【0001】[0001]
【発明の属する技術分野】本発明は、外部からの光を区
別する脈拍センサと脈拍計測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse sensor and a pulse measuring device for distinguishing light from the outside.
【0002】[0002]
【従来の技術】さて、通常のゲームでは、ディスプレイ
の画面を見ながらゲーム者がキーボード等を操作し、ゲ
ームを進行させる。ゲームの展開中に、ゲーム者は上手
に操作したとか、失敗したとかで興奮する。そして、次
は上手に操作しよう、似た場面では一気に勝負しようと
意気込むのが通例である。このようなプレーヤから種々
の生理的信号、心拍数、脈拍、脳波、顔面温度、皮膚抵
抗等を取り込み、これを媒介変数としてゲームの進行や
展開に変化を与えるようにしたゲーム機が開発されてい
る。2. Description of the Related Art In a normal game, a game player operates a keyboard or the like while watching a screen of a display to progress the game. During the development of the game, the game player gets excited about how well he or she has done it. Next, it is common practice to operate well, and in similar situations, to fight at once. A game machine has been developed in which various physiological signals, heart rate, pulse, brain wave, face temperature, skin resistance, etc. are taken in from such a player, and the progress and development of the game are changed using these as variables. There is.
【0003】最近のコンピュータを使用するゲーム機で
は、プレーヤの生理的信号を、ゲームの進行にフィード
バックさせて、ゲームを進行させている。この時の生理
的信号には簡便さのために、脈拍数の変化が採用されて
いる。これは電源により発光された発光体からの光を、
人体に入射し、血液の流れにより変化された光量を受光
素子で検出するものである。これはプレーヤの瞬間の心
拍の周期を常時測定し、その心拍数の逆数から一拍毎に
分間の脈拍数を求めている。脈拍数を算出する脈波信号
は、耳たぶセンサーから取り入れ、ゲームの進行や演出
を変化させている。In a recent game machine using a computer, the physiological signal of the player is fed back to the progress of the game to advance the game. A change in pulse rate is adopted for the physiological signal at this time for the sake of simplicity. This is the light emitted by the light source from the light source,
A light receiving element detects the amount of light that is incident on the human body and is changed by the flow of blood. This constantly measures the instantaneous heartbeat cycle of the player, and obtains the pulse rate per minute for each beat from the reciprocal of the heartbeat rate. The pulse wave signal that calculates the pulse rate is taken in from the earlobe sensor to change the progress and effect of the game.
【0004】図5において分間の脈拍数の求め方を説明
する。心拍パルスがp1、p2、p3、p4が時間t
1、t2、t3、t4、t5に検出された時は、心拍間
隔dt1=t2−t1、心拍間隔dt2=t3−t2、
心拍間隔dt3=t4−t3、心拍間隔dt4=t5−
t4、心拍間隔dt5=t6−t5等が分単位で計測さ
れる。脈拍数が1分間の心拍数であるので、心拍間隔d
t1=t2−t1の逆数が例えば、心拍間隔dt1=t
2−t1=0.0143分なら、この間の心拍数は1/
0.0143=約70となる。A method of obtaining the pulse rate per minute will be described with reference to FIG. Heartbeat pulse is p1, p2, p3, p4 is time t
When detected at 1, t2, t3, t4, and t5, the heartbeat interval dt1 = t2-t1, the heartbeat interval dt2 = t3-t2,
Heartbeat interval dt3 = t4-t3, heartbeat interval dt4 = t5-
t4, heartbeat interval dt5 = t6-t5, etc. are measured in minutes. Since the pulse rate is the heart rate for 1 minute, the heartbeat interval d
The reciprocal of t1 = t2-t1 is, for example, the heartbeat interval dt1 = t.
If 2-t1 = 0.0143 minutes, the heart rate during this period is 1 /
0.0143 = about 70.
【0005】そこで図5において、心拍パルスの列p
1、p2、p3、p4内に、ノイズn1、n2が混入
し、パルス列p1、n1、p2、p3、n2、p4が検
出されると、心拍間隔dtが短くなる方向に狂いが発生
する。このために正確な脈拍数を算出できなくなるとい
う問題になる。Therefore, in FIG. 5, a train of heartbeat pulses p
When the noises n1 and n2 are mixed in 1, p2, p3, and p4 and the pulse trains p1, n1, p2, p3, n2, and p4 are detected, the heartbeat interval dt is shortened. This causes a problem that an accurate pulse rate cannot be calculated.
【0006】受光素子は発光体からの光だけではなく、
外部の光、外乱光にも反応する場合があり、前述のノイ
ズn1、n2が混入する場合に相当する。従って心拍数
の測定値には誤差の原因になっていた。一般に、ゲーム
の進展につれてディスプレーの画面が次々に変化するこ
とになり、画面の明暗の切り替えが不規則に行われてい
る。この画面の切り替えに基づく光量変化がセンサーの
受光素子に感知されてしまい、これがノイズとして入り
込み、その間の瞬時脈拍数の誤差の原因になっていた。The light receiving element is not limited to the light from the light emitter,
It may respond to external light or ambient light, which corresponds to the case where the noises n1 and n2 described above are mixed. Therefore, the measured value of the heart rate caused an error. In general, as the game progresses, the screens on the display change one after another, and the light and dark of the screens are switched irregularly. The change in the amount of light due to the switching of the screen was detected by the light-receiving element of the sensor, which entered as noise, causing an error in the instantaneous pulse rate during that period.
【0007】[0007]
【発明が解決しようとする課題】上述の如く、テレビゲ
ーム機においては、ゲームの進展につれてディスプレイ
の画面の明暗の切り替えが頻繁に行われているので、こ
の画面の明暗の変化やあるいは室内灯のオン/オフ等に
よる外部の光が脈拍センサの受光素子にノイズとして入
ることが多かった。また、プレーヤがプレー中に無意識
に耳たぶセンサーや脈拍センサに触れたり、身体から外
したり、動かしても、更には室内灯のオン/オフによっ
ても外部の光が入り込んでしまうので、ノイズとして捉
えられその瞬間の脈拍数を誤って計測してしまう。この
ような原因で、バイオフィードバック付きのゲームのそ
の後の進行が決定されるとプレーヤはゲームを継続する
気力をなくしてしまうものである。本発明は、このよう
な実情に鑑み成されたものであって、光ノイズによる誤
差誘発信号を検知し、その間の測定データを採用しない
ようにして、正確に脈拍数を計測する脈拍センサと脈拍
計測装置を提供するものである。As described above, in the video game machine, the brightness of the screen of the display is frequently changed as the game progresses. External light such as on / off often enters the light receiving element of the pulse sensor as noise. In addition, even if the player unintentionally touches the earlobe sensor or pulse sensor during play, removes it from the body, moves it, or even turns on / off the room light, external light enters, so it is regarded as noise. The pulse rate at that moment is erroneously measured. For this reason, when the subsequent progress of the game with biofeedback is decided, the player loses the will to continue the game. The present invention has been made in view of such a situation, and detects a error-induced signal due to optical noise, does not adopt measurement data in the meantime, and uses a pulse sensor and a pulse sensor for accurately measuring the pulse rate. A measuring device is provided.
【0008】[0008]
【課題を解決するための手段】請求項1記載の発明は、
発光体4を発光させて、人体の一部を透過した変化光を
受光素子5で受信する脈拍センサを改良する。別に第2
受光素子6を設け、第1受光素子5には変化光と人体の
一部を通過した外部からの光を受光するとともに、第2
受光素子6では上記人体の一部を透過した外部からの光
のみを受光するようにした。請求項2記載の発明は、第
1または第2受光素子の受光面上に光量制限用のフィル
ターを張るようにした。請求項3記載の発明は、発光体
4を発光させて、人体の一部を透過した変化光を第1受
光素子5で受光し、この第1受光素子5から光量信号を
受けて脈拍を算出する計算部とからなる脈拍計測装置を
改良する。別に第2受光素子6を設け、第1受光素子5
には変化光と外部からの光を受光するとともに、第2受
光素子6では外部からの光、外乱光のみを受光するよう
にし、第1受光素子5から光量信号を電子スイッチ14
を介して計算部15に送ると共に、第2受光素子6から
光量信号を電子スイッチ14にオン・オフの制御信号と
して送り、第2受光素子6から光量信号が出力される
と、電子スイッチ14をオフにして、受光素子5から光
量信号が計算部14に送られないようにした。請求項4
記載の発明は、第1受光素子で前の光量変化による心拍
信号が発生した時間を第1の記憶手段に記憶し、後の心
拍信号が発生した時間を第1の記憶手段に更新して記憶
するとともに、第1の記憶手段にあった前の心拍信号が
発生した時間を第2の記憶手段に記憶し、これら前の心
拍信号が発生した時間と後の心拍信号が発生した時間と
を、演算部に入力して心拍信号から脈拍数を算出する脈
拍計測装置を改良する。第2受光素子を設け、この第2
受光素子では上記人体の一部を透過した外部からの光の
みを受光するようにし、前記第2受光素子から光量信号
が一定値以上であれば、前記第1の記憶手段および第2
の記憶手段の記憶内容を消去して、前記演算部がその瞬
間での脈拍数の算出をしないようにする。請求項5記載
の発明は、第2受光素子からの光量信号が予め設定した
一定値以上の時にクリヤー信号を出力する比較回路を設
けた。請求項6記載の発明は、比較回路からのクリヤー
信号により第1の記憶手段および第2の記憶手段の記憶
内容を消去する。これにより、ノイズの到来時には脈拍
の計測を停止するので、誤差のある脈拍数を採用せず、
続く後の正確な脈拍が計測できる。According to the first aspect of the present invention,
The pulse sensor in which the light emitting element 4 is made to emit light and the light receiving element 5 receives the changed light transmitted through a part of the human body is improved. Second separately
The light receiving element 6 is provided, and the first light receiving element 5 receives the changed light and the light from the outside that has passed through a part of the human body, and
The light receiving element 6 is configured to receive only light from the outside that has passed through a part of the human body. In the invention according to claim 2, a light amount limiting filter is provided on the light receiving surface of the first or second light receiving element. According to a third aspect of the present invention, the light emitting body 4 is caused to emit light, and the changed light transmitted through a part of the human body is received by the first light receiving element 5, and a pulse is calculated by receiving a light amount signal from the first light receiving element 5. And a pulse measuring device including a calculation unit for improving the pulse rate. The second light receiving element 6 is separately provided, and the first light receiving element 5 is provided.
In addition to receiving the changing light and the light from the outside, the second light receiving element 6 is made to receive only the light from the outside and the disturbance light, and the light quantity signal from the first light receiving element 5 is sent to the electronic switch 14
When the light quantity signal is output from the second light receiving element 6 to the electronic switch 14 as an ON / OFF control signal and the light quantity signal is output from the second light receiving element 6, the electronic switch 14 is turned on. It is turned off so that the light amount signal is not sent from the light receiving element 5 to the calculation unit 14. Claim 4
In the invention described above, the time when the heartbeat signal due to the previous light intensity change is generated in the first light receiving element is stored in the first storage means, and the time when the subsequent heartbeat signal is generated is updated and stored in the first storage means. In addition, the time when the previous heartbeat signal that was in the first storage means is stored in the second storage means, and the time when the previous heartbeat signal is generated and the time when the subsequent heartbeat signal is generated are (EN) A pulse measuring device which is inputted to a calculation unit and calculates a pulse rate from a heartbeat signal is improved. A second light receiving element is provided, and this second
The light receiving element is designed to receive only the light from the outside that has passed through a part of the human body, and if the light amount signal from the second light receiving element is a certain value or more, the first storage means and the second storage means.
The storage contents of the storage means are deleted so that the arithmetic unit does not calculate the pulse rate at that moment. According to a fifth aspect of the present invention, a comparison circuit is provided which outputs a clear signal when the light amount signal from the second light receiving element is equal to or more than a preset constant value. According to a sixth aspect of the invention, the contents stored in the first storage means and the second storage means are erased by the clear signal from the comparison circuit. As a result, the measurement of the pulse is stopped when the noise arrives, so the pulse rate with an error is not adopted,
Accurate pulse can be measured after that.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施の形態を図面
を参照し説明する。 実施の形態1.図1において、1は物挟の例えば耳たぶ
挾み20の一片、2はその他片であり、Hはこれら耳た
ぶ挾みの一片1と他片2との間に挟まれた人体の一部で
ある耳たぶである。一片1の内側には反射鏡3が設けら
れており、他片2には3個の穴24、25、26が形成
されている。中側の穴24と、右側の穴25と、左側の
穴26には、LED等の発光体4と受光素子5(第1受
光素子5)と第2受光素子6とがそれぞれ設けられてい
る。Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1. In FIG. 1, 1 is a piece of a pinch, for example, a piece of an earlobe pinch 20, 2 is another piece, and H is a part of a human body sandwiched between the piece 1 of the earlobe pinch and the other piece 2. It is an ear lobe. A reflecting mirror 3 is provided inside the one piece 1, and three holes 24, 25, and 26 are formed in the other piece 2. A light-emitting body 4 such as an LED, a light-receiving element 5 (first light-receiving element 5), and a second light-receiving element 6 are provided in the hole 24 on the inner side, the hole 25 on the right side, and the hole 26 on the left side, respectively. .
【0010】発光体4は他片2の表面より凹んだ穴24
の中から投光する状態になり、光束Lは周辺に散乱する
成分は極めて少なく、また各受光素子5、第2受光素子
6も各穴25、26の凹みに配置されるので、対向する
方向のみからそれぞれ光を受けるようになっている。The light emitter 4 has a hole 24 recessed from the surface of the other piece 2.
The light beam L has a very small component scattered to the periphery, and the light receiving elements 5 and the second light receiving elements 6 are also disposed in the recesses of the holes 25 and 26. It receives light from each of them.
【0011】耳たぶ挾み20が耳たぶHを挾んだ状態で
は、発光体4からの光Lは耳たぶHを透過して反射鏡3
に斜めから照射し、そこで反射した反射光は丁度受光素
子5に入射するように、発光体4、反射鏡3、受光素子
5の配置と角度の光軸が設定されている。図中のBは耳
たぶ内部の血管の毛細管を示す。第2受光素子6は発光
体4からの反射した光が入らないように、光軸を外して
発光体4、反射鏡3に対する配置と角度が設定されてい
る。さて、外部の光Rは受光素子5、第2受光素子6に
入射し、受光素子5、第2受光素子6にノイズとして影
響する。In a state where the earlobe clamp 20 holds the earlobe H, the light L from the light emitter 4 passes through the earlobe H and is reflected by the reflecting mirror 3.
The arrangement of the light emitting body 4, the reflecting mirror 3, and the light receiving element 5 and the optical axis of the angle are set so that the reflected light which is obliquely applied to the light receiving element 5 is exactly incident on the light receiving element 5. B in the figure indicates a capillary of a blood vessel inside the ear lobe. The second light-receiving element 6 is arranged with respect to the light-emitting body 4 and the reflecting mirror 3 by arranging the light-emitting body 4 and the reflecting mirror 3 so that the light reflected from the light-emitting body 4 does not enter. The external light R enters the light receiving element 5 and the second light receiving element 6 and affects the light receiving element 5 and the second light receiving element 6 as noise.
【0012】ケーブル7は発光体4に電源を供給し、発
光体4、受光素子5からの検出信号を外部に取り出すも
ので、他片2の内部に埋め込まれている。図2は図1の
脈拍センサからの信号を処理する回路である。タイミン
グ回路10は、受光素子5、第2受光素子6を同期させ
るもので、受光素子5には脈拍信号Sと外部光(あるい
は外乱光)RのノイズNとの混合信号が入り、第2受光
素子6には外部光(あるいは外乱光)RのノイズNのみ
が入る。The cable 7 supplies power to the light emitting body 4 and takes out detection signals from the light emitting body 4 and the light receiving element 5 to the outside, and is embedded inside the other piece 2. FIG. 2 shows a circuit for processing a signal from the pulse sensor shown in FIG. The timing circuit 10 synchronizes the light receiving element 5 and the second light receiving element 6, and the light receiving element 5 receives a mixed signal of the pulse signal S and the noise N of the external light (or the disturbance light) R and receives the second light reception. Only the noise N of the external light (or ambient light) R enters the element 6.
【0013】これら混合信号とノイズNとは各アンプ1
1、12でそれぞれ増幅され規格化されて、混合信号は
遅延回路13へ、ノイズNはタイマ16および比較器3
1にそれぞれ送られる。遅延回路13からの混合信号は
スイッチ14を通過して計算部15に送られ、ノイズN
は比較器31でレジスタ30の基準値Kと比較される。
比較器31ではノイズNが一定値K以上であれば、第2
受光素子6に強い外来光がきているので、第1受光素子
5に入った光の大部分も外来光として処理する。These mixed signals and noise N are sent to each amplifier 1
The mixed signal is amplified and standardized by 1 and 12, respectively, and the mixed signal is fed to the delay circuit 13, and the noise N is fed to the timer 16 and the comparator 3.
1 respectively. The mixed signal from the delay circuit 13 passes through the switch 14 and is sent to the calculation unit 15, where the noise N
Is compared with the reference value K of the register 30 in the comparator 31.
In the comparator 31, if the noise N is equal to or more than the constant value K, the second
Since strong external light is coming to the light receiving element 6, most of the light entering the first light receiving element 5 is also processed as external light.
【0014】比較器31はノイズNが一定値K以上であ
れば、クリア信号CLを出力し、このクリア信号CL
は、電子スイッチ14に遮断用の制御信号として送られ
る。計算部15は、第2タイマ35、第1記憶手段3
3、第2記憶手段34、演算部32とから構成される。If the noise N is a certain value K or more, the comparator 31 outputs a clear signal CL, and the clear signal CL is output.
Is sent to the electronic switch 14 as a control signal for interruption. The calculation unit 15 includes the second timer 35 and the first storage unit 3.
3, a second storage unit 34, and a calculation unit 32.
【0015】電子スイッチ14より、最初で先となる前
の脈拍信号Sが入力されると、起動時からその時点での
第2タイマ35の値T1が第1記憶手段33に保持され
る。次に、続く後の脈拍信号Sが入力されると第1記憶
手段33は前の記憶データT1を第2記憶手段34に転
送した後、その時点での第2タイマ35の値T2を保持
する。演算部32は第1記憶手段33のデータT1と第
2記憶手段34の値T2とから従来のように、心拍間隔
dt1=t2−t1の逆数から、その瞬間の脈拍数を計
算する。When the first and previous pulse signal S is input from the electronic switch 14, the value T1 of the second timer 35 at that time from the time of activation is held in the first storage means 33. Next, when the subsequent pulse signal S is input, the first storage means 33 transfers the previous storage data T1 to the second storage means 34, and then holds the value T2 of the second timer 35 at that time. . The calculation unit 32 calculates the pulse rate at that moment from the reciprocal of the heartbeat interval dt1 = t2-t1 as in the conventional case from the data T1 of the first storage unit 33 and the value T2 of the second storage unit 34.
【0016】さて、クリア信号CLは第1記憶手段33
と第2記憶手段34にも送られて、これらの記憶内容を
消去する。タイマ16はアンプ12からのノイズNの持
続時間を計測し、所定時間になると音源回路17と映像
警報回路36にオン信号を送る。このオン信号により、
音源回路17は”ハズレテイマス”等の音声信号をスピ
ーカ18に、映像警報回路36は”ハズレテイマスヨ”
等の文字信号をCRT等の表示装置にそれぞれ送る。タ
イマ16は計算部15からの正常な脈拍数信号Mにより
クリアされる。Now, the clear signal CL is the first storage means 33.
And the stored contents are erased. The timer 16 measures the duration of the noise N from the amplifier 12 and sends an ON signal to the sound source circuit 17 and the video alarm circuit 36 when a predetermined time is reached. By this ON signal,
The sound source circuit 17 sends an audio signal such as "miss lost" to the speaker 18, and the video alarm circuit 36 sends "miss lost".
And the like are sent to a display device such as a CRT. The timer 16 is cleared by the normal pulse rate signal M from the calculator 15.
【0017】スイッチ14は通常はオンで、遅延回路1
3からの混合信号を計算部15に通過させる。またスイ
ッチ14は、アンプ12からのノイズNや、比較器31
からのクリヤー信号CLを受けた時はオフとなり、遅延
回路13からの混合信号を遮断し、計算部15に通過さ
せない。The switch 14 is normally on and the delay circuit 1
The mixed signal from 3 is passed to the calculation unit 15. Further, the switch 14 controls the noise N from the amplifier 12 and the comparator 31.
When it receives the clear signal CL from, it is turned off, and the mixed signal from the delay circuit 13 is cut off and is not passed to the calculation section 15.
【0018】便宜上混合信号と称したがこの信号は、外
部の光あるいは外乱光がない時には、受光素子5が検出
した脈拍の信号である。また、外部の光は本来発光体4
から出て、反射鏡3で反射して受光素子5に入る光より
は恒に大きいために、ノイズとなる。なお、第1、第2
受光素子5、6には、その受光面上に光量制限用の可視
光のフィルターを張ることによりノイズをより正確に削
除できる。Although called a mixed signal for convenience, this signal is a pulse signal detected by the light receiving element 5 when there is no external light or ambient light. In addition, external light is originally the light-emitting body 4.
Since it is always larger than the light that exits from the light source and is reflected by the reflecting mirror 3 and enters the light receiving element 5, it becomes noise. Note that the first and second
Noise can be more accurately eliminated by forming a visible light filter for limiting the amount of light on the light receiving surfaces of the light receiving elements 5 and 6.
【0019】次に、図3のタイミング図に従って、持続
時間の長いノイズがある場合の動作を説明する。時間T
1に、脈拍による散乱光Sはなく、外部の光Rがあると
受光素子5、受光素子6に同時にノイズNが発生する。
第2受光素子6からのノイズNはアンプ12で増幅され
てスイッチ14に送られて、スイッチ14はオフとな
り、受光素子5からアンプ11、遅延回路13を介しス
イッチ14まできたノイズNはここで遮断されてしま
う。従って計算部15には、ノイズが到達しないので、
計算部15の出力波形、正常な脈拍数信号Mはゼロであ
る。なお、スイッチ14がオフになったとき、ノイズ検
出(オフ)信号が計算部15に出力される。Next, the operation in the presence of noise having a long duration will be described with reference to the timing chart of FIG. Time T
If there is no scattered light S due to the pulse in 1 and there is external light R, noise N is simultaneously generated in the light receiving element 5 and the light receiving element 6.
The noise N from the second light receiving element 6 is amplified by the amplifier 12 and sent to the switch 14, the switch 14 is turned off, and the noise N coming from the light receiving element 5 to the switch 14 via the amplifier 11 and the delay circuit 13 is here. It will be cut off. Therefore, since noise does not reach the calculation unit 15,
The output waveform of the calculator 15 and the normal pulse rate signal M are zero. When the switch 14 is turned off, a noise detection (off) signal is output to the calculator 15.
【0020】時間T2では、脈拍による散乱光Sがあ
り、外部の光Rがないので、受光素子5から信号Sが発
生し、第2受光素子6にはノイズNが発生しない。この
ためスイッチ14は導通状態であり、受光素子5からア
ンプ11、遅延回路13を介しスイッチ14まできた脈
拍信号Sは計算部15に行き、心拍として計測される。At time T2, since there is scattered light S due to the pulse and there is no external light R, the signal S is generated from the light receiving element 5 and the noise N is not generated in the second light receiving element 6. Therefore, the switch 14 is in a conductive state, and the pulse signal S coming from the light receiving element 5 to the switch 14 via the amplifier 11 and the delay circuit 13 goes to the calculation unit 15 and is measured as a heartbeat.
【0021】時間T3では、脈拍による散乱光Sと、外
部の光Rがあるので、受光素子5からノイズNに脈拍信
号Sが合成された混合信号が発生し、第2受光素子6に
もノイズNが発生する。このために、第2受光素子6か
らのノイズNはアンプ12で増幅されてスイッチ14に
送られ、スイッチ14はオフとなり、受光素子5からア
ンプ11、遅延回路13を介しスイッチ14まできた混
合信号ノイズNプラス信号Sはここで遮断されてしま
う。計算部15には、ノイズが到達しないので、計算部
15の出力波形はゼロである。At time T3, since there is scattered light S due to the pulse and external light R, the light receiving element 5 generates a mixed signal in which the pulse signal S is combined with the noise N, and the second light receiving element 6 also receives noise. N is generated. Therefore, the noise N from the second light receiving element 6 is amplified by the amplifier 12 and sent to the switch 14, the switch 14 is turned off, and the mixed signal coming from the light receiving element 5 to the switch 14 via the amplifier 11 and the delay circuit 13 is reached. The noise N plus signal S is cut off here. Since noise does not reach the calculation unit 15, the output waveform of the calculation unit 15 is zero.
【0022】T4時間では、T2時間と同様に、脈拍に
よる散乱光Sがあり、外部の光Rがないので、受光素子
5から信号Sが発生し、第2受光素子6にはノイズNが
発生しない。このためスイッチ14は導通状態であり、
受光素子5からアンプ11、遅延回路13を介しスイッ
チ14まできた脈拍信号Sは計算部15に行き、心拍と
して計測される。このように、間に心拍の計測を抜く瞬
間があっても、次のノイズのない心拍が到来するので、
計測に不都合は生じない。As in the case of T2 time, since there is scattered light S due to the pulse and no external light R at T4 time, a signal S is generated from the light receiving element 5 and noise N is generated at the second light receiving element 6. do not do. Therefore, the switch 14 is in the conductive state,
The pulse signal S coming from the light receiving element 5 to the switch 14 via the amplifier 11 and the delay circuit 13 goes to the calculation unit 15 and is measured as a heartbeat. In this way, even if there is a moment when the heartbeat is missed, the next noise-free heartbeat arrives,
There is no inconvenience in measurement.
【0023】又、長時間脈拍センサ、即ち物挾みが耳た
ぶHから外れたり、外れかかったりすると、タイマ16
が反応し、スピーカ18から”ハズレテイマスヨ”の音
声が流れ、画面には”ハズレテイマスヨ”の文字が表示
されて、注意を喚起できる。In addition, when the pulse sensor for a long time, that is, the pinch of the pulse sensor is detached from the earlobe H or is about to detach, the timer 16 is operated.
Responds, a voice of "Hazure Teimasyo" is played from the speaker 18, and the character "Hazere Teimasyo" is displayed on the screen to call attention.
【0024】次に、図4のタイミング図に従って、瞬間
的な持続時間の短いノイズがある場合の動作を説明す
る。スイッチ14により前の脈拍信号が入力されると、
その時点での第2タイマ35の測定時間t1が第1記憶
手段33に保持される。次に、後の脈拍信号が入力され
ると第1記憶手段33の記憶内容t1を第2記憶手段3
4に転送した後、その時点の測定時間t2を保持する。
演算部32はこれらt1、t2が両方とも正の値である
ことを確認後、両者の差dt1を算出する。Next, the operation in the case where there is noise with a short instantaneous duration will be described with reference to the timing chart of FIG. When the previous pulse signal is input by the switch 14,
The measurement time t1 of the second timer 35 at that time is held in the first storage means 33. Next, when the subsequent pulse signal is input, the stored content t1 of the first storage means 33 is changed to the second storage means 3
After transferring to 4, the measurement time t2 at that time is held.
After confirming that both t1 and t2 are positive values, the calculation unit 32 calculates the difference dt1 between the two.
【0025】比較器31によりノイズ信号が検出される
と、クリヤー信号となり、第1記憶手段33、第1記憶
手段34の内容が消去される。演算部32は第1記憶手
段33、第2記憶手段34の内容が両方とも正の場合に
作動するようになっており、ノイズ信号を検出した直後
の1つ目の脈拍信号のパルスだけでは(第1記憶手段3
4の内容が0のままなので)作動せず、計算部15は脈
拍間隔を出力しない。When the noise signal is detected by the comparator 31, it becomes a clear signal and the contents of the first storage means 33 and the first storage means 34 are erased. The arithmetic unit 32 is adapted to operate when both the contents of the first storage unit 33 and the second storage unit 34 are positive, and only the pulse of the first pulse signal immediately after the noise signal is detected ( First storage means 3
Since the content of 4 remains 0), it does not operate, and the calculation unit 15 does not output the pulse interval.
【0026】また脈拍信号によって制御されるゲーム機
において、本装置を用いれば、ノイズ信号を検出してゲ
ーム機に送ることにより、センサー部の外れやズレ及び
外乱光によるノイズの発生をゲーム機側が可能となり、
これらの正常でない信号によってゲームの正常な進行が
妨害されないように対応可能となる。Further, in the game machine controlled by the pulse signal, if this device is used, the noise signal is detected and sent to the game machine, so that the game machine side can prevent the occurrence of noise due to the sensor section being out of alignment, misalignment or disturbance light. Becomes possible,
It is possible to deal with these abnormal signals so as not to interfere with the normal progress of the game.
【0027】プレーヤがプレー中に無意識に耳たぶセン
サーを外したり、耳たぶセンサーをいじったりしたら、
直に計算部の動作が停止し、脈拍間隔データを出力しな
くなるので、ノイズによる異常な瞬時脈拍数が発生しな
くなる。また、一定時間以上に渡って一定以上の光量が
入り続ける場合は、所定のコメントを画面表示して、プ
レーヤの注意を促すると共に、ゲームをバイオフィード
バック信号なしの設定に切り替えることが可能になる。
ゲーム者の脈拍数が正確に、ゲームにフィードバックさ
れるので、プレーヤはゲームに楽しく熱中できる。If the player unintentionally removes the earlobe sensor or plays with the earlobe sensor during play,
Since the operation of the calculation unit is stopped immediately and the pulse interval data is no longer output, an abnormal instantaneous pulse rate due to noise does not occur. Also, when the amount of light exceeds a certain amount for a certain amount of time or more, a predetermined comment is displayed on the screen to call the player's attention and the game can be switched to the setting without biofeedback signal. .
Since the player's pulse rate is accurately fed back to the game, the player can enjoy the game in a fun way.
【図1】第1発明の脈拍センサの構成を示す部分断面図
である。FIG. 1 is a partial cross-sectional view showing the configuration of a pulse sensor of the first invention.
【図2】第2発明の脈拍計測装置のブロック回路図であ
る。FIG. 2 is a block circuit diagram of a pulse measuring device of a second invention.
【図3】発明の動作を説明するタイミングの波形図であ
る。FIG. 3 is a timing waveform diagram illustrating the operation of the invention.
【図4】発明の他の動作を説明するタイミングの波形図
である。FIG. 4 is a timing waveform diagram illustrating another operation of the invention.
【図5】心拍間隔か脈拍数を算出する原理を示すパルス
の図である。FIG. 5 is a pulse diagram showing a principle of calculating a heartbeat interval or a pulse rate.
1 一片 2 他片 3 反射鏡 4 発光体 5 受光素子 6 第2受光素子 7 ケーブル 10 タイミング回路 11、12 アンプ 13 遅延回路 14 スイッチ 15 計算部 16 タイマ 17 音源回路 18 スピーカ 20 物挟 23 信号線 30 レジスタ 31 比較器 32 演算部 33 第1記憶手段 34 第2記憶手段 35 第2タイマ 36 映像警報回路 B 毛細管 H 人体 L 光束 N ノイズ R 外部の光 S 心拍信号 1 1 piece 2 Other piece 3 Reflector 4 Light emitter 5 Light receiving element 6 Second light receiving element 7 Cable 10 Timing circuit 11, 12 Amplifier 13 Delay circuit 14 Switch 15 Calculation section 16 Timer 17 Sound source circuit 18 Speaker 20 Object sandwich 23 Signal line 30 Register 31 Comparator 32 Calculation Unit 33 First Storage Means 34 Second Storage Means 35 Second Timer 36 Video Alarm Circuit B Capillary H Human Body L Luminous Flux N Noise R External Light S Heartbeat Signal
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8127366AJPH09299342A (en) | 1996-03-12 | 1996-05-22 | Pulse sensor and pulse measuring device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8-55133 | 1996-03-12 | ||
| JP5513396 | 1996-03-12 | ||
| JP8127366AJPH09299342A (en) | 1996-03-12 | 1996-05-22 | Pulse sensor and pulse measuring device |
| Publication Number | Publication Date |
|---|---|
| JPH09299342Atrue JPH09299342A (en) | 1997-11-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8127366AWithdrawnJPH09299342A (en) | 1996-03-12 | 1996-05-22 | Pulse sensor and pulse measuring device |
| Country | Link |
|---|---|
| JP (1) | JPH09299342A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999012469A1 (en)* | 1997-09-05 | 1999-03-18 | Seiko Epson Corporation | Reflection photodetector and biological information measuring instrument |
| JP2010178983A (en)* | 2009-02-06 | 2010-08-19 | Seiko Epson Corp | Measuring apparatus and measuring method |
| JP2012518515A (en)* | 2009-02-25 | 2012-08-16 | ヴァレンセル,インコーポレイテッド | Light guide device and monitor device incorporating the same |
| US8788002B2 (en) | 2009-02-25 | 2014-07-22 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
| WO2015045554A1 (en)* | 2013-09-26 | 2015-04-02 | シャープ株式会社 | Bio-information-acquiring device and bio-information-acquiring method |
| US9044180B2 (en) | 2007-10-25 | 2015-06-02 | Valencell, Inc. | Noninvasive physiological analysis using excitation-sensor modules and related devices and methods |
| JP2015139516A (en)* | 2014-01-28 | 2015-08-03 | シャープ株式会社 | Biological information measuring device |
| US9427191B2 (en) | 2011-07-25 | 2016-08-30 | Valencell, Inc. | Apparatus and methods for estimating time-state physiological parameters |
| US9538921B2 (en) | 2014-07-30 | 2017-01-10 | Valencell, Inc. | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
| JP2017522054A (en)* | 2014-12-31 | 2017-08-10 | ゴーアテック インコーポレイテッドGoertek Inc | Photoelectric pulse signal measuring method and measuring instrument |
| US9750462B2 (en) | 2009-02-25 | 2017-09-05 | Valencell, Inc. | Monitoring apparatus and methods for measuring physiological and/or environmental conditions |
| US9794653B2 (en) | 2014-09-27 | 2017-10-17 | Valencell, Inc. | Methods and apparatus for improving signal quality in wearable biometric monitoring devices |
| US9801552B2 (en) | 2011-08-02 | 2017-10-31 | Valencell, Inc. | Systems and methods for variable filter adjustment by heart rate metric feedback |
| US10015582B2 (en) | 2014-08-06 | 2018-07-03 | Valencell, Inc. | Earbud monitoring devices |
| US10076253B2 (en) | 2013-01-28 | 2018-09-18 | Valencell, Inc. | Physiological monitoring devices having sensing elements decoupled from body motion |
| US10258243B2 (en) | 2006-12-19 | 2019-04-16 | Valencell, Inc. | Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto |
| US10413197B2 (en) | 2006-12-19 | 2019-09-17 | Valencell, Inc. | Apparatus, systems and methods for obtaining cleaner physiological information signals |
| US10610158B2 (en) | 2015-10-23 | 2020-04-07 | Valencell, Inc. | Physiological monitoring devices and methods that identify subject activity type |
| US10827979B2 (en) | 2011-01-27 | 2020-11-10 | Valencell, Inc. | Wearable monitoring device |
| US10945618B2 (en) | 2015-10-23 | 2021-03-16 | Valencell, Inc. | Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type |
| US10966662B2 (en) | 2016-07-08 | 2021-04-06 | Valencell, Inc. | Motion-dependent averaging for physiological metric estimating systems and methods |
| WO2021261725A1 (en)* | 2020-06-26 | 2021-12-30 | 삼성전자 주식회사 | Method for calibrating external light for bio-signal measurement, and electronic device and storage medium therefor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999012469A1 (en)* | 1997-09-05 | 1999-03-18 | Seiko Epson Corporation | Reflection photodetector and biological information measuring instrument |
| US6198951B1 (en) | 1997-09-05 | 2001-03-06 | Seiko Epson Corporation | Reflection photodetector and biological information measuring instrument |
| US11000190B2 (en) | 2006-12-19 | 2021-05-11 | Valencell, Inc. | Apparatus, systems and methods for obtaining cleaner physiological information signals |
| US10987005B2 (en) | 2006-12-19 | 2021-04-27 | Valencell, Inc. | Systems and methods for presenting personal health information |
| US11272848B2 (en) | 2006-12-19 | 2022-03-15 | Valencell, Inc. | Wearable apparatus for multiple types of physiological and/or environmental monitoring |
| US11272849B2 (en) | 2006-12-19 | 2022-03-15 | Valencell, Inc. | Wearable apparatus |
| US11350831B2 (en) | 2006-12-19 | 2022-06-07 | Valencell, Inc. | Physiological monitoring apparatus |
| US11395595B2 (en) | 2006-12-19 | 2022-07-26 | Valencell, Inc. | Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning |
| US11109767B2 (en) | 2006-12-19 | 2021-09-07 | Valencell, Inc. | Apparatus, systems and methods for obtaining cleaner physiological information signals |
| US11083378B2 (en) | 2006-12-19 | 2021-08-10 | Valencell, Inc. | Wearable apparatus having integrated physiological and/or environmental sensors |
| US10258243B2 (en) | 2006-12-19 | 2019-04-16 | Valencell, Inc. | Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto |
| US11295856B2 (en) | 2006-12-19 | 2022-04-05 | Valencell, Inc. | Apparatus, systems, and methods for measuring environmental exposure and physiological response thereto |
| US11399724B2 (en) | 2006-12-19 | 2022-08-02 | Valencell, Inc. | Earpiece monitor |
| US11412938B2 (en) | 2006-12-19 | 2022-08-16 | Valencell, Inc. | Physiological monitoring apparatus and networks |
| US10413197B2 (en) | 2006-12-19 | 2019-09-17 | Valencell, Inc. | Apparatus, systems and methods for obtaining cleaner physiological information signals |
| US10716481B2 (en) | 2006-12-19 | 2020-07-21 | Valencell, Inc. | Apparatus, systems and methods for monitoring and evaluating cardiopulmonary functioning |
| US11324407B2 (en) | 2006-12-19 | 2022-05-10 | Valencell, Inc. | Methods and apparatus for physiological and environmental monitoring with optical and footstep sensors |
| US10595730B2 (en) | 2006-12-19 | 2020-03-24 | Valencell, Inc. | Physiological monitoring methods |
| US9044180B2 (en) | 2007-10-25 | 2015-06-02 | Valencell, Inc. | Noninvasive physiological analysis using excitation-sensor modules and related devices and methods |
| US9808204B2 (en) | 2007-10-25 | 2017-11-07 | Valencell, Inc. | Noninvasive physiological analysis using excitation-sensor modules and related devices and methods |
| JP2010178983A (en)* | 2009-02-06 | 2010-08-19 | Seiko Epson Corp | Measuring apparatus and measuring method |
| US10448840B2 (en) | 2009-02-25 | 2019-10-22 | Valencell, Inc. | Apparatus for generating data output containing physiological and motion-related information |
| US10750954B2 (en) | 2009-02-25 | 2020-08-25 | Valencell, Inc. | Wearable devices with flexible optical emitters and/or optical detectors |
| JP2012518515A (en)* | 2009-02-25 | 2012-08-16 | ヴァレンセル,インコーポレイテッド | Light guide device and monitor device incorporating the same |
| US8700111B2 (en) | 2009-02-25 | 2014-04-15 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
| US8788002B2 (en) | 2009-02-25 | 2014-07-22 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
| US8886269B2 (en) | 2009-02-25 | 2014-11-11 | Valencell, Inc. | Wearable light-guiding bands for physiological monitoring |
| US9750462B2 (en) | 2009-02-25 | 2017-09-05 | Valencell, Inc. | Monitoring apparatus and methods for measuring physiological and/or environmental conditions |
| JP2017159052A (en)* | 2009-02-25 | 2017-09-14 | ヴァレンセル,インコーポレイテッド | Wearable device |
| US8923941B2 (en) | 2009-02-25 | 2014-12-30 | Valencell, Inc. | Methods and apparatus for generating data output containing physiological and motion-related information |
| US11160460B2 (en) | 2009-02-25 | 2021-11-02 | Valencell, Inc. | Physiological monitoring methods |
| US8929965B2 (en) | 2009-02-25 | 2015-01-06 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
| US9314167B2 (en) | 2009-02-25 | 2016-04-19 | Valencell, Inc. | Methods for generating data output containing physiological and motion-related information |
| US9955919B2 (en) | 2009-02-25 | 2018-05-01 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
| US8929966B2 (en) | 2009-02-25 | 2015-01-06 | Valencell, Inc. | Physiological monitoring methods |
| US11026588B2 (en) | 2009-02-25 | 2021-06-08 | Valencell, Inc. | Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals |
| US10076282B2 (en) | 2009-02-25 | 2018-09-18 | Valencell, Inc. | Wearable monitoring devices having sensors and light guides |
| US10092245B2 (en) | 2009-02-25 | 2018-10-09 | Valencell, Inc. | Methods and apparatus for detecting motion noise and for removing motion noise from physiological signals |
| US9301696B2 (en) | 2009-02-25 | 2016-04-05 | Valencell, Inc. | Earbud covers |
| US8934952B2 (en) | 2009-02-25 | 2015-01-13 | Valencell, Inc. | Wearable monitoring devices having sensors and light guides |
| US9289135B2 (en) | 2009-02-25 | 2016-03-22 | Valencell, Inc. | Physiological monitoring methods and apparatus |
| US9289175B2 (en) | 2009-02-25 | 2016-03-22 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
| US11660006B2 (en) | 2009-02-25 | 2023-05-30 | Valencell, Inc. | Wearable monitoring devices with passive and active filtering |
| US8942776B2 (en) | 2009-02-25 | 2015-01-27 | Valencell, Inc. | Physiological monitoring methods |
| US10973415B2 (en) | 2009-02-25 | 2021-04-13 | Valencell, Inc. | Form-fitted monitoring apparatus for health and environmental monitoring |
| US10542893B2 (en) | 2009-02-25 | 2020-01-28 | Valencell, Inc. | Form-fitted monitoring apparatus for health and environmental monitoring |
| JP2016013444A (en)* | 2009-02-25 | 2016-01-28 | ヴァレンセル,インコーポレイテッド | Data output generating method and monitoring method |
| US8989830B2 (en) | 2009-02-25 | 2015-03-24 | Valencell, Inc. | Wearable light-guiding devices for physiological monitoring |
| US9131312B2 (en) | 2009-02-25 | 2015-09-08 | Valencell, Inc. | Physiological monitoring methods |
| US10716480B2 (en) | 2009-02-25 | 2020-07-21 | Valencell, Inc. | Hearing aid earpiece covers |
| US10898083B2 (en) | 2009-02-25 | 2021-01-26 | Valencell, Inc. | Wearable monitoring devices with passive and active filtering |
| US10842387B2 (en) | 2009-02-25 | 2020-11-24 | Valencell, Inc. | Apparatus for assessing physiological conditions |
| US11589812B2 (en) | 2009-02-25 | 2023-02-28 | Valencell, Inc. | Wearable devices for physiological monitoring |
| US11471103B2 (en) | 2009-02-25 | 2022-10-18 | Valencell, Inc. | Ear-worn devices for physiological monitoring |
| US10842389B2 (en) | 2009-02-25 | 2020-11-24 | Valencell, Inc. | Wearable audio devices |
| US11324445B2 (en) | 2011-01-27 | 2022-05-10 | Valencell, Inc. | Headsets with angled sensor modules |
| US10827979B2 (en) | 2011-01-27 | 2020-11-10 | Valencell, Inc. | Wearable monitoring device |
| US9427191B2 (en) | 2011-07-25 | 2016-08-30 | Valencell, Inc. | Apparatus and methods for estimating time-state physiological parameters |
| US9521962B2 (en) | 2011-07-25 | 2016-12-20 | Valencell, Inc. | Apparatus and methods for estimating time-state physiological parameters |
| US9788785B2 (en) | 2011-07-25 | 2017-10-17 | Valencell, Inc. | Apparatus and methods for estimating time-state physiological parameters |
| US10512403B2 (en) | 2011-08-02 | 2019-12-24 | Valencell, Inc. | Systems and methods for variable filter adjustment by heart rate metric feedback |
| US11375902B2 (en) | 2011-08-02 | 2022-07-05 | Valencell, Inc. | Systems and methods for variable filter adjustment by heart rate metric feedback |
| US9801552B2 (en) | 2011-08-02 | 2017-10-31 | Valencell, Inc. | Systems and methods for variable filter adjustment by heart rate metric feedback |
| US12076126B2 (en) | 2013-01-28 | 2024-09-03 | Yukka Magic Llc | Physiological monitoring devices having sensing elements decoupled from body motion |
| US11266319B2 (en) | 2013-01-28 | 2022-03-08 | Valencell, Inc. | Physiological monitoring devices having sensing elements decoupled from body motion |
| US11684278B2 (en) | 2013-01-28 | 2023-06-27 | Yukka Magic Llc | Physiological monitoring devices having sensing elements decoupled from body motion |
| US10076253B2 (en) | 2013-01-28 | 2018-09-18 | Valencell, Inc. | Physiological monitoring devices having sensing elements decoupled from body motion |
| US10856749B2 (en) | 2013-01-28 | 2020-12-08 | Valencell, Inc. | Physiological monitoring devices having sensing elements decoupled from body motion |
| JPWO2015045554A1 (en)* | 2013-09-26 | 2017-03-09 | シャープ株式会社 | Biological information acquisition apparatus and biological information acquisition method |
| WO2015045554A1 (en)* | 2013-09-26 | 2015-04-02 | シャープ株式会社 | Bio-information-acquiring device and bio-information-acquiring method |
| JP2015139516A (en)* | 2014-01-28 | 2015-08-03 | シャープ株式会社 | Biological information measuring device |
| US12193845B2 (en) | 2014-07-30 | 2025-01-14 | Yukka Magic Llc | Physiological monitoring devices and methods using optical sensors |
| US11179108B2 (en) | 2014-07-30 | 2021-11-23 | Valencell, Inc. | Physiological monitoring devices and methods using optical sensors |
| US11185290B2 (en) | 2014-07-30 | 2021-11-30 | Valencell, Inc. | Physiological monitoring devices and methods using optical sensors |
| US10893835B2 (en) | 2014-07-30 | 2021-01-19 | Valencell, Inc. | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
| US12274567B2 (en) | 2014-07-30 | 2025-04-15 | Yukka Magic Llc | Physiological monitoring devices and methods using optical sensors |
| US11638560B2 (en) | 2014-07-30 | 2023-05-02 | Yukka Magic Llc | Physiological monitoring devices and methods using optical sensors |
| US9538921B2 (en) | 2014-07-30 | 2017-01-10 | Valencell, Inc. | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
| US11638561B2 (en) | 2014-07-30 | 2023-05-02 | Yukka Magic Llc | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
| US11337655B2 (en) | 2014-07-30 | 2022-05-24 | Valencell, Inc. | Physiological monitoring devices and methods using optical sensors |
| US11412988B2 (en) | 2014-07-30 | 2022-08-16 | Valencell, Inc. | Physiological monitoring devices and methods using optical sensors |
| US10623849B2 (en) | 2014-08-06 | 2020-04-14 | Valencell, Inc. | Optical monitoring apparatus and methods |
| US10536768B2 (en) | 2014-08-06 | 2020-01-14 | Valencell, Inc. | Optical physiological sensor modules with reduced signal noise |
| US11252499B2 (en) | 2014-08-06 | 2022-02-15 | Valencell, Inc. | Optical physiological monitoring devices |
| US11252498B2 (en) | 2014-08-06 | 2022-02-15 | Valencell, Inc. | Optical physiological monitoring devices |
| US10015582B2 (en) | 2014-08-06 | 2018-07-03 | Valencell, Inc. | Earbud monitoring devices |
| US11330361B2 (en) | 2014-08-06 | 2022-05-10 | Valencell, Inc. | Hearing aid optical monitoring apparatus |
| US10382839B2 (en) | 2014-09-27 | 2019-08-13 | Valencell, Inc. | Methods for improving signal quality in wearable biometric monitoring devices |
| US10834483B2 (en) | 2014-09-27 | 2020-11-10 | Valencell, Inc. | Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn |
| US10798471B2 (en) | 2014-09-27 | 2020-10-06 | Valencell, Inc. | Methods for improving signal quality in wearable biometric monitoring devices |
| US10779062B2 (en) | 2014-09-27 | 2020-09-15 | Valencell, Inc. | Wearable biometric monitoring devices and methods for determining if wearable biometric monitoring devices are being worn |
| US10506310B2 (en) | 2014-09-27 | 2019-12-10 | Valencell, Inc. | Wearable biometric monitoring devices and methods for determining signal quality in wearable biometric monitoring devices |
| US9794653B2 (en) | 2014-09-27 | 2017-10-17 | Valencell, Inc. | Methods and apparatus for improving signal quality in wearable biometric monitoring devices |
| JP2017522054A (en)* | 2014-12-31 | 2017-08-10 | ゴーアテック インコーポレイテッドGoertek Inc | Photoelectric pulse signal measuring method and measuring instrument |
| US10610158B2 (en) | 2015-10-23 | 2020-04-07 | Valencell, Inc. | Physiological monitoring devices and methods that identify subject activity type |
| US10945618B2 (en) | 2015-10-23 | 2021-03-16 | Valencell, Inc. | Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type |
| US10966662B2 (en) | 2016-07-08 | 2021-04-06 | Valencell, Inc. | Motion-dependent averaging for physiological metric estimating systems and methods |
| WO2021261725A1 (en)* | 2020-06-26 | 2021-12-30 | 삼성전자 주식회사 | Method for calibrating external light for bio-signal measurement, and electronic device and storage medium therefor |
| Publication | Publication Date | Title |
|---|---|---|
| JPH09299342A (en) | Pulse sensor and pulse measuring device | |
| US5253645A (en) | Method of producing an audible alarm in a blood pressure and pulse oximeter monitor | |
| JP4327578B2 (en) | Program, information storage medium, and game system | |
| US6078829A (en) | Measuring apparatus for biological information | |
| CA2454057C (en) | Nuisance alarm reductions in a physiological monitor | |
| TWI489325B (en) | Optical finger mouse, electronic device and physiological characteristic detection device | |
| TWI438658B (en) | User interface system and optical finger mouse system | |
| KR20080009030A (en) | Pulsimeters on wrists and related methods | |
| JPH09253062A (en) | Earphone type pulse sensor | |
| JP4206332B2 (en) | Input device, game system, program, and information storage medium | |
| JPH10258038A (en) | Pulse wave detector and pulse meter | |
| JPH07299043A (en) | Pulse detecting device | |
| WO2020088639A1 (en) | Heart rate detection method and electronic device | |
| JP2021121355A (en) | Measuring device and measuring method | |
| JP2007267776A (en) | Game device and timing calibration method | |
| JP3459463B2 (en) | Pulse detection device | |
| CN113519167A (en) | Head mounted information processing device | |
| JPS6154191B2 (en) | ||
| JPS58198329A (en) | Pulsemeter | |
| JPH10328412A (en) | Bio-feedback game device | |
| JP2001340544A (en) | Image display device | |
| US10653324B1 (en) | Wrist worn carbon monoxide detector | |
| JP2005087716A (en) | Program, information storage medium, and game system | |
| JPH01249036A (en) | Electronic watch with pulsimeter | |
| JP2007109301A (en) | Controller of player for advertisement |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20030805 |