反応を行った。
Preparation of anion-exchangeable polymer: 100 parts by weight of N-vinylimidazole and 1 part by weight of benzoyl peroxide are heated and polymerized at 60 ° C. for 2 hours in an ampoule substituted with nitrogen. 94 parts by weight of the obtained polymer were added to 395
207 parts by weight of 1-bromononane was dispersed in acetone by weight and quaternization reaction was carried out at 40 ° C. for 72 hours.

【0024】得られたポリマーの25℃での海水への溶
解度を測定したところ、0.15であった。(25℃の
100gの海水に対して) 陽イオン交換膜への一価陽イオン選択透過性の付与:こ
のポリマー3重量部を1%メタノール含有の0.1N−
CaCl2溶液1,000重量部に40℃で溶解して処
理液とした。この処理液に上記した陽イオン交換膜を4
0℃で24時間浸漬し吸着処理を行い、その後、0.5
N食塩水で5回洗浄し、一価陽イオン選択透過性の陽イ
オン交換膜を得た。
The solubility of the obtained polymer in seawater at 25 ° C. was measured and found to be 0.15. (For 100 g of seawater at 25 ° C.) Imparting monovalent cation selective permeability to a cation exchange membrane: 0.1 part of 0.1% N-containing 3% by weight of this polymer.
A CaCl2 solution was dissolved in 1,000 parts by weight at 40 ° C. to obtain a treatment liquid. The cation exchange membrane described above is added to this treatment solution.
Immerse at 0 ° C for 24 hours to perform adsorption treatment, then 0.5
The membrane was washed 5 times with N saline to obtain a cation exchange membrane having a monovalent cation selective permeability.

【0025】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2、を表1に示す。又、処理を行っていない膜のF
2、V/Pも表1に示す。実施例1では、25℃の海水
への溶解度が0.15の陰イオン交換性高分子物質が、
膜母体内部に150nm浸入し、膜母体外部に50nm
の陰イオン交換性層を形成して存在しているので、電気
透析時の膜電圧が低く、かつ良好な一価イオン選択透過
性の持続性が高くなっている。
Table 1 shows the thickness of the anion-exchangeable polymer substance layer inside and outside the membrane matrix of this membrane, V / P, and F2 at the initial stage and after 3 months of continuous dialysis. Also, the F of the untreated film
2 and V / P are also shown in Table 1. In Example 1, an anion-exchangeable polymeric substance having a solubility of 0.15 in seawater at 25 ° C.
150 nm infiltration into the membrane matrix and 50 nm outside the membrane matrix
Since it exists by forming the anion-exchangeable layer, the membrane voltage during electrodialysis is low, and the durability of favorable monovalent ion selective permeability is high.

【0026】[0026]

【比較例1】実施例1と同様の方法で重合したアルキル
化前のポリ−N−ビニルイミダゾール94重量部を39
5重量部に分散し、沃化メチル142重量部を加え、4
0℃、72時間四級化反応を行った。得られたポリマー
の25℃での海水に対する溶解度は30であった。
Comparative Example 1 39 parts by weight of 94 parts by weight of poly-N-vinylimidazole before alkylation polymerized in the same manner as in Example 1 were used.
Disperse into 5 parts by weight, add 142 parts by weight of methyl iodide and add 4 parts.
The quaternization reaction was carried out at 0 ° C. for 72 hours. The solubility of the obtained polymer in seawater at 25 ° C. was 30.

【0027】このポリマーを実施例1と同様に1%メタ
ノール含有の0.1N−CaCl2溶液に溶解し、実施
例1で調製したのと同じ未処理の陽イオン交換膜を40
℃で24時間浸漬処理を行った。この膜の、膜母体内外
の陰イオン交換性高分子物質層の厚み、V/P、初期及
び3ヶ月連続透析後のF2、も表1に示す。
This polymer was dissolved in a 0.1N-CaCl2 solution containing 1% methanol in the same manner as in Example 1 to obtain 40 parts of the same untreated cation exchange membrane prepared in Example 1.
Immersion treatment was performed at 24 ° C. for 24 hours. Table 1 also shows the thickness of the anion-exchangeable polymer substance layer inside and outside the membrane matrix of this membrane, V / P, and F2 at the initial stage and after continuous dialysis for 3 months.

【0028】比較例1では、陰イオン交換性高分子物質
の膜表面における存在状態は、実施例1と同様である
が、陰イオン交換性高分子物質の溶解度が高いため、一
価イオン選択透過性及びその持続性が悪い。
In Comparative Example 1, the state of existence of the anion-exchange polymer substance on the membrane surface is the same as in Example 1, but since the anion-exchange polymer substance has a high solubility, monovalent ion selective permeation is performed. Sex and its persistence are poor.

【0029】[0029]

【実施例2】ポリアリルアミン塩酸塩(日東紡績製、平
均重量分子量、50,000〜83,000)49重量
部、水酸化ナトリウム20重量部、メタノール400重
量部の混合物を撹拌下50℃、5時間処理し、析出した
塩化ナトリウムを濾別し、ポリアリルアミンのメタノー
ル溶液を得る。この溶液に臭化アリル60重量部を加
え、40℃で120時間反応させ、ポリアリルアミンの
アミノ基にアリル基を付加させる。このメタノール溶液
5.6重量部を1,000重量部の0.5N塩化ナトリ
ウム水溶液に溶解し処理液とした。
Example 2 A mixture of 49 parts by weight of polyallylamine hydrochloride (manufactured by Nitto Boseki Co., average weight molecular weight, 50,000-83,000), 20 parts by weight of sodium hydroxide and 400 parts by weight of methanol was stirred at 50 ° C. for 5 After treatment for a period of time, the precipitated sodium chloride is filtered off to obtain a methanol solution of polyallylamine. 60 parts by weight of allyl bromide is added to this solution and reacted at 40 ° C. for 120 hours to add an allyl group to the amino group of polyallylamine. 5.6 parts by weight of this methanol solution was dissolved in 1,000 parts by weight of 0.5N sodium chloride aqueous solution to obtain a treatment liquid.

【0030】この処理液に、実施例1で調製したのと同
じ、一価イオン選択透過性が付与される前の陽イオン交
換膜を、40℃で24時間浸漬し吸着処理を行った。そ
の後、過硫酸アンモニウムを1,000ppmになるよ
うに加え、40℃で20時間処理を行い、膜表面に吸着
した陰イオン交換性高分子物質の溶解度を低下させた。
この際、処理液中に沈殿した陰イオン交換性高分子物質
の海水に対する溶解度は0.2以下であった。その後、
膜を処理液から取り出し、0.5N食塩水で5回洗浄
し、一価陽イオン選択透過性の陽イオン交換膜を得た。
The same cation exchange membrane as that prepared in Example 1, which had not been imparted with the selective permeation of monovalent ions, was immersed in this treatment solution at 40 ° C. for 24 hours for adsorption treatment. After that, ammonium persulfate was added so as to have a concentration of 1,000 ppm and treated at 40 ° C. for 20 hours to reduce the solubility of the anion-exchange polymer substance adsorbed on the membrane surface.
At this time, the solubility of the anion-exchange polymer substance precipitated in the treatment liquid in seawater was 0.2 or less. afterwards,
The membrane was taken out of the treatment solution and washed 5 times with 0.5N saline to obtain a cation exchange membrane having a monovalent cation selective permeability.

【0031】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2、を表2に示す。
Table 2 shows the thickness of the anion-exchangeable polymer substance layer inside and outside the membrane matrix, V / P, and F2 at the initial stage and after continuous dialysis for 3 months of this membrane.

【0032】[0032]

【比較例2】実施例2において、臭化アリルを加える前
のポリアリルアミンのメタノール溶液5.6重量部を、
1,000重量部の0.5N塩化ナトリウム水溶液に溶
解し処理液とし、実施例1で調製したのと同じ、一価イ
オン選択透過性が付与される前の陽イオン交換膜を、4
0℃で24時間浸漬し吸着処理を行った。その後、膜を
処理液から取り出し、0.5N食塩水で5回洗浄し、一
価陽イオン選択透過性の陽イオン交換膜を得た。
COMPARATIVE EXAMPLE 2 In Example 2, 5.6 parts by weight of a methanol solution of polyallylamine before addition of allyl bromide was added.
The same cation exchange membrane as that prepared in Example 1, which was dissolved in 1,000 parts by weight of a 0.5N sodium chloride aqueous solution to give a treatment solution, which had not been imparted with the selective permeation of monovalent ions, was used.
It was immersed at 0 ° C. for 24 hours for adsorption treatment. After that, the membrane was taken out from the treatment solution and washed 5 times with 0.5N saline solution to obtain a cation exchange membrane having selective permeation of monovalent cations.

【0033】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2、を表2に示す。比較例2では、陰イオン交換性
高分子物質が、膜母体内部に深く浸入しすぎているた
め、電気透析時の膜電圧が高くなっている。
Table 2 shows the thickness of the anion-exchangeable polymer substance layer inside and outside the membrane matrix, V / P, and F2 of the membrane at the initial stage and after continuous dialysis for 3 months. In Comparative Example 2, the anion-exchange polymer material penetrates too deeply into the membrane matrix, so that the membrane voltage during electrodialysis is high.

【0034】[0034]

【実施例3】ジメチルスルホキシド880重量部に窒素
雰囲気下、4−ビニルピリジン130重量部、30%カ
リウムメトキシドメタノール溶液4重量部を混合し、2
5℃で8時間アニオン重合を行い分子量3,000のポ
リ−4−ビニルピリジンのジメチルスルホキシド溶液を
得た。この溶液にクロルメチルスチレン76重量部、沃
化メチル105重量部を加え40℃で24時間反応を行
いポリ−4−ビニルピリジンのピリジン基を4級ピリジ
ニウム塩基とした。得られたポリマーの25℃での海水
への溶解度を測定したところ、0.2であった。このポ
リ−4−ビニルピリジン四級化物のジメチルスルホキシ
ド溶液14重量部を1,000重量部の0.3N食塩水
に40℃にて溶解して処理液とした。
Example 3 880 parts by weight of dimethyl sulfoxide were mixed with 130 parts by weight of 4-vinylpyridine and 4 parts by weight of a 30% potassium methoxide methanol solution in a nitrogen atmosphere,
Anionic polymerization was carried out at 5 ° C. for 8 hours to obtain a dimethyl sulfoxide solution of poly-4-vinylpyridine having a molecular weight of 3,000. To this solution, 76 parts by weight of chloromethylstyrene and 105 parts by weight of methyl iodide were added and reacted at 40 ° C. for 24 hours to make the pyridine group of poly-4-vinylpyridine a quaternary pyridinium base. The solubility of the obtained polymer in seawater at 25 ° C. was measured and found to be 0.2. 14 parts by weight of a dimethyl sulfoxide solution of this poly-4-vinylpyridine quaternary product was dissolved in 1,000 parts by weight of 0.3N saline solution at 40 ° C. to obtain a treatment liquid.

【0035】この処理液に、実施例1で調製したのと同
じ、一価イオン選択透過性が付与される前の陽イオン交
換膜を、40℃で24時間浸漬し吸着処理を行った。そ
の後、吸着処理液より膜を取り出し、1.0Nの食塩水
1,000重量部に過硫酸カリウム1重量部、亜硫酸ナ
トリウム1重量部を溶解した液に、40℃で8時間浸漬
し、膜表面に吸着した陰イオン交換性高分子物質の溶解
度を更に低下させる処理を行った。最後に、0.5N食
塩水で5回洗浄し、一価陽イオン選択透過性の陽イオン
交換膜を得た。
The same cation exchange membrane as the one prepared in Example 1, which had not been imparted with the selective permeation of monovalent ions, was immersed in this treatment solution at 40 ° C. for 24 hours for adsorption treatment. After that, the membrane was taken out from the adsorption-treated solution and immersed in a solution prepared by dissolving 1 part by weight of potassium persulfate and 1 part by weight of sodium sulfite in 1,000 parts by weight of 1.0N saline solution at 40 ° C. for 8 hours to obtain a film surface. A treatment for further decreasing the solubility of the anion-exchangeable polymer substance adsorbed on was carried out. Finally, it was washed 5 times with 0.5N saline solution to obtain a cation exchange membrane with selective permeation of monovalent cations.

【0036】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2、を表3に示す。
Table 3 shows the thickness of the anion-exchangeable polymer substance layer inside and outside the membrane matrix of this membrane, V / P, and F2 at the initial stage and after continuous dialysis for 3 months.

【0037】[0037]

【比較例3】4−ビニルピリジン96重量部、純度56
%のジビニルベンゼン4重量部、過酸化ベンゾイル0.
3重量部及びn−ヘキサン400重量部を、窒素置換し
たアンプルに密封し、振動させて撹拌しながら、60℃
で20時間重合させた。得られたポリマーをn−ヘキサ
ンで洗浄後、メタノールで洗浄した。洗浄後のポリマー
を沃化メチル25%ヘキサン溶液にて40℃、20時間
処理し、四級ピリジニウム塩基とした。
Comparative Example 3 96 parts by weight of 4-vinylpyridine, purity 56
% Divinylbenzene 4 parts by weight, benzoyl peroxide 0.
3 parts by weight and 400 parts by weight of n-hexane were sealed in an ampoule purged with nitrogen, and the mixture was shaken at 60 ° C. with stirring.
It was polymerized for 20 hours. The obtained polymer was washed with n-hexane and then with methanol. The washed polymer was treated with a 25% methyl iodide hexane solution at 40 ° C. for 20 hours to obtain a quaternary pyridinium base.

【0038】ポリマーを濾過分離後、ポリマーを乾燥
し、ボールミルにて3μm以下に粉砕した後、200重
量部の水に懸濁させて処理液とした。この処理液に、実
施例1で用いたものと同じ、一価イオン選択透過性が付
与される前の陽イオン交換膜を、95℃で20時間浸漬
したところ、陽イオン交換膜の樹脂が芯材から脱落し、
膜が破壊してしまった。
After the polymer was separated by filtration, the polymer was dried, pulverized with a ball mill to 3 μm or less, and then suspended in 200 parts by weight of water to obtain a treatment liquid. The same cation exchange membrane as that used in Example 1, which had not been imparted with monovalent ion selective permeability, was immersed in this treatment solution at 95 ° C. for 20 hours. Fell from the material,
The membrane has broken.

【0039】比較例3のような従来技術では、比較的高
温に対する安定性が悪い陽イオン交換膜に対しては適用
出来なかった。
The conventional technique as in Comparative Example 3 could not be applied to a cation exchange membrane which is poor in stability at a relatively high temperature.

【0040】[0040]

【比較例4】N,N,N’,N’,N”−ペンタメチル
イミノビスプロピルアミン20重量部、クロルメチルス
チレン46重量部を160重量部のメタノール中で室温
にて48時間反応させ、N,N,N’,N’,N”−ペ
ンタメチルイミノビスプロピルアミンの3個のアミンが
クロルメチルスチレンによって四級アンモニウム化され
た化合物を得た。この化合物1重量部を1,000重量
部の1.0N食塩水に溶解し、処理液とした。
Comparative Example 4 20 parts by weight of N, N, N ′, N ′, N ″ -pentamethyliminobispropylamine and 46 parts by weight of chloromethylstyrene were reacted in 160 parts by weight of methanol at room temperature for 48 hours, A compound in which three amines of N, N, N ′, N ′, N ″ -pentamethyliminobispropylamine were quaternized ammonium with chloromethylstyrene was obtained. 1 part by weight of this compound was dissolved in 1,000 parts by weight of 1.0N saline solution to obtain a treatment liquid.

【0041】この処理液に、実施例1で用いたものと同
じ、一価イオン選択透過性が付与される前の陽イオン交
換膜を、40℃で2時間浸漬し、次いで窒素雰囲気下、
重合開始剤として過硫酸カリウム及び亜硫酸ナトリウム
を各々1重量部加え、激しく撹拌し、40℃で10時間
重合を行った。その後、膜を処理液から取り出し、0.
5N食塩水で5回洗浄し、一価陽イオン選択透過性の陽
イオン交換膜を得た。
The same cation exchange membrane as that used in Example 1, which had not been imparted with the selective permeation of monovalent ions, was immersed in this treatment solution at 40 ° C. for 2 hours, and then under a nitrogen atmosphere.
1 part by weight each of potassium persulfate and sodium sulfite was added as a polymerization initiator, and the mixture was vigorously stirred and polymerized at 40 ° C. for 10 hours. After that, the film was taken out from the processing solution and
It was washed 5 times with 5N saline to obtain a monovalent cation selective permeable cation exchange membrane.

【0042】この膜の、膜母体内外の陰イオン交換性高
分子物質層の厚み、V/P、初期及び3ヶ月連続透析後
のF2、を表3に示す。比較例4のような従来技術で
は、陰イオン交換性物質が、膜母体内部に深く浸入しす
ぎているため、電気透析時の膜電圧が高くなっている。
Table 3 shows the thickness of the anion-exchangeable polymer substance layer inside and outside the membrane matrix of this membrane, V / P, and F2 at the initial stage and after continuous dialysis for 3 months. In the prior art as in Comparative Example 4, the anion-exchangeable substance penetrates too deeply into the membrane matrix, so that the membrane voltage during electrodialysis is high.

【0043】[0043]

【表1】[Table 1]

【0044】[0044]

【表2】[Table 2]

【0045】[0045]

【表3】[Table 3]

【0046】[0046]

【発明の効果】本発明の陽イオン交換膜は従来技術と同
等以上に良好な一価イオン選択透過性とその持続性を供
え、かつ、従来技術では達成できなかった電気透析時の
低い膜電圧を達成しており、本発明の陽イオン交換膜を
電気透析法による製塩に用いた場合、消費電力量を節減
できる。
EFFECTS OF THE INVENTION The cation exchange membrane of the present invention provides a monovalent ion permeation that is equal to or better than that of the prior art and its durability, and has a low membrane voltage during electrodialysis, which cannot be achieved by the prior art. When the cation exchange membrane of the present invention is used for salt production by electrodialysis, the power consumption can be reduced.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 25℃の海水に対する溶解度が0.2以
下である、陰イオン交換基を有する高分子物質を、膜母
体内部に100〜500nmの厚みで浸入させ、且つ膜
母体外部に10〜50nmの厚みで陰イオン交換層を形
成させた陽イオン交換膜。
1. A polymeric substance having an anion exchange group and having a solubility in seawater at 25 ° C. of 0.2 or less is impregnated into the membrane matrix at a thickness of 100 to 500 nm, and 10 to the outside of the membrane matrix. A cation exchange membrane having an anion exchange layer with a thickness of 50 nm.
JP20203795A1995-08-081995-08-08 Cation exchange membraneExpired - Fee RelatedJP3522398B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP20203795AJP3522398B2 (en)1995-08-081995-08-08 Cation exchange membrane

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP20203795AJP3522398B2 (en)1995-08-081995-08-08 Cation exchange membrane

Publications (2)

Publication NumberPublication Date
JPH0948861Atrue JPH0948861A (en)1997-02-18
JP3522398B2 JP3522398B2 (en)2004-04-26

Family

ID=16450894

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP20203795AExpired - Fee RelatedJP3522398B2 (en)1995-08-081995-08-08 Cation exchange membrane

Country Status (1)

CountryLink
JP (1)JP3522398B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2001055247A1 (en)*2000-01-282001-08-02Asahi Glass Company, LimitedCation-exchange membrane selectively permeable to monovalent cation and process for producing the same
JP2006290935A (en)*2005-04-062006-10-26Astom:Kk Method for producing a membrane for ion exchange membrane
CN105617891A (en)*2016-04-082016-06-01中国海洋大学Anion exchange membrane with acid blocking function and preparation method thereof
JP2019514687A (en)*2016-04-282019-06-06テラポア テクノロジーズ,インコーポレイテッド Charged isoporous material for electrostatic separation
US11401411B2 (en)2016-11-172022-08-02Terapore Technologies, Inc.Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
US11466134B2 (en)2011-05-042022-10-11Cornell UniversityMultiblock copolymer films, methods of making same, and uses thereof
US11567072B2 (en)2017-02-222023-01-31Terapore Technologies, Inc.Ligand bound MBP membranes, uses and method of manufacturing
US11572424B2 (en)2017-05-122023-02-07Terapore Technologies, Inc.Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use
US11571667B2 (en)2018-03-122023-02-07Terapore Technologies, Inc.Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same
US12109541B2 (en)2017-09-192024-10-08Terapore Technologies, Inc.Chemically resistant isoporous crosslinked block copolymer structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6569301B2 (en)2000-01-282003-05-27Asahi Glass Company, LimitedCation exchange membrane selectively permeable to monovalent cations and method for its production
WO2001055247A1 (en)*2000-01-282001-08-02Asahi Glass Company, LimitedCation-exchange membrane selectively permeable to monovalent cation and process for producing the same
JP2006290935A (en)*2005-04-062006-10-26Astom:Kk Method for producing a membrane for ion exchange membrane
US11466134B2 (en)2011-05-042022-10-11Cornell UniversityMultiblock copolymer films, methods of making same, and uses thereof
US12012492B2 (en)2011-05-042024-06-18Cornell UniversityMultiblock copolymer films, methods of making same, and uses thereof
CN105617891A (en)*2016-04-082016-06-01中国海洋大学Anion exchange membrane with acid blocking function and preparation method thereof
US11628409B2 (en)2016-04-282023-04-18Terapore Technologies, Inc.Charged isoporous materials for electrostatic separations
JP2019514687A (en)*2016-04-282019-06-06テラポア テクノロジーズ,インコーポレイテッド Charged isoporous material for electrostatic separation
JP2022048176A (en)*2016-04-282022-03-25テラポア テクノロジーズ,インコーポレイテッド Charged isoporous material for electrostatic separation
US11401411B2 (en)2016-11-172022-08-02Terapore Technologies, Inc.Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
US11802200B2 (en)2016-11-172023-10-31Terapore Technologies, Inc.Isoporous self-assembled block copolymer films containing high molecular weight hydrophilic additives and methods of making the same
US11567072B2 (en)2017-02-222023-01-31Terapore Technologies, Inc.Ligand bound MBP membranes, uses and method of manufacturing
US11572424B2 (en)2017-05-122023-02-07Terapore Technologies, Inc.Chemically resistant fluorinated multiblock polymer structures, methods of manufacturing and use
US12109541B2 (en)2017-09-192024-10-08Terapore Technologies, Inc.Chemically resistant isoporous crosslinked block copolymer structure
US11571667B2 (en)2018-03-122023-02-07Terapore Technologies, Inc.Isoporous mesoporous asymmetric block copolymer materials with macrovoids and method of making the same

Also Published As

Publication numberPublication date
JP3522398B2 (en)2004-04-26

Similar Documents

PublicationPublication DateTitle
Ge et al.Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation
Van den Hul et al.The characterization of latex particle surfaces by ion exchange and conductometric titration
US4042496A (en)Process for preparing improved cation-exchange membranes
Yang et al.High selectivities among monovalent cations in dialysis through cation-exchange membranes coated with polyelectrolyte multilayers
JPH0948861A (en) Cation exchange membrane
Kumar et al.Recent developments in ion-exchange membranes and their applications in electrochemical processes for in situ ion substitutions, separation and water splitting
Nemati et al.Fabrication and electrochemical property modification of mixed matrix heterogeneous cation exchange membranes filled with Fe3O4/PAA core-shell nanoparticles
JPH08506613A (en) Single film membrane, its manufacturing method and its use
Hosseini et al.Fabrication of novel mixed matrix electrodialysis heterogeneous ion-exchange membranes modified by ilmenite (FeTiO3): electrochemical and ionic transport characteristics
Kilmer et al.The influence of ion identity and ionic strength on membrane biofouling of a binary protein solution
Nemati et al.Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles
CN115400601B (en) A kind of anti-pollution ion exchange membrane and its preparation method and application
Isono et al.Weak acid-strong base type charge-mosaic membrane. I. Carboxylic acid-quaternary amine system
KR100542295B1 (en) Preparation method of polyethylene / polyvinylbenzyl chloride anion exchange membrane
EP1188784B1 (en)Cation-exchange membrane selectively permeable to monovalent cation and process for producing the same
KR101726658B1 (en)Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
US10561991B2 (en)Homogeneous anion-exchange composite membrane having excellent chemical resistance and method for producing the same
JP3497619B2 (en) Cation exchange membrane
Nemati et al.Adapting the ionic transfer behavior of cation exchange membrane incorporated with SiO2/PAA composite nanoparticles
US3840634A (en)Vinyl heterocyclic copolymers,semipermeable membranes from said copolymers and method for preparing said membranes
Son et al.Preparation and electrochemical characterization of membranes using submicron sized particles with high ion exchange capacity for electro-adsorptive deionization
Li et al.Permselectivities of monovalent anions through pyridine-modified anion-exchange membranes
Poźniak et al.Tubular interpolymer ion-exchange membranes. Donnan dialysis through strong-base membranes
Yan et al.Fabrication of a modified polysulfone membrane using molecular imprinting technique for selective separation of tetracycline from the environment
JP2006008993A (en)Monovalent cation selectively permeable cation exchange membrane and method for producing the same

Legal Events

DateCodeTitleDescription
A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A821

Effective date:20040107

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20040107

RD02Notification of acceptance of power of attorney

Free format text:JAPANESE INTERMEDIATE CODE: A7422

Effective date:20040107

A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20040203

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20040204

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080220

Year of fee payment:4

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090220

Year of fee payment:5

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090220

Year of fee payment:5

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100220

Year of fee payment:6

S531Written request for registration of change of domicile

Free format text:JAPANESE INTERMEDIATE CODE: R313531

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100220

Year of fee payment:6

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110220

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110220

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120220

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120220

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130220

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130220

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20140220

Year of fee payment:10

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp