【0001】[0001]
【発明の属する技術分野】本発明は、化学,医療,バイ
オテクノロジィなどの分野に適用して流体,流動物を微
量ずつポンピング搬送する微小サイズのマイクロポンプ
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro-sized micropump which is applied to fields such as chemistry, medical treatment and biotechnology to pump and convey fluids and fluids in small amounts.
【0002】[0002]
【従来の技術】まず、図5に従来知られている圧電アク
チュエータ応用のマイクロポンプの構成を示す。図にお
いて、9はガラス,シリコンなどの基板で、該基板9に
はフォトファブリケーションにより流体通路9a,ダイ
ヤフラム9bが形成されており、かつダイヤフラム9b
の上にはピエゾアクチュエータ10を備えている。さら
に、ダイヤフラム9bに対向する流体通路領域を挟んで
流体入口11に通じる上流側,流体出口12に通じる下
流側の各地点には微小な逆止弁13IN,13OUTが組み
込まれている。2. Description of the Related Art First, FIG. 5 shows the structure of a conventionally known micropump using a piezoelectric actuator. In the figure, 9 is a substrate made of glass, silicon or the like, on which a fluid passage 9a and a diaphragm 9b are formed by photofabrication, and the diaphragm 9b is formed.
A piezo actuator 10 is provided on the above. Further, minute check valves 13IN and 13OUT are incorporated at respective points on the upstream side communicating with the fluid inlet 11 and the downstream side communicating with the fluid outlet 12 with the fluid passage region facing the diaphragm 9b interposed therebetween.
【0003】かかる構成で、ピエゾアクチュエータ10
に電圧を印加すると、図5(a)で示すようにダイヤフ
ラム9bが流体通路側に突き出し、ポンプ内部の流体通
路9a内の流体を加圧する。これにより、入口側の逆止
弁13INが閉じ、出口側の逆止弁13OUTが開いて被搬
送流体が出口12より押し出される。次にピエゾアクチ
ュエータ10の印加電圧を除去すると、図5(b)で示
すようにダイヤフラム9bが元の位置に復帰する。これ
により、ポンプ内部の流体通路9aには負圧が働いて出
口側の逆止弁13OUTが閉じるとともに、入口側の逆止
弁13INが開いて流体が入口11より吸引導入される。
したがって、ピエゾアクチュエータ10に印加する電圧
をオン,オフ制御して前記ポンピング動作を交互に繰り
返すことにより、被搬送流体の搬送が行われる。With such a structure, the piezo actuator 10
When a voltage is applied to the diaphragm, the diaphragm 9b projects toward the fluid passage side as shown in FIG. 5A, and pressurizes the fluid in the fluid passage 9a inside the pump. As a result, the check valve 13IN on the inlet side is closed, the check valve 13OUT on the outlet side is opened, and the transported fluid is pushed out from the outlet 12. Next, when the voltage applied to the piezo actuator 10 is removed, the diaphragm 9b returns to its original position as shown in FIG. 5 (b). As a result, a negative pressure is applied to the fluid passage 9a inside the pump to close the check valve 13OUT on the outlet side, and the check valve 13IN on the inlet side is opened to suck and introduce the fluid from the inlet 11.
Therefore, the fluid to be transported is carried by alternately turning on and off the voltage applied to the piezo actuator 10 and repeating the pumping operation.
【0004】[0004]
【発明が解決しようとする課題】ところで、前記のよう
に、ピエゾアクチュエータ10で駆動するダイヤフラム
9a,および逆止弁13IN,13OUTを組合せて流体搬
送を行うようにした圧電アクチュエータ応用のマイクロ
ポンプでは次記のような問題点がある。 1)ピエゾアクチュエータの動作に伴い、被搬送流体に
はパルス状の正圧,負圧が交互に加わることから、例え
ば生体細胞を含んだ溶液などをデリケートに扱うことが
できない。また、粘性の高い液体,半固形流動物などの
搬送が実用的に困難であり、搬送できる流体の種類が限
られる。By the way, as described above, the piezoelectric actuator-applied micro pump in which the diaphragm 9a driven by the piezo actuator 10 and the check valves 13IN and 13OUT are combined to carry out fluid transfer. Then, there are the following problems. 1) With the operation of the piezo actuator, pulsed positive pressure and negative pressure are alternately applied to the fluid to be transferred, so that, for example, a solution containing living cells cannot be treated delicately. In addition, it is practically difficult to convey a highly viscous liquid or a semi-solid fluid, and the types of fluid that can be conveyed are limited.
【0005】2)ポンプ内の流体通路には流体通路断面
を縮小した上で、ここに微細構造の逆止弁が組み込まれ
ており、このために被搬送流体に微小粒子が含まれてい
ると、逆止弁に粒子が引っ掛かって逆止弁機能が損なわ
れ、流体の搬送不能を来すことがあるほか、逆止弁の耐
久性にも問題があって十分な信頼性が得られない。本発
明は、上記の点にかんがみなされたものであり、その目
的は前記課題を解決し、被搬送流体の種類が限定される
ことなく、各種流体の搬送が行えるようにした新しい動
作原理に基づくマイクロポンプを提供することにある。2) In the fluid passage in the pump, the cross section of the fluid passage is reduced, and a check valve having a fine structure is incorporated therein. Therefore, if the fluid to be conveyed contains fine particles. In some cases, particles are caught in the check valve, impairing the check valve function, which makes it impossible to convey fluid, and there is a problem in the durability of the check valve, so that sufficient reliability cannot be obtained. The present invention has been made in view of the above points, and an object thereof is to solve the above-mentioned problems, and based on a new operation principle that enables various fluids to be transported without limiting the types of fluids to be transported. It is to provide a micro pump.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明によるマイクロポンプは、基板と、該基板上
に重ね合わせて基板との間に流体通路を形成するガイド
体と、流体通路に沿って基板側に設けた移動磁界発生手
段と、流体通路面を覆ってその周縁を基板に封着した弾
性膜と、弾性膜と基板との間に封入した磁性流体とから
なり、前記移動磁界発生手段により生成した移動磁界に
沿って磁性流体を集合状態で移動させ、その磁性流体の
移動に伴う弾性膜の蠕動運動により被搬送流体を搬送す
るものとする。In order to achieve the above object, a micropump according to the present invention comprises a substrate, a guide body which is superposed on the substrate to form a fluid passage between the substrate, and a fluid passage. A moving magnetic field generating means provided along the substrate on the side of the substrate, an elastic film covering the fluid passage surface and sealing the periphery of the fluid channel to the substrate, and a magnetic fluid sealed between the elastic film and the substrate. It is assumed that the magnetic fluid is moved in a collective state along the moving magnetic field generated by the magnetic field generating means, and the fluid to be transferred is carried by the peristaltic movement of the elastic film accompanying the movement of the magnetic fluid.
【0007】そして、前記の移動磁界発生手段として
は、流体通路に沿って配列したアレイ磁気コイル素子を
設け、該アレイ磁気コイル素子の通電を順に切換え制御
して搬送方向に移動磁界を生成させることができる。ま
た、前記構成における弾性膜,移動磁界発生手段を流体
通路に沿って複数区分に分割するとともに、各区分ごと
に磁性流体を封入し、移動磁界の制御により、前記区分
の相互間で流体をリレー式に受渡して搬送する構成もあ
る。As the moving magnetic field generating means, an array magnetic coil element arranged along the fluid passage is provided, and energization of the array magnetic coil element is controlled in order to generate a moving magnetic field in the carrying direction. You can Further, the elastic film and the moving magnetic field generating means in the above structure are divided into a plurality of sections along the fluid passage, and a magnetic fluid is sealed in each section, and the fluid is relayed between the sections by controlling the moving magnetic field. There is also a configuration in which the items are delivered to and conveyed by a formula.
【0008】上記構成のマイクロポンプで、基板側に設
けたアレイ磁気コイル素子を通電制御すると、基板と弾
性膜との間に封入した磁性流体が、電流の通電している
コイル素子の磁界に引き寄せられてこの部分に団塊状に
集合する。これにより、弾性膜が局部的に盛り上がって
ガイド体との間の流体通路断面を縮小させるように流体
通路に括れ部分を形成する。そして、アレイ磁気コイル
素子の通電を順に切換えて流体搬送方向に移動する磁界
を形成すると、これに追随して磁性流体が集合したまま
移動して弾性膜に蠕動運動を与え、流体通路を満たして
いる流体を前方に押し出す。この弾性膜の蠕動運動によ
る流体の搬送動作は、生体の腸管の蠕動運動による流動
物搬送の原理と似ている。When the array magnetic coil element provided on the substrate side is energized by the micropump having the above structure, the magnetic fluid enclosed between the substrate and the elastic film is attracted to the magnetic field of the energized coil element. It will be gathered in this part like a nodule. As a result, the elastic film locally rises to form a constricted portion in the fluid passage so as to reduce the cross-section of the fluid passage between the elastic membrane and the guide body. When the magnetic fields of the array magnetic coil elements are sequentially switched to form a magnetic field that moves in the fluid transport direction, the magnetic fluid follows the magnetic field and moves in a gathered manner to give a peristaltic motion to the elastic membrane to fill the fluid passage. Push out the existing fluid. The fluid transport operation by the peristaltic movement of the elastic membrane is similar to the principle of fluid transport by the peristaltic movement of the intestinal tract of a living body.
【0009】したがって、被搬送流体にパルス状に正
圧,負圧が加わることがなく、生体細胞を含む溶液など
もデリケートに搬送することができる。また、ポンプに
は機械的な摺動部分がなく、かつ圧電素子をアクチュエ
ータとしてダイヤフラムを駆動する従来方式のようにポ
ンプ内の流体通路に逆止弁を備える必要がないので故障
発生も少なく、十分な耐久性,信頼性が得られる。Therefore, positive pressure and negative pressure are not applied to the fluid to be conveyed in a pulsed manner, and a solution containing living cells can be delicately conveyed. In addition, the pump has no mechanical sliding parts, and since there is no need to provide a check valve in the fluid passage inside the pump unlike the conventional method in which a piezoelectric element is used as an actuator to drive the diaphragm, there are few failures, Excellent durability and reliability.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。 〔実施例1〕図1(a),(b)は本発明によるマイクロ
ポンプの構成図であり、1はシリコン基板、2は内面に
溝状の流体通路2aを形成して前記基板1の上に重ね合
わせたガイド体、3は流体通路2aに沿って基板1の上
面を覆い、かつその周縁を基板1に封着したポリイミ
ド,バリレンなどの弾性膜、4は基板1と弾性膜3との
間に封入した磁性流体、5は流体通路2aに沿って各コ
イル素子が配列するように基板1に形成した移動磁界発
生手段としてのアレイ磁気コイル素子であり、これらで
マイクロポンプを構成している。なお、6は前記アレイ
磁気コイル素子5の通電制御部、7は電源である。ま
た、前記のアレイ磁気コイル素子5は、薄膜コイルとし
て基板1に半導体プロセスにより形成されている。Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIGS. 1 (a) and 1 (b) are configuration diagrams of a micropump according to the present invention, in which 1 is a silicon substrate, 2 is a groove-shaped fluid passage 2a formed on an inner surface of the substrate 1. An elastic film made of polyimide, barylene or the like having a guide member 3 superposed on the upper surface of the substrate 1 which covers the upper surface of the substrate 1 along the fluid passage 2a, and a peripheral edge of which is sealed to the substrate 1 is a substrate 1 and an elastic film 3. The magnetic fluid 5 enclosed between them is an array magnetic coil element as a moving magnetic field generating means formed on the substrate 1 so that the coil elements are arranged along the fluid passage 2a, and these constitute a micropump. . Incidentally, 6 is an energization control unit of the array magnetic coil element 5, and 7 is a power source. The array magnetic coil element 5 is formed as a thin film coil on the substrate 1 by a semiconductor process.
【0011】次に、前記構成になるマイクロポンプの流
体搬送動作を図2(a)〜(c)により説明する。ポン
プ内の流体通路2aに沿って配列したアレイ磁気コイル
素子5に付いて各コイル素子を右側から#1〜#5の符
号を付し、ここで例えばコイル素子#2に通電すると、
図2(a)で示すように、コイル素子#2の上面域に磁
束φの集中する磁界が生じ、ここに磁性流体4が引き寄
せられて団塊状に集合する。これにより、弾性膜3が符
号3aで示すように局部的に盛り上がり、基板1とガイ
ド体2との間に形成されているトンネル状の流体通路2
aを塞ぐように通路に括れ部分を形成する。この状態か
ら、次にコイル素子#3に通電を切換えると、図2
(b)で示すように、いままでコイル素子#2の上に集
合していた磁性流体4がコイル素子#3の上面域に引き
寄せられ、これに伴って弾性膜3の盛り上がり部分3a
が破線位置から実線位置へ移動する。以下、前記と同様
にアレイ磁気コイル素子5への通電を順に切換えると、
磁性流体4の移動に連れて弾性膜3が右方に蠕動運動
し、これにより流体通路2aに充満ている被搬送流体8
が右方に押し出し搬送される。Next, the fluid transfer operation of the micropump having the above construction will be described with reference to FIGS. For the array magnetic coil elements 5 arranged along the fluid passage 2a in the pump, the coil elements are numbered # 1 to # 5 from the right side, for example, when the coil element # 2 is energized,
As shown in FIG. 2A, a magnetic field in which the magnetic flux φ is concentrated is generated in the upper surface area of the coil element # 2, and the magnetic fluid 4 is attracted there and aggregates in a nodule shape. As a result, the elastic film 3 locally rises as indicated by reference numeral 3a, and the tunnel-shaped fluid passage 2 formed between the substrate 1 and the guide body 2 is formed.
A constricted portion is formed in the passage so as to block a. When the energization is switched to the coil element # 3 next from this state, as shown in FIG.
As shown in (b), the magnetic fluid 4 which has been gathered on the coil element # 2 until now is attracted to the upper surface region of the coil element # 3, and accordingly, the raised portion 3a of the elastic film 3 is pulled up.
Moves from the broken line position to the solid line position. Thereafter, when the energization to the array magnetic coil element 5 is sequentially switched in the same manner as described above,
As the magnetic fluid 4 moves, the elastic film 3 makes a peristaltic movement to the right, whereby the fluid to be transferred 8 that fills the fluid passage 2a.
Is pushed to the right and conveyed.
【0012】また、磁性流体4が流体通路2aの出口側
終端位置まで移動したところで、図2(c)のように
隣合う複数のコイル素子(図示例では#3と#4)を同
時に通電すると、磁性流体4が前後に広がって弾性膜3
の盛り上がり部分3aが低くなり、流体通路2aの入口
側と出口側が連通するようになる。したがって、この状
態を保持しながら磁性流体4を流体通路2aの入口に向
けて移動すれば、流体8を逆流させることがない。そし
て、磁気流体4が流体通路2aの入口端まで戻ったとこ
ろで、改めて図2(a),(b)で述べたようにアレイ磁
気コイル素子5を順に通電制御して磁気流体4を搬送方
向に向けて移動させることで、被搬送流体8を間欠的に
ポンピング搬送することができる。When the magnetic fluid 4 has moved to the end position on the outlet side of the fluid passage 2a, when a plurality of adjacent coil elements (# 3 and # 4 in the illustrated example) are energized at the same time as shown in FIG. 2 (c). , The magnetic fluid 4 spreads back and forth, and the elastic film 3
The swelling portion 3a becomes low, and the inlet side and the outlet side of the fluid passage 2a communicate with each other. Therefore, if the magnetic fluid 4 is moved toward the inlet of the fluid passage 2a while maintaining this state, the fluid 8 will not flow backward. Then, when the magnetic fluid 4 returns to the inlet end of the fluid passage 2a, the array magnetic coil elements 5 are sequentially energized to control the magnetic fluid 4 in the transport direction as described with reference to FIGS. 2 (a) and 2 (b). By moving toward the target, the fluid to be transported 8 can be intermittently pumped and transported.
【0013】なお、流体の搬送速度はコイル素子相互間
の通電切換え速度で任意にコントロールでき、また搬送
量は磁性流体4の往復移動回数で制御できる。また、移
動磁界発生手段は、図示実施例に示したアレイ磁気コイ
ル素子の通電を順に切換える方式に限定されるものでは
なく、例えば流体通路に沿って敷設した多相の磁気コイ
ル素子を交流励磁して移動磁界を成形する方式を採用す
ることもできる。It should be noted that the fluid transfer speed can be arbitrarily controlled by the switching speed between the coil elements and the transfer amount can be controlled by the number of reciprocating movements of the magnetic fluid 4. Further, the moving magnetic field generating means is not limited to the method of sequentially switching the energization of the array magnetic coil element shown in the illustrated embodiment, and for example, AC excitation of a multi-phase magnetic coil element laid along the fluid passage is performed. It is also possible to adopt a method of shaping the moving magnetic field by using the above method.
【0014】〔実施例2〕図3,図4は本発明の請求項
3に対応する実施例を示すものである。この実施例にお
いては、基板1の上面に被着した弾性膜3を流体通路2
aに沿って複数の区分3A,3B,3Cに分割した上
で、各区分ごとに弾性膜と基板1との間に磁性流体4が
封入されており、各区分には実施例1と同様にアレイ磁
気コイル素子5が形成されている。[Embodiment 2] FIGS. 3 and 4 show an embodiment corresponding to claim 3 of the present invention. In this embodiment, the elastic film 3 attached to the upper surface of the substrate 1 is used as the fluid passage 2
After being divided into a plurality of sections 3A, 3B, 3C along a, the magnetic fluid 4 is enclosed between the elastic film and the substrate 1 for each section, and each section is the same as in the first embodiment. The array magnetic coil element 5 is formed.
【0015】かかる構成による流体搬送動作は基本的に
実施例1と同様であるが、磁気コイル素子5を次記のよ
うに通電制御することにより、被搬送流体を連続搬送す
ることができる。すなわち、図4(a),(b)で示すよ
うに、区分3Aで弾性膜3を蠕動運動させて被搬送流体
8を右方に搬送している間に、隣接区分3Bでは隣り合
う複数のコイル素子に同時通電させながら磁性流体4を
区分3Bの右終端に寄せておき、次いで図4(c)のよ
うに区分3Bでコイル素子#4〜#6の通電を順に切換
えことにより、区分3Aの磁性流体4よる弾性膜3の蠕
動運動で右方に押し出された被搬送流体8が隣接する区
分3Bへリレー式に受渡し搬送される。そして、図示さ
れてないが、被搬送流体8を区分3Bから3Cへリレー
式に搬送している間に、区分3Aで磁性流体4を始端位
置に戻し、再び図4(a)〜(c)の動作を繰り返すこ
とにより、被搬送流体8を連続搬送することができる。The fluid transporting operation according to this structure is basically the same as that of the first embodiment, but the fluid to be transported can be continuously transported by controlling the energization of the magnetic coil element 5 as described below. That is, as shown in FIGS. 4 (a) and 4 (b), while the elastic membrane 3 is moved in a peristaltic manner in the section 3A to convey the transported fluid 8 to the right, a plurality of adjoining sections 3B are adjacent to each other. The magnetic fluid 4 is moved to the right end of the section 3B while simultaneously energizing the coil elements, and then the energization of the coil elements # 4 to # 6 is sequentially switched in the section 3B as shown in FIG. The to-be-conveyed fluid 8 pushed rightward by the peristaltic movement of the elastic film 3 by the magnetic fluid 4 is delivered and conveyed in a relay manner to the adjacent section 3B. Then, although not shown, while the fluid to be transported 8 is being relay-transported from the sections 3B to 3C, the magnetic fluid 4 is returned to the starting end position in the section 3A, and again shown in FIGS. By repeating the above operation, the fluid to be transported 8 can be continuously transported.
【0016】[0016]
【発明の効果】以上述べたように、本発明によれば、基
板上に被着した弾性膜と基板との間に封入した磁性流体
を、流体通路に沿って敷設した移動磁界発生手段,例え
ばアレイ磁気コイル素子の通電制御により集合状態で移
動させ、この磁性流体の移動に伴う弾性膜の蠕動運動に
より被搬送流体を搬送するようにしたので、圧電アクチ
ュエータ応用の従来におけるマイクロポンプのように搬
送流体の種類に制限がなく、例えば生体の細胞を含んだ
溶液でもデリケートに搬送することができる。また、弾
性膜が蠕動運動するだけで機械的に摺動する部分がな
く、これにより故障が少なくて耐久性,信頼性の高いマ
イクロポンプを提供することができる。As described above, according to the present invention, a moving magnetic field generating means for laying a magnetic fluid enclosed between an elastic film deposited on a substrate and the substrate along a fluid passage, for example, Since the array magnetic coil elements are moved in a collective state by controlling the energization, and the fluid to be transported is transported by the peristaltic movement of the elastic film accompanying the movement of the magnetic fluid, it is transported like a conventional micropump using a piezoelectric actuator. There is no limitation on the type of fluid, and for example, a solution containing living cells can be delicately transported. Further, the elastic membrane does not have a mechanically sliding portion due to only the peristaltic movement, so that it is possible to provide a micropump with few failures and high durability and reliability.
【図1】本発明の実施例1に対応するマイクロポンプの
構成図であり、(a)はポンプ全体の分解斜視図、
(b)は(a)の流体通路に沿った断面図で表す要部の
詳細構造図FIG. 1 is a configuration diagram of a micropump corresponding to Embodiment 1 of the present invention, in which (a) is an exploded perspective view of the entire pump,
(B) is a detailed structural diagram of a main part represented by a sectional view taken along the fluid passage of (a)
【図2】図1の構成による流体搬送動作の説明図であ
り、(a),(b),(c)はそれぞれ異なる動作状態を表
す図FIG. 2 is an explanatory diagram of a fluid transfer operation according to the configuration of FIG. 1, in which (a), (b), and (c) represent different operating states.
【図3】本発明の実施例2に対応するマイクロポンプ全
体の構成を示す分解斜視図FIG. 3 is an exploded perspective view showing the configuration of the entire micropump corresponding to Example 2 of the present invention.
【図4】図3の構成による流体搬送動作の説明図であ
り、(a),(b),(c)はそれぞれ異なる動作状態を表
す図FIG. 4 is an explanatory diagram of a fluid transfer operation according to the configuration of FIG. 3, in which (a), (b), and (c) represent different operation states.
【図5】従来の圧電アクチュエータ式マイクロポンプの
構成,並びに流体搬送動作の説明図であり、(a),
(b)はそれぞれ断面図で表した異なる動作状態を表す
図FIG. 5 is an explanatory diagram of a configuration of a conventional piezoelectric actuator type micropump and a fluid transfer operation,
(B) is a figure showing a different operation state shown by each sectional view.
1 基板 2 ガイド体 2a 流体通路 3 弾性膜 3A,3B,3C 弾性膜の分割区分 4 磁性流体 5 アレイ磁気コイル素子(移動磁界発生手段) 6 通電制御部 1 substrate 2 guide body 2a fluid passage 3 elastic film 3A, 3B, 3C division of elastic film 4 magnetic fluid 5 array magnetic coil element (moving magnetic field generating means) 6 energization control unit
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9575796AJPH09287571A (en) | 1996-04-18 | 1996-04-18 | Micro pump |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9575796AJPH09287571A (en) | 1996-04-18 | 1996-04-18 | Micro pump |
Publication Number | Publication Date |
---|---|
JPH09287571Atrue JPH09287571A (en) | 1997-11-04 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9575796APendingJPH09287571A (en) | 1996-04-18 | 1996-04-18 | Micro pump |
Country | Link |
---|---|
JP (1) | JPH09287571A (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6435840B1 (en)* | 2000-12-21 | 2002-08-20 | Eastman Kodak Company | Electrostrictive micro-pump |
JP2002544438A (en)* | 1999-05-17 | 2002-12-24 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. | Micro mechanic pump |
EP1279436A3 (en)* | 2001-07-24 | 2004-01-02 | Lg Electronics Inc. | Handling and delivering fluid through a microchannel in an elastic substrate by progressively squeezing the microchannel along its length |
EP1270066A3 (en)* | 2001-06-27 | 2004-06-30 | Tosoh Corporation | Method for transporting liquid, and microreactor |
JP2006513355A (en)* | 2003-01-28 | 2006-04-20 | ツィンファ ユニバーシティ | Method for fluid transfer and micro peristaltic pump |
KR100618320B1 (en)* | 2004-09-14 | 2006-08-31 | 삼성전자주식회사 | Fluid transfer device and disposable chip with same |
EP1666136A4 (en)* | 2003-07-24 | 2006-09-06 | Ryoichi Aogaki | Microreactor including magnetic barrier |
KR100779085B1 (en)* | 2005-12-08 | 2007-11-27 | 한국전자통신연구원 | Pump using electromagnetic actuators |
JP2008500494A (en)* | 2004-05-25 | 2008-01-10 | カリフォルニア インスティテュート オブ テクノロジー | Electromagnetically operated in-line actuator |
JP2009523470A (en)* | 2006-01-06 | 2009-06-25 | カリフォルニア インスティテュート オブ テクノロジー | Resonant multilayer impedance pump |
EP1834091A4 (en)* | 2004-12-14 | 2009-12-09 | Medipacs Inc | Actuator pump system |
FR2934361A1 (en)* | 2008-07-22 | 2010-01-29 | Commissariat Energie Atomique | DEVICE FOR VARYING THE PRESSURE OF A PNEUMATIC FLUID BY DISPLACING LIQUID DROPS AND HEAT PUMP USING SUCH A DEVICE |
JP2012082690A (en)* | 2010-10-06 | 2012-04-26 | Keio Gijuku | Pump device and endoscope device using the same |
JP2014114772A (en)* | 2012-12-11 | 2014-06-26 | Aquatech Co Ltd | Micropump |
JP2014132860A (en)* | 2013-01-10 | 2014-07-24 | Aquatech Co Ltd | Micropump unit |
EP3040554A1 (en)* | 2014-12-30 | 2016-07-06 | Nokia Technologies OY | Microfluidic pump apparatus and methods |
US9995295B2 (en) | 2007-12-03 | 2018-06-12 | Medipacs, Inc. | Fluid metering device |
US10000605B2 (en) | 2012-03-14 | 2018-06-19 | Medipacs, Inc. | Smart polymer materials with excess reactive molecules |
US10208158B2 (en) | 2006-07-10 | 2019-02-19 | Medipacs, Inc. | Super elastic epoxy hydrogel |
CN109475864A (en)* | 2016-06-29 | 2019-03-15 | 美天施生物科技有限责任公司 | Multistage disposable cartridges for Biosample |
CZ307764B6 (en)* | 2017-12-13 | 2019-04-17 | Západočeská Univerzita V Plzni | Peristaltic pump with magnetoelastic drive |
CN113576371A (en)* | 2021-07-02 | 2021-11-02 | 柏为(武汉)医疗科技股份有限公司 | Endoscope and detection instrument |
JP2022509949A (en)* | 2018-11-19 | 2022-01-25 | ジ インターディシプリナリー センター ヘルツリーヤ プロジェクツ リミテッド | Biological fluid system |
CN115450888A (en)* | 2022-08-09 | 2022-12-09 | 苏州仁甬得物联科技有限公司 | Wriggling conveying mechanism based on magnetic control |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002544438A (en)* | 1999-05-17 | 2002-12-24 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. | Micro mechanic pump |
US6435840B1 (en)* | 2000-12-21 | 2002-08-20 | Eastman Kodak Company | Electrostrictive micro-pump |
EP1270066A3 (en)* | 2001-06-27 | 2004-06-30 | Tosoh Corporation | Method for transporting liquid, and microreactor |
EP1279436A3 (en)* | 2001-07-24 | 2004-01-02 | Lg Electronics Inc. | Handling and delivering fluid through a microchannel in an elastic substrate by progressively squeezing the microchannel along its length |
JP2006513355A (en)* | 2003-01-28 | 2006-04-20 | ツィンファ ユニバーシティ | Method for fluid transfer and micro peristaltic pump |
US8353685B2 (en) | 2003-01-28 | 2013-01-15 | Capitalbio Corporation | Method for fluid transfer and the micro peristaltic pump |
US7527741B2 (en) | 2003-07-24 | 2009-05-05 | Ryoichi Aogaki | Microreactor including magnetic barrier |
EP1666136A4 (en)* | 2003-07-24 | 2006-09-06 | Ryoichi Aogaki | Microreactor including magnetic barrier |
JP2008500494A (en)* | 2004-05-25 | 2008-01-10 | カリフォルニア インスティテュート オブ テクノロジー | Electromagnetically operated in-line actuator |
KR100618320B1 (en)* | 2004-09-14 | 2006-08-31 | 삼성전자주식회사 | Fluid transfer device and disposable chip with same |
EP1834091A4 (en)* | 2004-12-14 | 2009-12-09 | Medipacs Inc | Actuator pump system |
US7859168B2 (en) | 2004-12-14 | 2010-12-28 | Medipacs, Inc. | Actuator pump system |
US8138656B2 (en) | 2004-12-14 | 2012-03-20 | Mediapacs, Inc. | Actuator pump system |
KR100779085B1 (en)* | 2005-12-08 | 2007-11-27 | 한국전자통신연구원 | Pump using electromagnetic actuators |
JP2009523470A (en)* | 2006-01-06 | 2009-06-25 | カリフォルニア インスティテュート オブ テクノロジー | Resonant multilayer impedance pump |
US10208158B2 (en) | 2006-07-10 | 2019-02-19 | Medipacs, Inc. | Super elastic epoxy hydrogel |
US9995295B2 (en) | 2007-12-03 | 2018-06-12 | Medipacs, Inc. | Fluid metering device |
FR2934361A1 (en)* | 2008-07-22 | 2010-01-29 | Commissariat Energie Atomique | DEVICE FOR VARYING THE PRESSURE OF A PNEUMATIC FLUID BY DISPLACING LIQUID DROPS AND HEAT PUMP USING SUCH A DEVICE |
WO2010010102A3 (en)* | 2008-07-22 | 2010-04-01 | Commissariat A L'energie Atomique | Device for varying the pressure of a pneumatic fluid by displacing drops of liquid and heat pump using such a device |
JP2012082690A (en)* | 2010-10-06 | 2012-04-26 | Keio Gijuku | Pump device and endoscope device using the same |
US10000605B2 (en) | 2012-03-14 | 2018-06-19 | Medipacs, Inc. | Smart polymer materials with excess reactive molecules |
JP2014114772A (en)* | 2012-12-11 | 2014-06-26 | Aquatech Co Ltd | Micropump |
JP2014132860A (en)* | 2013-01-10 | 2014-07-24 | Aquatech Co Ltd | Micropump unit |
US10598171B2 (en) | 2014-12-30 | 2020-03-24 | Nokia Technologies Oy | Microfluidic pump apparatus and methods |
WO2016107974A1 (en)* | 2014-12-30 | 2016-07-07 | Nokia Technologies Oy | Microfluidic pump apparatus and methods |
CN107110148A (en)* | 2014-12-30 | 2017-08-29 | 诺基亚技术有限公司 | Micro-fluid pump apparatus and method |
EP3040554A1 (en)* | 2014-12-30 | 2016-07-06 | Nokia Technologies OY | Microfluidic pump apparatus and methods |
CN109475864A (en)* | 2016-06-29 | 2019-03-15 | 美天施生物科技有限责任公司 | Multistage disposable cartridges for Biosample |
CN109475864B (en)* | 2016-06-29 | 2022-03-04 | 美天施生物科技有限两合公司 | Multi-stage disposable cartridge for biological samples |
CZ307764B6 (en)* | 2017-12-13 | 2019-04-17 | Západočeská Univerzita V Plzni | Peristaltic pump with magnetoelastic drive |
JP2022509949A (en)* | 2018-11-19 | 2022-01-25 | ジ インターディシプリナリー センター ヘルツリーヤ プロジェクツ リミテッド | Biological fluid system |
CN113576371A (en)* | 2021-07-02 | 2021-11-02 | 柏为(武汉)医疗科技股份有限公司 | Endoscope and detection instrument |
CN113576371B (en)* | 2021-07-02 | 2024-03-15 | 柏为(武汉)医疗科技股份有限公司 | Endoscope and detecting instrument |
CN115450888A (en)* | 2022-08-09 | 2022-12-09 | 苏州仁甬得物联科技有限公司 | Wriggling conveying mechanism based on magnetic control |
Publication | Publication Date | Title |
---|---|---|
JPH09287571A (en) | Micro pump | |
JP4629231B2 (en) | Piezoelectric micro pump | |
US6629826B2 (en) | Micropump driven by movement of liquid drop induced by continuous electrowetting | |
JP3814132B2 (en) | Pump and driving method thereof | |
US4938742A (en) | Piezoelectric micropump with microvalves | |
US6415821B2 (en) | Magnetically actuated fluid handling devices for microfluidic applications | |
JP3039583B2 (en) | Valve and semiconductor manufacturing apparatus using the same | |
JP5456904B2 (en) | Microfluidic cartridge with parallel pneumatic interface plate | |
US5705018A (en) | Micromachined peristaltic pump | |
JP4695881B2 (en) | Method for fluid transfer and micro peristaltic pump | |
JP7123968B2 (en) | A positive displacement pump for medical fluids and a blood processing apparatus comprising a positive displacement pump for medical fluids and a method for controlling a positive displacement pump for medical fluids | |
GB2248891A (en) | Membrane micropump | |
JP5850436B2 (en) | Micro pump unit | |
KR100950926B1 (en) | Micropump with thin film driven by electromagnet | |
EP0902864A1 (en) | Pressure transfer modules | |
US8668474B2 (en) | Electro-active valveless pump | |
JPS6013994A (en) | Transfer of fluid | |
JPH0381585A (en) | piezo pump | |
JP4054798B2 (en) | Fluid transfer method | |
GB2179404A (en) | Peristaltic device | |
KR100868898B1 (en) | Piezoelectric Pump Using Stacked PET | |
KR102445223B1 (en) | Miocro pump | |
JPS6291675A (en) | Micropump | |
CN102588256A (en) | Single-layer dual-cavity vacuum drive peristaltic pump with automatically-closed one-way valve | |
TWI321190B (en) |
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval | Effective date:20040105 Free format text:JAPANESE INTERMEDIATE CODE: A971007 | |
A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20040113 | |
A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20040506 |