Movatterモバイル変換


[0]ホーム

URL:


JPH09235140A - Glass - Google Patents

Glass

Info

Publication number
JPH09235140A
JPH09235140AJP8046041AJP4604196AJPH09235140AJP H09235140 AJPH09235140 AJP H09235140AJP 8046041 AJP8046041 AJP 8046041AJP 4604196 AJP4604196 AJP 4604196AJP H09235140 AJPH09235140 AJP H09235140A
Authority
JP
Japan
Prior art keywords
glass
thin film
titanium oxide
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8046041A
Other languages
Japanese (ja)
Inventor
Kenichiro Suzuki
賢一郎 鈴木
Kensho Sugimoto
憲昭 杉本
Masahiro Sugiura
正洽 杉浦
Masaharu Noda
正治 野田
Hideki Ono
秀樹 大野
Yoshio Matsuo
美穂 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs IncfiledCriticalToyota Motor Corp
Priority to JP8046041ApriorityCriticalpatent/JPH09235140A/en
Publication of JPH09235140ApublicationCriticalpatent/JPH09235140A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】【課題】人手に頼ることなく自然に汚染物質を除去で
き、フォギングを防止できるガラスを提供する。【解決手段】膜厚が10〜200nmの光触媒活性を示
す金属酸化物の薄膜2をガラス1に形成する。光触媒が
光エネルギーを受けて励起されて、薄膜2に接触した汚
染物質が分解・除去されるため薄膜表面が清浄化され
る。また上記膜厚範囲内であれば、膜自体の吸収による
光触媒活性の低下が少なく、高い光透過率も維持され
る。
(57) [Abstract] [PROBLEMS] To provide a glass capable of naturally removing contaminants without relying on human hands and preventing fogging. SOLUTION: A thin film 2 of a metal oxide having a photocatalytic activity and having a film thickness of 10 to 200 nm is formed on a glass 1. The photocatalyst receives light energy and is excited to decompose and remove contaminants contacting the thin film 2, so that the thin film surface is cleaned. Further, within the above-mentioned film thickness range, the photocatalytic activity is less likely to decrease due to absorption of the film itself, and high light transmittance is maintained.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は家屋の扉などや、自
動車などに設けられるガラスに関する。例えば自動車の
窓ガラスにおいては、異物が付着して曇りが生じるいわ
ゆるフォギング(Fogging)現象が生じることが
知られている。本発明は、このフォギング現象を防止で
きるガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass provided on a door of a house, an automobile or the like. For example, in a window glass of an automobile, it is known that a so-called fogging phenomenon occurs in which foreign matter adheres to cause fogging. The present invention relates to glass capable of preventing this fogging phenomenon.

【0002】[0002]

【従来の技術】自動車の窓ガラスのフォギング現象は、
インストルメントパネルやシートなどの内装材が高温の
外気や日光によって加熱され、それらに含まれる添加剤
(例えば可塑剤、滑剤、酸化防止剤等)などの有機物質
が遊離・揮散してガラス表面に付着する汚染によって生
じる。また人体から発生する油分や埃、さらに喫煙時に
生じる煙草のヤニなども原因物質となる。
2. Description of the Prior Art The fogging phenomenon of automobile window glass is
Interior materials such as instrument panels and seats are heated by high-temperature outside air and sunlight, and organic substances such as additives (such as plasticizers, lubricants and antioxidants) contained in them are released and volatilized on the glass surface. It is caused by adhered pollution. In addition, oil and dust generated by the human body, and cigarette smoke generated during smoking are also causative substances.

【0003】このフォギングは、外観や室内への日照を
損なうばかりか、自動車の場合には視界が低下するとい
う問題が生じる。しかしながら従来は、フォギングが生
じた場合にガラスクリーナなどを用いてフォギングを除
去することが行われているのみである。
This fogging not only impairs the appearance and sunshine in the room, but also causes a problem that the visibility is lowered in the case of an automobile. However, conventionally, when the fogging occurs, the fogging is only removed by using a glass cleaner or the like.

【0004】[0004]

【発明が解決しようとする課題】ところがガラスクリー
ナなどを用いてフォギングを除去する作業は、特に自動
車室内など狭い空間において特に煩わしく、手間のかか
るものである。本発明はこのような事情に鑑みてなされ
たものであり、人手に頼ることなく自然に汚染物質を除
去でき、フォギングを防止できるガラスとすることを目
的とする。
However, the work of removing the fogging using a glass cleaner or the like is particularly troublesome and troublesome, especially in a narrow space such as an automobile interior. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a glass that can remove pollutants naturally without relying on human hands and can prevent fogging.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する請求
項1記載のガラスの特徴は、ガラス本体と、ガラス本体
表面に形成され膜厚が10〜200nmの光触媒活性を
示す金属酸化物の薄膜と、からなることにある。金属酸
化物の薄膜としては、請求項2に記載のように酸化チタ
ン、酸化ジルコニウム、酸化セリウム及び酸化鉄から選
ばれる少なくとも一種から選ぶことが望ましい。この中
でも、請求項3に記載のように薄膜は酸化チタンから形
成することが特に望ましい。
The glass according to claim 1 for solving the above-mentioned problems is characterized by a glass body and a thin film of a metal oxide formed on the surface of the glass body and having a film thickness of 10 to 200 nm and exhibiting photocatalytic activity. And, it consists of. The metal oxide thin film is preferably selected from at least one selected from titanium oxide, zirconium oxide, cerium oxide and iron oxide as described in claim 2. Among these, it is particularly preferable that the thin film is made of titanium oxide as described in claim 3.

【0006】そして請求項4に記載のように、本発明の
ガラスは自動車用窓ガラスに適用すると特に効果的であ
る。また請求項5に記載のように、本発明のガラスが室
内と室外の境界に設けられる場合には、金属酸化物の薄
膜はガラス本体の室内側の表面に形成することが望まし
い。
Further, as described in claim 4, the glass of the present invention is particularly effective when applied to window glass for automobiles. When the glass of the present invention is provided at the boundary between the room and the room as described in claim 5, the thin film of the metal oxide is preferably formed on the surface of the glass body on the room side.

【0007】[0007]

【発明の実施の形態】本発明者らは、フォギングの原因
となる汚染物質を化学的に分解除去することを想起し
た。そしてガラスに入射する日光を利用することを想起
し、光触媒を用いて汚染物質を分解除去することを想起
した。そして鋭意研究の結果、所定の金属酸化物から所
定膜厚の薄膜を形成することで、十分な光透過性を維持
しつつ汚染物質を速やかに分解除去できることを見い出
して本発明を完成したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conceived to chemically decompose and remove pollutants that cause fogging. Then, I recalled using sunlight incident on the glass, and recalled that the photocatalyst was used to decompose and remove pollutants. As a result of intensive research, they have completed the present invention by discovering that by forming a thin film of a predetermined thickness from a predetermined metal oxide, contaminants can be rapidly decomposed and removed while maintaining sufficient light transmission. is there.

【0008】請求項1に記載のガラスでは、ガラス本体
表面に膜厚が10〜200nmの光触媒活性を示す金属
酸化物の薄膜が形成されている。このガラスでは、薄膜
表面に付着した汚染物質は、日光あるいは室内側の光に
より励起された金属酸化物の光触媒作用により主として
酸化分解され、速やかに除去される。すなわち、光触媒
が光エネルギーを受けて励起され、光触媒表面に励起電
子が生じるとともに励起電子のいわば抜け殻である正孔
が生じる。この状態の薄膜表面にアミン塩、油脂などの
汚染物質が接触すると、励起電子による還元力と正孔に
よる酸化力による汚染物質の分解反応が生じ、汚染物質
が分解・除去されて薄膜表面が清浄化される。
In the glass according to the first aspect, a thin film of a metal oxide having a photocatalytic activity and having a film thickness of 10 to 200 nm is formed on the surface of the glass body. In this glass, the contaminants attached to the thin film surface are mainly oxidatively decomposed by the photocatalytic action of the metal oxide excited by sunlight or indoor light, and are quickly removed. That is, the photocatalyst is excited by receiving light energy, and excited electrons are generated on the surface of the photocatalyst, and holes, which are so-called shells of the excited electrons, are generated. When contaminants such as amine salts and fats and oils come into contact with the thin film surface in this state, decomposition reactions of the contaminants occur due to the reducing power of excited electrons and the oxidizing power of holes, and the contaminants are decomposed and removed to clean the thin film surface. Be converted.

【0009】この薄膜の膜厚が10nmより薄いと、均
一な薄膜を形成することが困難となって光触媒活性が低
下するため、汚染物質の速やかな除去が困難となる。ま
た膜厚が200nmより厚くなると、薄膜自体による光
吸収が増大するために、汚染物質の除去効率が低下し可
視光の透過率も低下する。膜厚をこの範囲とすることに
より、70%以上の高い光透過率とフォギング防止作用
とが両立する。
If the thickness of this thin film is less than 10 nm, it is difficult to form a uniform thin film and the photocatalytic activity is lowered, so that it is difficult to remove contaminants quickly. When the film thickness is more than 200 nm, light absorption by the thin film itself increases, so that the contaminant removal efficiency decreases and the visible light transmittance also decreases. By setting the film thickness within this range, a high light transmittance of 70% or more and a fogging prevention function are compatible with each other.

【0010】なお、特開平6−278241号公報に
は、光触媒作用をもつ金属酸化物の薄膜を外壁材や天井
材などの建築物部位に形成することで、防臭性や防黴性
を付与することが記載されているが、その好ましい膜厚
は数μm程度と記載され、本発明とは膜厚の桁が異な
り、このような高膜厚では可視光透過率が低すぎて特に
自動車用窓ガラスには到底適用することが困難である。
In Japanese Unexamined Patent Publication (Kokai) No. 6-278241, a thin film of a metal oxide having a photocatalytic action is formed on a building site such as an outer wall material or a ceiling material to impart deodorizing property and antifungal property. However, the preferable film thickness is described as about several μm, and the order of the film thickness is different from that of the present invention. With such a high film thickness, the visible light transmittance is too low, especially for automobile windows. It is very difficult to apply to glass.

【0011】ガラス本体の材質としては、特に制限され
ず、一般の窓ガラスなどに用いられている光透過可能な
ものを利用できる。また自動車用の窓ガラスの場合に
は、クリアガラス、グリーンガラス、ブロンズガラスな
ど各種ガラスを用いることができる。薄膜を構成する金
属酸化物としては、高い光触媒作用を示すとともに薄膜
とした場合に光透過率の高いものが望ましく、酸化チタ
ン(TiO2)、酸化ジルコニウム(ZrO2)、酸化
セリウム(CeO2)及び酸化鉄(Fe23)が例示
される。中でも酸化チタンが価電子帯レベルが深いので
エネルギー準位が低く、酸化力が強いため特に優れてい
る。これらの金属酸化物は、単独で用いてもよいし、複
数種類組み合わせることもできる。
The material of the glass body is not particularly limited, and a light transmissive material used for general window glass or the like can be used. In the case of window glass for automobiles, various glasses such as clear glass, green glass and bronze glass can be used. The metal oxide constituting the thin film is preferably one having a high photocatalytic action and a high light transmittance when formed into a thin film, such as titanium oxide (TiO2 ), zirconium oxide (ZrO2 ), and cerium oxide (CeO2 ). And iron oxide (Fe2 O3 ) are exemplified. Among them, titanium oxide is particularly excellent because it has a deep valence band level and thus has a low energy level and strong oxidizing power. These metal oxides may be used alone or in combination of two or more kinds.

【0012】薄膜の特に好ましい膜厚は、酸化チタンの
場合には10〜200nm、酸化ジルコニウムの場合に
は10〜150nm、酸化セリウムの場合には10〜1
20nm、酸化鉄の場合には10〜90nmである。さ
らに、上記金属酸化物に白金(Pt)、ニオブ(N
b)、タングステン(W)、金(Au)などの助触媒成
分を金属又は化合物の状態で添加することも好ましい。
この助触媒成分は上記金属酸化物の光触媒活性を促進さ
せる作用をもち、汚染物質の分解反応が一層促進され
る。この助触媒成分の添加量は、上記金属酸化物に対し
て0.05〜2重量%の範囲が好ましい。助触媒成分の
添加量が0.05重量%未満では添加効果が得られず、
2重量%以上添加しても効果が飽和するとともに可視光
透過率が低下し、またコストの増大を招く。
The particularly preferable thickness of the thin film is 10 to 200 nm in the case of titanium oxide, 10 to 150 nm in the case of zirconium oxide, and 10 to 1 in the case of cerium oxide.
It is 20 nm, and in the case of iron oxide, it is 10 to 90 nm. Furthermore, platinum (Pt), niobium (N
It is also preferable to add a promoter component such as b), tungsten (W), or gold (Au) in a metal or compound state.
This co-catalyst component has a function of promoting the photocatalytic activity of the metal oxide, and further promotes the decomposition reaction of pollutants. The amount of the promoter component added is preferably in the range of 0.05 to 2% by weight based on the metal oxide. If the amount of the promoter component added is less than 0.05% by weight, the effect of addition cannot be obtained,
Even if added in an amount of 2% by weight or more, the effect is saturated, the visible light transmittance is lowered, and the cost is increased.

【0013】上記薄膜の形成方法としては、スプレーコ
ート法、ディップコート法、ロールコート法、スパッタ
リング法などを単独であるいは複数種類組み合わせて用
いることができる。また膜厚が不足する場合には、何度
か繰り返してコートすることで所定膜厚の薄膜を形成す
る。そして、これらの方法でガラス本体にコートした
後、例えば室温から徐々に400〜700℃程度の間の
温度まで加熱することでガラス本体に焼き付ける。なお
このとき、酸素濃度は10〜50体積%、バックグラウ
ンドガスとしては窒素、アルゴン、ヘリウムなどの不活
性ガスを用いるのがよい。また薄膜形成に先立って、ガ
ラス本体表面を重クロム酸混液、硝酸などの酸や、水酸
化カリウム、水酸化ナトリウムなどのアルカリで洗浄す
るのが好ましい。この洗浄により、金属酸化物とガラス
本体のSiとの酸素原子を介した結合が多くなり、薄膜
のガラス本体への付着性が向上する。
As a method for forming the above-mentioned thin film, a spray coating method, a dip coating method, a roll coating method, a sputtering method and the like can be used alone or in combination of two or more kinds. Further, when the film thickness is insufficient, the film is repeatedly coated several times to form a thin film having a predetermined film thickness. After coating the glass body by these methods, the glass body is baked by gradually heating from room temperature to a temperature of about 400 to 700 ° C. At this time, the oxygen concentration is preferably 10 to 50% by volume, and an inert gas such as nitrogen, argon or helium is preferably used as the background gas. Prior to forming the thin film, the surface of the glass body is preferably washed with a mixed solution of dichromic acid, an acid such as nitric acid, or an alkali such as potassium hydroxide or sodium hydroxide. By this cleaning, the number of bonds between the metal oxide and Si of the glass body via oxygen atoms increases, and the adhesion of the thin film to the glass body is improved.

【0014】なお本発明のガラスは、例示した自動車用
窓ガラスのほかに、電車、航空機などで使用されるガラ
スや、家屋の扉、窓などに利用できる。
The glass of the present invention can be used not only in the exemplified window glass for automobiles but also in glass used in trains, airplanes, doors and windows of houses.

【0015】[0015]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。図1に本実施例のガラスの断面図を示
す。このガラスは、ガラス基板1と、ガラス基板1の片
面にコートされた酸化チタン薄膜2と、より構成されて
いる。このガラスは以下のようにして形成された。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. FIG. 1 shows a cross-sectional view of the glass of this example. This glass is composed of a glass substrate 1 and a titanium oxide thin film 2 coated on one surface of the glass substrate 1. This glass was formed as follows.

【0016】100mm×100mm×3.5mmのガ
ラス基板1を洗浄後、片面をマスクした。次にテトライ
ソプロポキシチタン100gと、ジエタノールアミン7
5gをn−ブタノール325gに混合したゾル液を調製
し、このゾル液中に上記ガラス基板を浸漬した後、所定
速度で引き上げて片面にゾル液をコートした。そして空
気中100℃で1時間乾燥後、空気流下500℃で2時
間焼成して、酸化チタン薄膜2を形成した。
After washing the glass substrate 1 of 100 mm × 100 mm × 3.5 mm, one surface was masked. Next, 100 g of tetraisopropoxy titanium and diethanolamine 7
A sol solution prepared by mixing 5 g of n-butanol with 325 g was prepared, and the above glass substrate was immersed in this sol solution and then pulled up at a predetermined speed to coat the sol solution on one surface. Then, after drying in air at 100 ° C. for 1 hour, it was baked at 500 ° C. for 2 hours in an air stream to form a titanium oxide thin film 2.

【0017】この際、引き上げ速度が大きいほど酸化チ
タン薄膜2の膜厚が厚くなり、引き上げ速度を3mm/
分、15mm/分、35mm/分及び50mm/分とす
ることにより、膜厚がそれぞれ10nm、60nm、1
50nm及び200nmの酸化チタン薄膜2を形成し
た。なお、比較のために酸化チタン薄膜2を形成しない
ガラス基板1のみと、引き上げ速度を2mm/分とする
ことにより酸化チタン薄膜2の膜厚が7nmと薄いもの
と、引き上げ速度50mm/分でのコートをそれぞれ5
回と30回行い膜厚がそれぞれ1000nmと6000
nmの酸化チタン薄膜2を形成したものを比較例とし
た。
At this time, the higher the pulling rate is, the thicker the titanium oxide thin film 2 is, and the pulling rate is 3 mm /
Min, 15 mm / min, 35 mm / min and 50 mm / min, the film thicknesses are 10 nm, 60 nm, 1 respectively.
The titanium oxide thin film 2 having a thickness of 50 nm and 200 nm was formed. For comparison, only the glass substrate 1 on which the titanium oxide thin film 2 is not formed, the titanium oxide thin film 2 having a thin film thickness of 7 nm by setting the pulling rate to 2 mm / min, and the pulling rate of 50 mm / min. 5 coats each
And 30 times, the film thickness is 1000 nm and 6000 respectively.
What formed the titanium oxide thin film 2 of nm was made into the comparative example.

【0018】得られたそれぞれの酸化チタン薄膜2の構
造を透過電子顕微鏡観察及びX線回折測定により解析し
たところ、酸化チタン薄膜2はアナターゼ構造が主成分
で粒径20〜50nmの酸化チタン微粒子が緻密に詰ま
った構造であった。次に、汚染成分の油脂分の代表的な
ものとしてステアリン酸を選び、それぞれの酸化チタン
薄膜2表面に2×10-7mol/cm2の量で塗布し
た。そして酸化チタン薄膜2が形成されていない片側の
表面から、波長360nmで光強度2.6mW/cm2
のブラックライトを照射し、照射時間に対するヘーズ値
(曇度)を測定した結果を図2に示す。また照射時間6
時間後のヘーズ値を表1に示す。なお、ヘーズ値は次式
により算出される値であり、ヘーズ値が大きいほど曇り
度合いが高いことを意味する。
The structure of each of the obtained titanium oxide thin films 2 was analyzed by transmission electron microscope observation and X-ray diffraction measurement. As a result, the titanium oxide thin films 2 were composed of titanium oxide fine particles having an anatase structure as a main component and a particle size of 20 to 50 nm. The structure was closely packed. Next, stearic acid was selected as a representative oil and fat component as a contaminant, and was applied to the surface of each titanium oxide thin film2 in an amount of 2 × 10−7 mol / cm2 . Then, from one surface on which the titanium oxide thin film 2 is not formed, the light intensity is 2.6 mW / cm2 at a wavelength of 360 nm.
The results of measuring the haze value (cloudiness) with respect to the irradiation time are shown in FIG. Also irradiation time 6
Table 1 shows haze values after the elapse of time. The haze value is a value calculated by the following equation, and the larger the haze value, the higher the degree of haze.

【0019】ヘーズ値(%)=(拡散光透過率/全光線
透過率)×100
Haze value (%) = (diffused light transmittance / total light transmittance) × 100

【0020】[0020]

【表1】図2より、酸化チタン薄膜2を形成しないガラス基板1
のみでは光照射時間が長くなってもヘーズ値の変化がほ
とんど観測されないのに対し、酸化チタン薄膜2を形成
した各ガラスでは光照射時間とともにヘーズ値が低下
し、酸化チタン薄膜2の光触媒作用によりステアリン酸
の汚れが徐々に分解除去されていることがわかる。
[Table 1] From FIG. 2, the glass substrate 1 on which the titanium oxide thin film 2 is not formed
Although the change in the haze value was hardly observed even when the light irradiation time was long, the haze value decreased with the light irradiation time in each glass on which the titanium oxide thin film 2 was formed, and the photocatalytic action of the titanium oxide thin film 2 It can be seen that the stearic acid stains are gradually decomposed and removed.

【0021】しかし酸化チタン薄膜2の膜厚が7nmと
極度に薄い場合及び膜厚が1000nm以上と極度に厚
い場合には、ヘーズ値の低下度合いが緩慢であり、6時
間光照射後においてもヘーズ値が2.8以上と高い。と
ころで自動車用窓ガラスにおいて透明な状態とは、ヘー
ズ値が1以下を意味する。因みに10〜200nmの膜
厚の酸化チタン薄膜をもつガラスの場合には、6時間光
照射後の可視光透過率は80%以上であるが、膜厚が1
0nm未満及び1000nm以上の酸化チタン薄膜2を
もつガラスでは、6時間光照射後の可視光透過率は70
%未満であった。
However, when the titanium oxide thin film 2 is extremely thin with a thickness of 7 nm and extremely thick with a thickness of 1000 nm or more, the haze value decreases slowly, and the haze is maintained even after 6 hours of light irradiation. The value is as high as 2.8 or higher. By the way, a transparent state in an automobile window glass means that the haze value is 1 or less. Incidentally, in the case of a glass having a titanium oxide thin film with a film thickness of 10 to 200 nm, the visible light transmittance after light irradiation for 6 hours is 80% or more, but the film thickness is 1
In the glass having the titanium oxide thin film 2 of less than 0 nm and 1000 nm or more, the visible light transmittance after irradiation with light for 6 hours is 70.
%.

【0022】なお、太陽光の光強度は2〜3mW/cm
2と上記ブラックライトと同等である。したがって10
〜200nmの膜厚の酸化チタン薄膜2をもつガラスの
場合には、6時間とほぼ一日の日照時間内にステアリン
酸を分解除去することができるので、汚染物質が蓄積さ
れず清浄な表面を維持することができ、フォギングが防
止される。しかし膜厚が1000nm以上の酸化チタン
薄膜2をもつガラスの場合には、6時間以内にステアリ
ン酸を分解除去することが困難であり、汚染物質が次第
に蓄積されることとなるから、フォギングを防止するこ
とが困難である。
The light intensity of sunlight is 2-3 mW / cm.
2 is equivalent to the above black light. Therefore 10
In the case of a glass having a titanium oxide thin film 2 with a thickness of up to 200 nm, stearic acid can be decomposed and removed within the sunshine duration of 6 hours, which is a clean surface without accumulation of contaminants. It can be maintained and fogging is prevented. However, in the case of a glass having a titanium oxide thin film 2 with a thickness of 1000 nm or more, it is difficult to decompose and remove stearic acid within 6 hours, and contaminants are gradually accumulated. Therefore, fogging is prevented. Difficult to do.

【0023】すなわち、酸化チタン薄膜2の膜厚を10
〜200nmとすることにより、屋外で使用される自動
車の窓ガラスにおいては自然に汚染物質を分解・除去す
ることができ、汚染物質の蓄積が防止される。
That is, the thickness of the titanium oxide thin film 2 is set to 10
By setting the thickness to 200 nm, contaminants can be naturally decomposed and removed in the window glass of an automobile used outdoors, and the accumulation of contaminants can be prevented.

【0024】[0024]

【発明の効果】すなわち本発明のガラスによれば、光触
媒作用により油脂分や煙草のヤニ分などの汚染物質を速
やかに分解除去することができ、汚染物質の蓄積が防止
されるので、汚染物質を物理的に除去する必要なくフォ
ギングを防止することができる。
According to the glass of the present invention, contaminants such as fats and oils and tars of cigarettes can be rapidly decomposed and removed by the photocatalytic action, and the accumulation of contaminants is prevented. Fogging can be prevented without the need to physically remove it.

【0025】また本発明のガラスを自動車に用いれば、
一日の日照時間内に汚染物質を日光により自然に分解・
除去できるので、ガラスクリーナなどによる除去作業を
行わなくてもフォギングを半永久的に防止することが可
能となる。
If the glass of the present invention is used in an automobile,
Naturally decomposes pollutants by sunlight during the daylight hours
Since it can be removed, it is possible to semi-permanently prevent fogging without performing a removing operation with a glass cleaner or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のガラスの断面図である。FIG. 1 is a cross-sectional view of glass according to an embodiment of the present invention.

【図2】各膜厚の酸化チタン薄膜をもちその薄膜に汚染
物質を付着させたガラスについての光照射時間とヘーズ
値の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a light irradiation time and a haze value for a glass having a titanium oxide thin film of each thickness and a contaminant attached to the thin film.

【符号の説明】[Explanation of symbols]

1:ガラス基板(ガラス本体) 2:酸化チタン薄膜 1: Glass substrate (glass body) 2: Titanium oxide thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 憲昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 野田 正治 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 大野 秀樹 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 松尾 美穂 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriaki Sugimoto, Nagachite-cho, Aichi-gun, Aichi Prefecture, Nagachoji 1 41 of Yokomichi, Toyota Central Research Institute Co., Ltd. (72) Inventor Masahiro Sugiura, Aichi-gun 1 in 41 Chuo Yokoido Central Research Institute Co., Ltd. (72) Inventor Shoji Noda 1 in Nagakute-cho, Aichi-gun, Aichi Pref. 1 in 41 Toyota Yoko Central Research Center (72) Inventor Hideki Ohno Aichi Toyota-cho, Toyota-shi, Toyota-shi, Japan (72) Inventor Miho Matsuo 1-cho, Toyota-cho, Toyota-shi, Aichi Toyota-auto, Ltd.

Claims (5)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 ガラス本体と、該ガラス本体表面に形成
され膜厚が10〜200nmの光触媒活性を示す金属酸
化物の薄膜と、からなることを特徴とするガラス。
1. A glass comprising a glass body and a thin film of a metal oxide formed on the surface of the glass body and having a film thickness of 10 to 200 nm and exhibiting photocatalytic activity.
【請求項2】 前記薄膜は酸化チタン、酸化ジルコニウ
ム、酸化セリウム及び酸化鉄から選ばれる少なくとも一
種から形成されていることを特徴とする請求項1記載の
ガラス。
2. The glass according to claim 1, wherein the thin film is formed of at least one selected from titanium oxide, zirconium oxide, cerium oxide and iron oxide.
【請求項3】 前記薄膜は酸化チタンから形成されてい
ることを特徴とする請求項1記載のガラス。
3. The glass according to claim 1, wherein the thin film is made of titanium oxide.
【請求項4】 前記ガラスは自動車用窓ガラスであるこ
とを特徴とする請求項1記載のガラス。
4. The glass according to claim 1, wherein the glass is an automobile window glass.
【請求項5】 前記金属酸化物の薄膜は前記ガラス本体
の室内側の表面に形成されてなることを特徴とする請求
鋼記載のガラス。
5. The glass according to claim 1, wherein the metal oxide thin film is formed on the surface of the glass body on the indoor side.
JP8046041A1996-03-041996-03-04 GlassPendingJPH09235140A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP8046041AJPH09235140A (en)1996-03-041996-03-04 Glass

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP8046041AJPH09235140A (en)1996-03-041996-03-04 Glass

Publications (1)

Publication NumberPublication Date
JPH09235140Atrue JPH09235140A (en)1997-09-09

Family

ID=12735954

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP8046041APendingJPH09235140A (en)1996-03-041996-03-04 Glass

Country Status (1)

CountryLink
JP (1)JPH09235140A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6013372A (en)*1995-03-202000-01-11Toto, Ltd.Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof
US6090489A (en)*1995-12-222000-07-18Toto, Ltd.Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
JP2001080974A (en)*1999-09-082001-03-27Fuji Photo Film Co LtdComposite base plate material and method for producing the same
US6337129B1 (en)1997-06-022002-01-08Toto Ltd.Antifouling member and antifouling coating composition
US6485838B1 (en)1999-05-212002-11-26Jsr CorporationCoating composition, and a coated film and glass each having a coating layer comprised thereof
US6673433B1 (en)1998-10-192004-01-06Toto Ltd.Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
US6680135B2 (en)1995-09-152004-01-20Saint-Gobain Glass FranceSubstrate with a photocatalytic coating
US6722159B2 (en)1997-03-142004-04-20Ppg Industries Ohio, Inc.Photocatalytically-activated self-cleaning article and method of making same
US6830785B1 (en)1995-03-202004-12-14Toto Ltd.Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
DE112021007781T5 (en)2021-06-072024-03-28Mitsubishi Electric Corporation Coating composition, coating film and article, optical device and lighting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6830785B1 (en)1995-03-202004-12-14Toto Ltd.Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
US6013372A (en)*1995-03-202000-01-11Toto, Ltd.Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with superhydrophilic photocatalytic surface, and method of making thereof
US6846556B2 (en)1995-09-152005-01-25Saint-Gobain Glass FranceSubstrate with a photocatalytic coating
US6680135B2 (en)1995-09-152004-01-20Saint-Gobain Glass FranceSubstrate with a photocatalytic coating
US7597930B2 (en)1995-09-152009-10-06Saint-Gobain Glass FranceSubstrate with a photocatalytic coating
US6090489A (en)*1995-12-222000-07-18Toto, Ltd.Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
US6722159B2 (en)1997-03-142004-04-20Ppg Industries Ohio, Inc.Photocatalytically-activated self-cleaning article and method of making same
US7049002B2 (en)1997-03-142006-05-23Ppg Industries Ohio, Inc.Photocatalytically-activated self-cleaning article and method of making same
US6337129B1 (en)1997-06-022002-01-08Toto Ltd.Antifouling member and antifouling coating composition
US6673433B1 (en)1998-10-192004-01-06Toto Ltd.Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
US6485838B1 (en)1999-05-212002-11-26Jsr CorporationCoating composition, and a coated film and glass each having a coating layer comprised thereof
JP2001080974A (en)*1999-09-082001-03-27Fuji Photo Film Co LtdComposite base plate material and method for producing the same
US6926966B2 (en)*1999-09-082005-08-09Fuji Photo Film Co., Ltd.Composite substrate material and process for producing the same
DE112021007781T5 (en)2021-06-072024-03-28Mitsubishi Electric Corporation Coating composition, coating film and article, optical device and lighting device

Similar Documents

PublicationPublication DateTitle
JP4777673B2 (en) Sheet glass with photocatalytic coating
US6939611B2 (en)Window glass employing titanium dioxide photocatalyst
US6194346B1 (en)Photocatalyst and method of making
EP2343125B1 (en)Hydrophilic films and components and structures using same
KR100973747B1 (en) Substrate with self-cleaning coating
JPH0751646A (en)Method for cleaning off contaminant on solid matter surface
JPH09235140A (en) Glass
JP2002234105A (en)Hydrophilic member and method for manufacturing the same
CA2241059C (en)Photocatalyst process for making surface hydrophillic
JP3961097B2 (en) Blind slat manufacturing method
JP3264317B2 (en) Photocatalytic hydrophilic member and method for producing the same
JP2000513755A (en) Organic hazardous substance removal system and method therefor
JP3780592B2 (en) Photocatalyst composition, method for producing the same, and substrate with photocatalyst composition
JP3595996B2 (en) Photocatalyst composition and method for producing the same
JP2001079978A (en)Hydrophilic member
HK1210735A1 (en)Photokatalytisch aktives material zur luftreinigung
JPH1085599A (en) Photocatalyst composition and method for producing the same
JP2005281557A (en)Coating and catalyst molded product given by using the same
JP4232217B2 (en) Lighting device and lamp with photocatalyst film
EP2615148A1 (en)Allergen inactivator, allergen inactivator composition, coated material, air purification filter, and allergen inactivation method
JPH105513A (en)Oil collecting filter having oil decomposing power and its production
JP2000197827A (en) Air purification material
JP2004292225A (en) Titanium oxide, photocatalyst, photocatalyst coating agent, and method for producing titanium oxide
JP2000197824A (en) Air purification material
JP4915635B2 (en) panel

[8]ページ先頭

©2009-2025 Movatter.jp