【0001】[0001]
【発明の属する技術分野】本発明はガラス、セラミック
等の電子装置を構成する基板の切断方法及び切断装置に
関し、特に細幅で精度の良い切断を行うための切断方法
及び切断装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting method and a cutting apparatus for a substrate that constitutes an electronic device such as glass and ceramics, and more particularly to a cutting method and a cutting apparatus for performing accurate cutting with a narrow width. .
【0002】[0002]
【従来の技術】従来、半導体素子あるいは機能素子を1
つのガラス基板あるいはセラミック基板上に多数個取り
で構成し、これを各チップに切断して分離する場合、あ
るいは、多数個取りではないが、所望の大きさにサイズ
を揃える為に、前記基板の端部を切断して分離する場
合、スクライバー、スライサー、マイクログラインダー
のような機械加工により切断し、さらに、必要であれ
ば、端面部のラッピング仕上げ等を行っている。また、
最近ではYAGあるいはCO2レーザー等の高出力レー
ザーによる切断加工も行なわれている。2. Description of the Related Art Conventionally, a semiconductor element or a functional element is
When a glass substrate or a ceramic substrate is made up of a large number of pieces and is cut into individual chips for separation, or in order not to obtain a large number of pieces but to adjust the size to a desired size, When the end portion is cut and separated, it is cut by a machining process such as a scriber, a slicer, or a micro grinder, and if necessary, lapping finish of the end face portion is performed. Also,
Recently, cutting with a high power laser such as a YAG or CO2 laser has been performed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来例においては以下のような問題点があった。However, the above-mentioned conventional example has the following problems.
【0004】すなわち、スクライバーによる切断におい
ては、図4に示したように基板の表面に鋭利に溝をつ
け、その後ブレークにより分離するが、この際、特に元
の基板の大きさが大面積の場合、ブレーク時に図5のa
で示した部分のように切断の長さ方向に100μm以上
のうねりを生じる。さらに基板の厚さが例えば1.1m
m程度と厚い場合、厚み方向は直角にはブレークされ
ず、図5のbで示した部分のように、厚み方向が斜めに
なり、最悪b部の幅が500μmにもなることがある。
この場合、最終仕上げとして切断面をラッピングするこ
とが行なわれるが、複数の工程を併用しなければなら
ず、コストアップになるとともに、切り離される部分の
幅が狭いと、図6で示したように、切り離される部分の
一部が元の基板に残ってしまい全く使用不能になる場合
がある。厚さ1.1mmの場合、切り離される基板の幅
がおよそ2mm以下のときに、このようなことが起こり
やすい。さらに複数の基板が接着されている場合、例え
ばガラスが接着されて形成されている場合の切断におい
ては上記の問題点がさらに顕著になる。That is, in cutting with a scriber, as shown in FIG. 4, a groove is sharply formed on the surface of the substrate and then separated by a break. At this time, especially when the original substrate has a large area. , At the time of a break in Figure 5a
A waviness of 100 μm or more is generated in the lengthwise direction of cutting as shown by the portion. Furthermore, the thickness of the substrate is 1.1 m, for example.
When the thickness is about m, the thickness direction is not broken at a right angle, the thickness direction may be inclined as in the portion shown by b in FIG. 5, and the width of the b portion may reach 500 μm at worst.
In this case, the cut surface is lapped as a final finish, but a plurality of steps must be used together, resulting in an increase in cost and a narrow portion to be cut off, as shown in FIG. , A part of the separated part may remain on the original substrate and become completely unusable. With a thickness of 1.1 mm, this is likely to occur when the width of the substrate to be cut off is about 2 mm or less. Further, when a plurality of substrates are adhered, for example, in the case where glass is adhered and formed, the above problem becomes more remarkable in cutting.
【0005】また、スライサーあるいは、マイクログラ
インダーによる切断においては、スクライバーにおける
うねりの問題は改善できるが、ブレードを用いた切断方
式のため、以下のような問題点があった。Further, in cutting with a slicer or a micro grinder, the problem of undulation in the scriber can be improved, but the cutting method using a blade has the following problems.
【0006】すなわち、ガラス、セラミック等の切断に
は一般的にレジンブレードが用いられるが、この場合、
ブレードのダイヤモンド粒径を小さくすることにより、
チッピングを例えば20μm以下にすることも可能であ
る。しかしながら、レジンブレードを用いた場合、切断
巾を狭くすると、レジンブレードは機械的強度が弱いた
め、ブレードが切断中に割れてしまうことがあり、安定
した切断ができなくなる。さらに、ダイヤモンド粒径を
小さくすると、切断粉によるブレードの目詰まりにより
切断性能が低下し、ブレードがさらに割れやすくなると
いう欠点を有している。このような理由から、レジンブ
レードを用いて安定した切断を行おうとすると、切断幅
を200μm以下とすることは困難である。That is, a resin blade is generally used for cutting glass, ceramics, etc. In this case,
By reducing the diamond grain size of the blade,
It is possible to reduce the chipping to, for example, 20 μm or less. However, when a resin blade is used, if the cutting width is narrowed, the resin blade has a weak mechanical strength, so that the blade may be broken during cutting and stable cutting cannot be performed. Further, when the diamond particle size is reduced, the cutting performance is deteriorated due to the clogging of the blade due to the cutting powder, and the blade is more easily broken. For these reasons, it is difficult to reduce the cutting width to 200 μm or less when attempting stable cutting with a resin blade.
【0007】また、レジンブレードはその切断の原理
上、古くなったダイヤモンドが切断中に脱落し、鋭利な
ダイヤモンドが常にブレード表面に存在することによっ
て良好な切断ができるようになっている。したがって、
ブレードは常に磨耗し、図7に示したようにテーパー状
となり、切断面が垂直に切れなくなるという欠点も有し
ている。Further, in the resin blade, due to the principle of cutting, old diamond is dropped during cutting, and sharp diamond is always present on the blade surface, so that good cutting can be performed. Therefore,
The blade always wears and becomes tapered as shown in FIG. 7, so that the cutting surface cannot be cut vertically.
【0008】これらの欠点を改善するために、機械的強
度が強く、摩耗にも強いメタルブレードあるいは電鋳ブ
レードを用いることが考えられる。このようなブレード
を用いた場合、チッピングを50〜100μm許容した
として、切断幅を100μm程度とすることも可能であ
る。しかしながら、メタルブレードあるいは電鋳ブレー
ドは、前記のレジンブレードに比較して切断中のダイヤ
モンドの脱落が少ないため、ブレード面の切断性が使用
中に低下する場合があり、またブレード面への切断粉の
付着のためにさらに切れ味が悪くなるという不具合を生
ずる。この結果、これらのブレードを用いても、切れ味
の低下によりチッピングが突発的に大きくなることがあ
り、安定にチッピング量が小さいまま切断することは困
難であった。In order to remedy these drawbacks, it is conceivable to use a metal blade or an electroformed blade which has high mechanical strength and is resistant to wear. When such a blade is used, it is possible to set the cutting width to about 100 μm, assuming that chipping is allowed to be 50 to 100 μm. However, the metal blade or the electroformed blade is less likely to drop diamond during cutting as compared with the resin blade described above, so that the cutting property of the blade surface may decrease during use, and the cutting powder to the blade surface may also be reduced. As a result, the problem that the sharpness becomes worse due to the adherence of As a result, even with these blades, chipping may suddenly increase due to a decrease in sharpness, and it is difficult to stably cut with a small amount of chipping.
【0009】YAGあるいはCO2レーザーを用いる切
断においては、切断部の盛り上がりあるいはダレが発生
し、精密加工上許容できる範囲になく、さらに、基板が
広い範囲で高温となり、例えば非晶質シリコンを用いた
固体画像表示装置あるいは画像読取り装置においては、
高温で非晶質シリコンが劣化する場合があり、用いるこ
とができなかった。In cutting using a YAG or CO2 laser, swelling or sagging of the cut portion occurs, which is not within the allowable range for precision processing, and the temperature of the substrate is high in a wide range. For example, amorphous silicon is used. In the conventional solid-state image display device or image reading device,
The amorphous silicon may be deteriorated at a high temperature, so that it cannot be used.
【0010】従って、本発明は上述した課題に鑑みてな
されたものであり、その第1の目的は、チッピング等が
ほとんど発生せず、切断幅も非常に狭くすることができ
る基板の切断方法を提供することである。Therefore, the present invention has been made in view of the above problems, and a first object thereof is to provide a method of cutting a substrate in which chipping or the like hardly occurs and the cutting width can be made extremely narrow. Is to provide.
【0011】また、本発明の第2の目的は、切断後の仕
上げ加工が不要となる基板の切断方法を提供することで
ある。A second object of the present invention is to provide a method of cutting a substrate which does not require finishing work after cutting.
【0012】[0012]
【課題を解決するための手段】上述した課題を解決し目
的を達成するために、本発明に係わる基板の切断方法
は、電子装置を構成する基板を切断する際に、エキシマ
レーザーを用いる切断方法において、少なくとも前記基
板の切断残り厚さが少なくなったときに、波長の短いエ
キシマレーザーを用いて完全切断することを特徴として
いる。In order to solve the above problems and achieve the object, a substrate cutting method according to the present invention is a cutting method using an excimer laser when cutting a substrate constituting an electronic device. In the above method, at least when the remaining thickness of the substrate to be cut becomes small, complete cutting is performed using an excimer laser having a short wavelength.
【0013】また、この発明に係わる基板の切断方法に
おいて、前記基板の切断残り厚さが少なくなるまでは、
波長の長い第1のエキシマレーザで切断を行い、前記基
板の切断残り厚さが少なくなった時点で、前記第1のエ
キシマレーザから該第1のエキシマレーザよりも波長の
短い第2のエキシマレーザに切り替えて、前記基板の厚
みの残り部分を切断することを特徴としている。Further, in the method for cutting a substrate according to the present invention, until the uncut thickness of the substrate becomes small,
Cutting is performed with a first excimer laser having a long wavelength, and when the remaining thickness of the substrate to be cut is reduced, the first excimer laser cuts a second excimer laser having a shorter wavelength than the first excimer laser. And the remaining portion of the thickness of the substrate is cut.
【0014】また、この発明に係わる基板の切断方法に
おいて、前記波長の短いエキシマレーザは、ArFエキ
シマレーザであることを特徴としている。In the substrate cutting method according to the present invention, the excimer laser having a short wavelength is an ArF excimer laser.
【0015】また、この発明に係わる基板の切断方法に
おいて、前記基板の切断時にアシストガスを用いること
を特徴としている。Further, the substrate cutting method according to the present invention is characterized in that an assist gas is used when the substrate is cut.
【0016】また、この発明に係わる基板の切断方法に
おいて、前記アシストガスとして、ヘリウムガスを用い
ることを特徴としている。Further, the substrate cutting method according to the present invention is characterized in that helium gas is used as the assist gas.
【0017】また、本発明に係わる基板の切断装置は、
電子装置を構成する基板を切断する際に、エキシマレー
ザーを用いる切断装置において、エキシマレーザーを発
振するレーザー発振手段と、少なくとも前記基板の切断
残り厚さが少なくなったことを検出する検出手段と、該
検出手段により残り厚さが少なくなったことを検出した
ときに、前記レーザー発振手段から波長の短いエキシマ
レーザーを発振させるように制御する制御手段とを具備
することを特徴としている。Further, the substrate cutting apparatus according to the present invention is
When cutting a substrate that constitutes an electronic device, in a cutting device that uses an excimer laser, a laser oscillation means that oscillates an excimer laser, and a detection means that detects that at least the uncut thickness of the substrate has decreased, When the detection means detects that the remaining thickness has decreased, the control means controls the laser oscillation means to oscillate an excimer laser having a short wavelength.
【0018】[0018]
【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、添付図面を参照して詳細に説明する。Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0019】(第1の実施形態)図1は本実施形態によ
り製造された電子装置を用いた画像読取り装置の断面図
を示している。(First Embodiment) FIG. 1 is a sectional view of an image reading apparatus using an electronic device manufactured according to this embodiment.
【0020】図1において、1はガラス等からなる絶縁
性基板、2はCr等よりなるゲート電極、3はSiN
x,SiO2よりなるゲート絶縁膜、4は非晶質シリコン
よりなるa−Si:H半導体層、5はオーミックコンタ
クト用のドーピング半導体層、6はAl等からなる主電
極である。8は原稿面との摩擦による画像読取り用の素
子の摩耗を防止するための、50μmの厚さの耐摩耗用
薄ガラス、7は前記素子の表面保護層となるSiNxお
よびポリイミド樹脂、および前記耐摩耗用薄ガラス8を
接着するためのエポキシ樹脂等から構成されている。In FIG. 1, 1 is an insulating substrate made of glass or the like, 2 is a gate electrode made of Cr or the like, and 3 is SiN.
x, a gate insulating film made of SiO2 , 4 is an a-Si: H semiconductor layer made of amorphous silicon, 5 is a doping semiconductor layer for ohmic contact, and 6 is a main electrode made of Al or the like. 8 is a wear-resistant thin glass having a thickness of 50 μm for preventing abrasion of the image reading element due to friction with the document surface, 7 is SiNx and a polyimide resin to be a surface protective layer of the element, and the abrasion resistance It is made of epoxy resin or the like for adhering the thin glass 8 for abrasion.
【0021】本構成においては、LED等の光源20か
ら発生された光10は絶縁性基板1の照明透過用窓を通
過して、原稿面9で反射し、反射した光をTFT型の光
センサー部に入射させ、反射光の強弱に応じた光出力を
上記光センサーが電気信号に変換させることにより、画
像を階調性を持って処理できることになる。このような
画像処理装置は例えば、ファクシミリとして、製品化さ
れているが、今後の需要増が大幅に期待できる家庭向の
ホームファクシミリにおいては、より一層の低価格化が
期待されている。本発明は、このような期待に応える技
術として活用できる。In this configuration, the light 10 generated from the light source 20 such as an LED passes through the illumination transmitting window of the insulating substrate 1 and is reflected by the document surface 9, and the reflected light is a TFT type optical sensor. An image can be processed with gradation by allowing the light sensor to convert the light output corresponding to the intensity of reflected light into an electric signal. Such an image processing apparatus has been commercialized as a facsimile, for example, but further reduction in price is expected for home-use home facsimiles in which future increase in demand can be expected. The present invention can be utilized as a technology that meets such expectations.
【0022】図2は、本実施形態の切断方法を適用した
画像読取り装置の素子配置を示した図である。SRMT
X1はSR1を駆動するためのマトリクス配線、SR1
はシフトレジスタ、S1は光センサー部、C1は電荷蓄
積用のコンデンサー部、TFT1は蓄積された電荷を転
送するための転送用TFT、SigMTX1は転送され
た電荷を外部へ出力するための信号線用マトリクス配線
を示している。画像読取り装置では、これらの素子が例
えばΑ4サイズ用には1728ビットで構成され、Α−
B方向に配置されて構成され、1アレーが完成する。低
コストでこれらを製造するためには、マスク枚数をでき
るだけ少なくした簡略工程で製造するとともに、1枚の
基板から取れる取りアレー数を多くする必要があり、C
−D方向に所定の切断幅LΑを介して多数個のアレーが
パターニングされて配置されている。従来、アレー幅Α
Rは2.7〜9mm程度で構成され、切断幅は製造マー
ジンを含めて300μmで構成され、例えば320×2
60mmの大きさの基板上にはA4サイズが30本〜9
6本形成されていた。近年、センサー、TFT等の高性
能化に伴いアレー幅ΑRは2mm以下、例えば1.5m
mで構成できるようになり、切断幅LΑの基板内に占め
る割合が相対的にアップし、問題とされてきた。本実施
形態ではこの切断幅LΑを極小にするために、以下に述
べるように実験され、実現することができた。FIG. 2 is a diagram showing an element arrangement of an image reading apparatus to which the cutting method of this embodiment is applied. SRMT
X1 is a matrix wiring for driving SR1, SR1
Is a shift register, S1 is an optical sensor part, C1 is a capacitor part for storing charges, TFT1 is a transfer TFT for transferring the stored charges, SigMTX1 is for a signal line for outputting the transferred charges to the outside. The matrix wiring is shown. In an image reading device, these elements are composed of 1728 bits for an A4 size, for example.
Arranged in the B direction, the array is completed. In order to manufacture these at low cost, it is necessary to manufacture them by a simple process in which the number of masks is reduced as much as possible, and to increase the number of arrays that can be taken from one substrate.
A large number of arrays are patterned and arranged in the −D direction with a predetermined cutting width L A. Conventionally, array width Α
R is configured to be about 2.7 to 9 mm, and the cutting width is configured to be 300 μm including the manufacturing margin. For example, 320 × 2
30 to 9 A4 sizes on a 60 mm substrate
Six were formed. In recent years, the array width AR has become 2 mm or less, for example 1.5 m, as the performance of sensors and TFTs has improved.
It has become a problem that the cutting width L A occupies a relatively large amount in the substrate. In the present embodiment, in order to minimize the cutting width Lα, the following experiments were conducted and realized.
【0023】図8に実験に用いたエキシマレーザーによ
る切断装置の概略図を示す。エキシマレーザー発振源1
4から取り出されたレーザー光18は光学系に設置した
直方形のスリットを有するマスク15を通過してミラー
16により折り返され、レンズ系17を通して、石英窓
を有する試料槽12の中に設置した試料11に照射され
る。試料槽12はX、Y方向に制御して動くステージ1
3上に設置されている。実際の切断時には、図示してい
ないCCDカメラにより切断位置を検出し、X軸を固定
し、ステージ13をY方向に移動させることを繰り返し
て切断する。また、試料槽12には、図示してはいない
が、アシストガスの導入口と排出口が設置され、試料を
任意の雰囲気で加工できるように構成されている。実験
には、エキシマレーザーとして、KrF248nmとΑ
rF193nmの2つの波長を用いるため、図8に示し
た14〜17の構成を2種類用意し、可動範囲の広いス
テージ13は各波長で共有した。アシスト環境として
は、大気中、O2雰囲気中、He雰囲気中の3つの雰囲
気で実験を行い、1.1mmの厚さの無アルカリガラス
と50μmの厚さの薄ガラスが接着されたものをステー
ジに載せ、ステージを静止した状態でエキシマレーザを
照射したときの、切断完了までの必要パルス数を測定し
た。図9にその結果と主な問題点を示した。FIG. 8 shows a schematic view of the excimer laser cutting device used in the experiment. Excimer laser oscillation source 1
The laser beam 18 extracted from the laser beam No. 4 passes through a mask 15 having a rectangular slit provided in an optical system, is reflected by a mirror 16, and passes through a lens system 17 to a sample installed in a sample tank 12 having a quartz window. 11 is illuminated. The sample tank 12 is a stage 1 that is controlled and moved in the X and Y directions.
3 above. At the time of actual cutting, the cutting position is detected by a CCD camera (not shown), the X axis is fixed, and the stage 13 is moved in the Y direction repeatedly for cutting. Although not shown, the sample tank 12 is provided with an assist gas inlet and outlet so that the sample can be processed in an arbitrary atmosphere. In the experiment, as an excimer laser, KrF 248 nm and A were used.
Since two wavelengths of rF193 nm are used, two types of configurations 14 to 17 shown in FIG. 8 are prepared, and the stage 13 having a wide movable range is shared by each wavelength. As the assisting environment, experiments were conducted in three atmospheres, namely, air, O2 atmosphere, and He atmosphere, and a stage was prepared by adhering non-alkali glass with a thickness of 1.1 mm and thin glass with a thickness of 50 μm to the stage. The number of pulses required to complete the cutting was measured when the excimer laser was radiated while the stage was stationary. The results and main problems are shown in FIG.
【0024】図9に示したように、KrF248nmで
10J/cm2のエネルギー密度で照射すると、切断加
工時間は早いが、50μmの厚さの薄ガラスは248n
mの波長をほとんど透過してしまい、アブレーションさ
れず、熱エネルギーに変換されたレーザーエネルギーに
よる熱衝撃により1〜2mm程度の大きなクラックが発
生し、さらに、1.1mmの厚さの無アルカリガラスの
切断完了時に、アブレーションの衝撃により、光の入射
面と反対側の面にシェルクラックが発生し、この大きさ
も1〜2mm程度と大きかった。As shown in FIG. 9, when irradiation with KrF 248 nm and an energy density of 10 J / cm2 is performed, the cutting processing time is short, but thin glass with a thickness of 50 μm is 248 n.
Almost all wavelengths of m are transmitted, they are not ablated, and a large crack of about 1 to 2 mm is generated by thermal shock due to the laser energy converted into thermal energy. At the completion of cutting, a shell crack was generated on the surface opposite to the light incident surface due to the impact of ablation, and the size thereof was also large, about 1 to 2 mm.
【0025】ΑrF193nmの6.5J/cm2のエ
ネルギー密度においては、薄ガラスが193nmの波長
を吸収することにより、アブレーションにより切断で
き、さらに、基板の裏側にもシェルクラックを発生させ
ることはなかった。しかし、ΑrFによる切断は切断パ
ルス数を多く必要とし、切断速度が遅いだけでなく、用
いる光学部品及びガスの寿命がKrFの数分の1と短
く、さらに光学部品は再利用できないため、コストが非
常に高くなってしまうという問題点がある。さらに、本
実験においては、用いたエネルギー密度が低いために、
切断角度がKrFで88.6°、ΑrFで89.7°
で、特に精密切断においては、切断角度の傾きはKrF
のエネルギー密度が低いために起こることが判明した。
そこで、KrF、ΑrF共にエネルギー密度を大きく
し、さらにHeの吹き付け流速を速くすることにより、
切断スピードの向上と切断角度の垂直性を高めることに
成功した。At an energy density of 6.5 J / cm2 of ArF 193 nm, the thin glass absorbs a wavelength of 193 nm and can be cut by ablation, and furthermore, no shell crack is generated on the back side of the substrate. . However, cutting with ArF requires a large number of cutting pulses, the cutting speed is slow, the life of the optical components and gas used is a fraction of that of KrF, and the optical components cannot be reused, resulting in cost reduction. There is a problem that it becomes very high. Furthermore, in this experiment, since the energy density used was low,
Cutting angle is 88.6 ° for KrF and 89.7 ° for ArF.
Therefore, especially in precision cutting, the inclination of the cutting angle is KrF.
It was found to occur because of the low energy density of.
Therefore, by increasing the energy density of both KrF and ArF and further increasing the He flow velocity,
We succeeded in improving the cutting speed and the verticality of the cutting angle.
【0026】この結果、まずKrF248nmのエキシ
マレーザを40J/cm2のエネルギー密度で直方形の
マスク15を用いて、絶縁性基板1側から表面に照射
し、基板を載せたステージ13をY方向に一定速度で送
りながら繰り返しエネルギーを照射した。各個所600
パルスまで照射し、1.1mm厚さの無アルカリガラス
の大部分の厚さまで切断した後、KrFエキシマレーザ
ーを停止し、引き続き別に設置した同じ大きさのマスク
を用いて、同様にステージを一定速度で送りながら、Α
rF193nmのエキシマレーザを30J/cm2のエ
ネルギー密度で照射し、各個所300パルスで切断を完
了させた。でき上がった切断面は1.1mmの無アルカ
リガラスおよび50μmの薄ガラス共に、クラック、チ
ッピング等は発生せず、さらに、ほとんど垂直で50μ
mの切断幅で加工することができた。この結果、切断幅
LΑが従来の300μmから50μmと大幅に縮小で
き、1基板からの取りアレーは96本から106本、ア
レー幅ΑRが1.5mmの場合では160本から190
本と10〜20%の取りアレー数の向上が達成され、大
幅なコストダウンが可能となった。As a result, first, a KrF 248 nm excimer laser is irradiated onto the surface from the side of the insulating substrate 1 using the rectangular mask 15 with an energy density of 40 J / cm2 , and the stage 13 on which the substrate is placed is moved in the Y direction. The energy was repeatedly applied while being fed at a constant speed. Each location 600
After irradiating up to the pulse and cutting the thickness of most of the 1.1 mm thick non-alkali glass, stop the KrF excimer laser, and then use a separately installed mask of the same size, and similarly move the stage at a constant speed. While sending
Irradiation with an excimer laser of rF193 nm at an energy density of 30 J / cm2 was performed to complete the cutting with 300 pulses at each position. The finished cut surface of both 1.1 mm non-alkali glass and 50 μm thin glass is free from cracks and chipping, and is almost vertical 50 μm.
It was possible to process with a cutting width of m. As a result, the cutting width L.sub.A can be significantly reduced from the conventional 300 .mu.m to 50 .mu.m, and the array taken from one substrate is 96 to 106, and the array width .DELTA.R is 1.5 mm, 160 to 190.
An improvement in the number of books and array of 10 to 20% was achieved, which enabled a significant cost reduction.
【0027】(第2の実施形態)図3は、本発明の切断
方法を大面積の2次元の画像処理装置用の基板に適用し
た結果を示している。この装置においては、大きさとし
て460×460mmの大面積が必要なため、320×
260mmの基板サイズ上に形成された2次元の画像処
理装置用基板E、F、G、Hを図3のように並べて構成
した。この際、E,F,G,Hは各々230×230mm
の大きさに、チッピングがなく、さらに各々の面の平行
度が出るように切断される必要があり、さらに、正確な
平行度で実装されることが必要となる。(Second Embodiment) FIG. 3 shows a result of applying the cutting method of the present invention to a substrate for a large-area two-dimensional image processing apparatus. This device requires a large area of 460 x 460 mm, so 320 x
Two-dimensional image processing device substrates E, F, G, and H formed on a substrate size of 260 mm were arranged side by side as shown in FIG. At this time, E, F, G, H are each 230 × 230mm
The size needs to be cut so that there is no chipping and the parallelism of each surface can be obtained, and further, it is necessary to be mounted with an accurate parallelism.
【0028】第1の実施形態で述べたエキシマレーザー
による切断方法を実施したところ、切断端面におけるパ
ターンとの平行度は230mmの長さで2μm以内で達
成でき、チッピングがほとんどないため、E,F,G,H
の各基板のスキマX,Yを十分に制御して実装できた。
従来は、画素ピッチが160μmで構成されており、チ
ッピングが20μmあり、230mmの長さでの平行度
が10μm程度であったため、同一画素ピッチで実装で
きず、X、Yをそれぞれ100μm以上として一画素抜
けで構成していたが、本発明を適用することにより、画
素が抜けることなく、大画面、高品質の2次元の画像処
理装置を製造することが可能になった。When the excimer laser cutting method described in the first embodiment is carried out, the parallelism with the pattern on the cut end face can be achieved within 2 μm at a length of 230 mm, and there is almost no chipping. , G, H
It was possible to mount by fully controlling the gaps X and Y of the respective substrates.
Conventionally, the pixel pitch is configured to be 160 μm, the chipping is 20 μm, and the parallelism in a length of 230 mm is about 10 μm. Therefore, mounting cannot be performed at the same pixel pitch, and X and Y are 100 μm or more, respectively. Although the pixel is omitted, the application of the present invention makes it possible to manufacture a large-screen, high-quality two-dimensional image processing device without missing pixels.
【0029】なお、本発明は、その主旨を逸脱しない範
囲で、上記実施形態を修正又は変形したものに適用可能
である。The present invention can be applied to a modified or modified version of the above embodiment without departing from the spirit of the invention.
【0030】[0030]
【発明の効果】以上説明したように、本発明によれば、
基板の切断手段として少なくとも基板の切断完了時にΑ
rFエキシマレーザーを用いることにより、チッピン
グ、クラックがなく切断幅を50μm以下にすることが
でき、さらに、初めに波長の長い第1のエキシマレーザ
ーにより高速度で基板の厚み方向の大部分をアブレーシ
ョンにより切断した後、第1のエキシマレーザーを停止
し、その後引き続き、波長の短い第2のエキシマレーザ
ーを用いて残りの厚みをアブレーションにより切断する
ことにより、切断巾を50μm以下で、さらに、チッピ
ングが発生せず、切断面が垂直でうねりも発生しない精
密切断において、高いスループットで、低コストで切断
することが可能になった。As described above, according to the present invention,
As a means for cutting the board, at least when the cutting of the board is completed
By using the rF excimer laser, the cutting width can be reduced to 50 μm or less without chipping and cracks. Furthermore, the first excimer laser with a long wavelength is used to ablate most of the substrate in the thickness direction at high speed. After the cutting, the first excimer laser is stopped, and subsequently, the remaining thickness is cut by ablation using the second excimer laser having a short wavelength, so that the cutting width is 50 μm or less and further chipping occurs. Without doing so, it became possible to perform high-throughput, low-cost cutting in precision cutting with a vertical cutting surface and no waviness.
【0031】[0031]
【図1】本発明を適用した第1の実施形態に係る画像読
取り装置の断面図である。FIG. 1 is a sectional view of an image reading apparatus according to a first embodiment of the present invention.
【図2】本発明を適用した第1の実施形態に係る画像読
取り装置の素子配置図である。FIG. 2 is an element layout diagram of the image reading apparatus according to the first embodiment to which the present invention is applied.
【図3】本発明を適用した第2の実施形態に係る2次元
の画像処理装置の構成図である。FIG. 3 is a configuration diagram of a two-dimensional image processing device according to a second embodiment to which the present invention is applied.
【図4】従来例のスクライバーによる問題点を説明する
図である。FIG. 4 is a diagram illustrating a problem caused by a conventional scriber.
【図5】従来例のスクライバーによる問題点を説明する
図である。FIG. 5 is a diagram illustrating a problem caused by a conventional scriber.
【図6】従来例のスクライバーによる問題点を説明する
図である。FIG. 6 is a diagram illustrating a problem caused by a conventional scriber.
【図7】従来例のブレードの不具合を説明する図であ
る。FIG. 7 is a diagram illustrating a defect of a conventional blade.
【図8】本発明の実施形態の方法に用いられるエキシマ
レーザー加工機を説明する図である。FIG. 8 is a diagram illustrating an excimer laser beam machine used in the method of the embodiment of the present invention.
【図9】各波長のレーザにより切断を行った場合の問題
点を示す図である。FIG. 9 is a diagram showing a problem when cutting is performed with a laser of each wavelength.
1 絶縁性基板 2 ゲート電極 3 ゲート絶縁膜 4 半導体層 5 ドーピング半導体層 6 主電極 7 表面保護層および接着層 8 耐摩耗用薄ガラス 9 原稿 10 光 11 試料 12 試料槽 13 ステージ 14 エキシマレーザー発振源 15 マスク 16 ミラー 17 レンズ系 18 レーザー光 SRMTX シフトレジスターを駆動するマトリクス配
線 SR シフトレジスター S 光センサー C コンデンサー TFT 転送用薄膜トランジスタ SigMTX 信号線用マトリクス配線 LA 切断幅 AR センサー幅 E、F、F、H 2次元の画像処理装置を構成する各独
立した基板 X、Y 各基板を実装するスキ間1 Insulating Substrate 2 Gate Electrode 3 Gate Insulating Film 4 Semiconductor Layer 5 Doping Semiconductor Layer 6 Main Electrode 7 Surface Protective Layer and Adhesive Layer 8 Abrasion Resistant Thin Glass 9 Original 10 Light 11 Sample 12 Sample Tank 13 Stage 14 Excimer Laser Oscillation Source 15 mask 16 mirror 17 lens system 18 laser light SRMTX matrix wiring for driving shift register SR shift register S optical sensor C capacitor TFT transfer thin film transistor SigMTX signal line matrix wiring LA cutting width AR sensor width E, F, F, H 2 Independent boards that make up a three-dimensional image processing device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/225 H01L 21/78 B H05K 3/00 H01S 3/223 E─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl.6 Identification code Internal reference number FI Technical indication location H01S 3/225 H01L 21/78 B H05K 3/00 H01S 3/223 E
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8020992AJPH09216085A (en) | 1996-02-07 | 1996-02-07 | Substrate cutting method and cutting device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8020992AJPH09216085A (en) | 1996-02-07 | 1996-02-07 | Substrate cutting method and cutting device |
| Publication Number | Publication Date |
|---|---|
| JPH09216085Atrue JPH09216085A (en) | 1997-08-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8020992AWithdrawnJPH09216085A (en) | 1996-02-07 | 1996-02-07 | Substrate cutting method and cutting device |
| Country | Link |
|---|---|
| JP (1) | JPH09216085A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100356488B1 (en)* | 1998-08-24 | 2002-10-18 | 가부시키가이샤 무라타 세이사쿠쇼 | Method for removing conductive portions |
| JP2005252094A (en)* | 2004-03-05 | 2005-09-15 | Nitto Denko Corp | Laser dicing die-bonding adhesive sheet and method for manufacturing semiconductor device using the same |
| JP2007013114A (en)* | 2005-05-30 | 2007-01-18 | Semiconductor Energy Lab Co Ltd | Method for fabricating semiconductor device |
| KR100689698B1 (en)* | 2005-01-12 | 2007-03-08 | 주식회사 이오테크닉스 | Object processing method with passivation layer formed |
| JP2007103718A (en)* | 2005-10-05 | 2007-04-19 | Koha Co Ltd | Method of processing substrate, and method of manufacturing light emitting element |
| KR100741864B1 (en)* | 2005-03-10 | 2007-07-24 | 엔이씨 일렉트로닉스 가부시키가이샤 | Method for manufacturing semiconductor device |
| US20100055876A1 (en)* | 2000-09-13 | 2010-03-04 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US8153511B2 (en) | 2005-05-30 | 2012-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
| US8507363B2 (en) | 2011-06-15 | 2013-08-13 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using water-soluble die attach film |
| US8557683B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
| US8557682B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-layer mask for substrate dicing by laser and plasma etch |
| US8598016B2 (en) | 2011-06-15 | 2013-12-03 | Applied Materials, Inc. | In-situ deposited mask layer for device singulation by laser scribing and plasma etch |
| US8642448B2 (en) | 2010-06-22 | 2014-02-04 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US8652940B2 (en) | 2012-04-10 | 2014-02-18 | Applied Materials, Inc. | Wafer dicing used hybrid multi-step laser scribing process with plasma etch |
| US8703581B2 (en) | 2011-06-15 | 2014-04-22 | Applied Materials, Inc. | Water soluble mask for substrate dicing by laser and plasma etch |
| CN103862167A (en)* | 2014-03-18 | 2014-06-18 | 西安交通大学 | Flexible electronic material plate micro-hole high-speed manufacturing device based on ultrafast laser |
| US8759197B2 (en) | 2011-06-15 | 2014-06-24 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
| US8845854B2 (en) | 2012-07-13 | 2014-09-30 | Applied Materials, Inc. | Laser, plasma etch, and backside grind process for wafer dicing |
| US8865566B2 (en) | 2002-12-03 | 2014-10-21 | Hamamatsu Photonics K.K. | Method of cutting semiconductor substrate |
| US8889525B2 (en) | 2002-03-12 | 2014-11-18 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US8912077B2 (en) | 2011-06-15 | 2014-12-16 | Applied Materials, Inc. | Hybrid laser and plasma etch wafer dicing using substrate carrier |
| US8912075B1 (en) | 2014-04-29 | 2014-12-16 | Applied Materials, Inc. | Wafer edge warp supression for thin wafer supported by tape frame |
| US8912078B1 (en) | 2014-04-16 | 2014-12-16 | Applied Materials, Inc. | Dicing wafers having solder bumps on wafer backside |
| US8927393B1 (en) | 2014-01-29 | 2015-01-06 | Applied Materials, Inc. | Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing |
| US8932939B1 (en) | 2014-04-14 | 2015-01-13 | Applied Materials, Inc. | Water soluble mask formation by dry film lamination |
| US8940619B2 (en) | 2012-07-13 | 2015-01-27 | Applied Materials, Inc. | Method of diced wafer transportation |
| US8946057B2 (en) | 2012-04-24 | 2015-02-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using UV-curable adhesive film |
| US8951819B2 (en) | 2011-07-11 | 2015-02-10 | Applied Materials, Inc. | Wafer dicing using hybrid split-beam laser scribing process with plasma etch |
| US8969752B2 (en) | 2003-03-12 | 2015-03-03 | Hamamatsu Photonics K.K. | Laser processing method |
| US8969177B2 (en) | 2012-06-29 | 2015-03-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film |
| US8975162B2 (en) | 2012-12-20 | 2015-03-10 | Applied Materials, Inc. | Wafer dicing from wafer backside |
| US8975163B1 (en) | 2014-04-10 | 2015-03-10 | Applied Materials, Inc. | Laser-dominated laser scribing and plasma etch hybrid wafer dicing |
| US8980726B2 (en) | 2013-01-25 | 2015-03-17 | Applied Materials, Inc. | Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers |
| US8980727B1 (en) | 2014-05-07 | 2015-03-17 | Applied Materials, Inc. | Substrate patterning using hybrid laser scribing and plasma etching processing schemes |
| US8993414B2 (en) | 2012-07-13 | 2015-03-31 | Applied Materials, Inc. | Laser scribing and plasma etch for high die break strength and clean sidewall |
| US8991329B1 (en) | 2014-01-31 | 2015-03-31 | Applied Materials, Inc. | Wafer coating |
| US8999816B1 (en) | 2014-04-18 | 2015-04-07 | Applied Materials, Inc. | Pre-patterned dry laminate mask for wafer dicing processes |
| US9012305B1 (en) | 2014-01-29 | 2015-04-21 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean |
| US9018079B1 (en) | 2014-01-29 | 2015-04-28 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean |
| US9029242B2 (en) | 2011-06-15 | 2015-05-12 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
| US9034771B1 (en) | 2014-05-23 | 2015-05-19 | Applied Materials, Inc. | Cooling pedestal for dicing tape thermal management during plasma dicing |
| US9041198B2 (en) | 2013-10-22 | 2015-05-26 | Applied Materials, Inc. | Maskless hybrid laser scribing and plasma etching wafer dicing process |
| US9048309B2 (en) | 2012-07-10 | 2015-06-02 | Applied Materials, Inc. | Uniform masking for wafer dicing using laser and plasma etch |
| US9076860B1 (en) | 2014-04-04 | 2015-07-07 | Applied Materials, Inc. | Residue removal from singulated die sidewall |
| US9093518B1 (en) | 2014-06-30 | 2015-07-28 | Applied Materials, Inc. | Singulation of wafers having wafer-level underfill |
| US9105710B2 (en) | 2013-08-30 | 2015-08-11 | Applied Materials, Inc. | Wafer dicing method for improving die packaging quality |
| US9112050B1 (en) | 2014-05-13 | 2015-08-18 | Applied Materials, Inc. | Dicing tape thermal management by wafer frame support ring cooling during plasma dicing |
| US9117868B1 (en) | 2014-08-12 | 2015-08-25 | Applied Materials, Inc. | Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing |
| US9130057B1 (en) | 2014-06-30 | 2015-09-08 | Applied Materials, Inc. | Hybrid dicing process using a blade and laser |
| US9126285B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using physically-removable mask |
| US9129904B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch |
| US9130056B1 (en) | 2014-10-03 | 2015-09-08 | Applied Materials, Inc. | Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing |
| US9130030B1 (en) | 2014-03-07 | 2015-09-08 | Applied Materials, Inc. | Baking tool for improved wafer coating process |
| US9142459B1 (en) | 2014-06-30 | 2015-09-22 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination |
| US9721839B2 (en) | 2015-06-12 | 2017-08-01 | Applied Materials, Inc. | Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch |
| US9793132B1 (en) | 2016-05-13 | 2017-10-17 | Applied Materials, Inc. | Etch mask for hybrid laser scribing and plasma etch wafer singulation process |
| US9852997B2 (en) | 2016-03-25 | 2017-12-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process |
| US9972575B2 (en) | 2016-03-03 | 2018-05-15 | Applied Materials, Inc. | Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process |
| US10363629B2 (en) | 2017-06-01 | 2019-07-30 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
| US10535561B2 (en) | 2018-03-12 | 2020-01-14 | Applied Materials, Inc. | Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process |
| US10692765B2 (en) | 2014-11-07 | 2020-06-23 | Applied Materials, Inc. | Transfer arm for film frame substrate handling during plasma singulation of wafers |
| US10903121B1 (en) | 2019-08-14 | 2021-01-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process |
| US11011424B2 (en) | 2019-08-06 | 2021-05-18 | Applied Materials, Inc. | Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process |
| US11158540B2 (en) | 2017-05-26 | 2021-10-26 | Applied Materials, Inc. | Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process |
| US11195756B2 (en) | 2014-09-19 | 2021-12-07 | Applied Materials, Inc. | Proximity contact cover ring for plasma dicing |
| US11211247B2 (en) | 2020-01-30 | 2021-12-28 | Applied Materials, Inc. | Water soluble organic-inorganic hybrid mask formulations and their applications |
| US11342226B2 (en) | 2019-08-13 | 2022-05-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process |
| US11600492B2 (en) | 2019-12-10 | 2023-03-07 | Applied Materials, Inc. | Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100356488B1 (en)* | 1998-08-24 | 2002-10-18 | 가부시키가이샤 무라타 세이사쿠쇼 | Method for removing conductive portions |
| US8946589B2 (en) | 2000-09-13 | 2015-02-03 | Hamamatsu Photonics K.K. | Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device |
| US8969761B2 (en) | 2000-09-13 | 2015-03-03 | Hamamatsu Photonics K.K. | Method of cutting a wafer-like object and semiconductor chip |
| US8927900B2 (en) | 2000-09-13 | 2015-01-06 | Hamamatsu Photonics K.K. | Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device |
| US8937264B2 (en) | 2000-09-13 | 2015-01-20 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US8933369B2 (en) | 2000-09-13 | 2015-01-13 | Hamamatsu Photonics K.K. | Method of cutting a substrate and method of manufacturing a semiconductor device |
| US20100055876A1 (en)* | 2000-09-13 | 2010-03-04 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US10796959B2 (en) | 2000-09-13 | 2020-10-06 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US8283595B2 (en)* | 2000-09-13 | 2012-10-09 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US8946592B2 (en) | 2000-09-13 | 2015-02-03 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US8946591B2 (en) | 2000-09-13 | 2015-02-03 | Hamamatsu Photonics K.K. | Method of manufacturing a semiconductor device formed using a substrate cutting method |
| US9837315B2 (en) | 2000-09-13 | 2017-12-05 | Hamamatsu Photonics K.K. | Laser processing method and laser processing apparatus |
| US10068801B2 (en) | 2002-03-12 | 2018-09-04 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US11424162B2 (en) | 2002-03-12 | 2022-08-23 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9287177B2 (en) | 2002-03-12 | 2016-03-15 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US8889525B2 (en) | 2002-03-12 | 2014-11-18 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9711405B2 (en) | 2002-03-12 | 2017-07-18 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9142458B2 (en) | 2002-03-12 | 2015-09-22 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9553023B2 (en) | 2002-03-12 | 2017-01-24 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9548246B2 (en) | 2002-03-12 | 2017-01-17 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US10622255B2 (en) | 2002-03-12 | 2020-04-14 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9543256B2 (en) | 2002-03-12 | 2017-01-10 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US9543207B2 (en) | 2002-03-12 | 2017-01-10 | Hamamatsu Photonics K.K. | Substrate dividing method |
| US8865566B2 (en) | 2002-12-03 | 2014-10-21 | Hamamatsu Photonics K.K. | Method of cutting semiconductor substrate |
| US8969752B2 (en) | 2003-03-12 | 2015-03-03 | Hamamatsu Photonics K.K. | Laser processing method |
| JP2005252094A (en)* | 2004-03-05 | 2005-09-15 | Nitto Denko Corp | Laser dicing die-bonding adhesive sheet and method for manufacturing semiconductor device using the same |
| KR100689698B1 (en)* | 2005-01-12 | 2007-03-08 | 주식회사 이오테크닉스 | Object processing method with passivation layer formed |
| KR100741864B1 (en)* | 2005-03-10 | 2007-07-24 | 엔이씨 일렉트로닉스 가부시키가이샤 | Method for manufacturing semiconductor device |
| US8153511B2 (en) | 2005-05-30 | 2012-04-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
| JP2007013114A (en)* | 2005-05-30 | 2007-01-18 | Semiconductor Energy Lab Co Ltd | Method for fabricating semiconductor device |
| JP2007103718A (en)* | 2005-10-05 | 2007-04-19 | Koha Co Ltd | Method of processing substrate, and method of manufacturing light emitting element |
| US11621194B2 (en) | 2010-06-22 | 2023-04-04 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US10163713B2 (en) | 2010-06-22 | 2018-12-25 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US8853056B2 (en) | 2010-06-22 | 2014-10-07 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US10714390B2 (en) | 2010-06-22 | 2020-07-14 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US10910271B2 (en) | 2010-06-22 | 2021-02-02 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US8642448B2 (en) | 2010-06-22 | 2014-02-04 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US10566238B2 (en) | 2010-06-22 | 2020-02-18 | Applied Materials, Inc. | Wafer dicing using femtosecond-based laser and plasma etch |
| US10112259B2 (en) | 2011-06-15 | 2018-10-30 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
| US8557682B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-layer mask for substrate dicing by laser and plasma etch |
| US8912077B2 (en) | 2011-06-15 | 2014-12-16 | Applied Materials, Inc. | Hybrid laser and plasma etch wafer dicing using substrate carrier |
| US9129904B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch |
| US9126285B2 (en) | 2011-06-15 | 2015-09-08 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using physically-removable mask |
| US8598016B2 (en) | 2011-06-15 | 2013-12-03 | Applied Materials, Inc. | In-situ deposited mask layer for device singulation by laser scribing and plasma etch |
| US8557683B2 (en) | 2011-06-15 | 2013-10-15 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
| US8507363B2 (en) | 2011-06-15 | 2013-08-13 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using water-soluble die attach film |
| US8703581B2 (en) | 2011-06-15 | 2014-04-22 | Applied Materials, Inc. | Water soluble mask for substrate dicing by laser and plasma etch |
| US8759197B2 (en) | 2011-06-15 | 2014-06-24 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
| US9054176B2 (en) | 2011-06-15 | 2015-06-09 | Applied Materials, Inc. | Multi-step and asymmetrically shaped laser beam scribing |
| US9029242B2 (en) | 2011-06-15 | 2015-05-12 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
| US8951819B2 (en) | 2011-07-11 | 2015-02-10 | Applied Materials, Inc. | Wafer dicing using hybrid split-beam laser scribing process with plasma etch |
| US8846498B2 (en) | 2012-04-10 | 2014-09-30 | Applied Materials, Inc. | Wafer dicing using hybrid multi-step laser scribing process with plasma etch |
| US8652940B2 (en) | 2012-04-10 | 2014-02-18 | Applied Materials, Inc. | Wafer dicing used hybrid multi-step laser scribing process with plasma etch |
| TWI459458B (en)* | 2012-04-10 | 2014-11-01 | Applied Materials Inc | Wafer dicing using hybrid multi-step laser scribing process with plasma etch |
| TWI494983B (en)* | 2012-04-10 | 2015-08-01 | Applied Materials Inc | Wafer dicing using hybrid multi-step laser scribing process with plasma etch |
| US8946057B2 (en) | 2012-04-24 | 2015-02-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing using UV-curable adhesive film |
| US8969177B2 (en) | 2012-06-29 | 2015-03-03 | Applied Materials, Inc. | Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film |
| US9048309B2 (en) | 2012-07-10 | 2015-06-02 | Applied Materials, Inc. | Uniform masking for wafer dicing using laser and plasma etch |
| US8940619B2 (en) | 2012-07-13 | 2015-01-27 | Applied Materials, Inc. | Method of diced wafer transportation |
| US8845854B2 (en) | 2012-07-13 | 2014-09-30 | Applied Materials, Inc. | Laser, plasma etch, and backside grind process for wafer dicing |
| US8993414B2 (en) | 2012-07-13 | 2015-03-31 | Applied Materials, Inc. | Laser scribing and plasma etch for high die break strength and clean sidewall |
| US8975162B2 (en) | 2012-12-20 | 2015-03-10 | Applied Materials, Inc. | Wafer dicing from wafer backside |
| US8980726B2 (en) | 2013-01-25 | 2015-03-17 | Applied Materials, Inc. | Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers |
| US9105710B2 (en) | 2013-08-30 | 2015-08-11 | Applied Materials, Inc. | Wafer dicing method for improving die packaging quality |
| US9041198B2 (en) | 2013-10-22 | 2015-05-26 | Applied Materials, Inc. | Maskless hybrid laser scribing and plasma etching wafer dicing process |
| US9018079B1 (en) | 2014-01-29 | 2015-04-28 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean |
| US9012305B1 (en) | 2014-01-29 | 2015-04-21 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean |
| US8927393B1 (en) | 2014-01-29 | 2015-01-06 | Applied Materials, Inc. | Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing |
| US8991329B1 (en) | 2014-01-31 | 2015-03-31 | Applied Materials, Inc. | Wafer coating |
| US9768014B2 (en) | 2014-01-31 | 2017-09-19 | Applied Materials, Inc. | Wafer coating |
| US9130030B1 (en) | 2014-03-07 | 2015-09-08 | Applied Materials, Inc. | Baking tool for improved wafer coating process |
| CN103862167A (en)* | 2014-03-18 | 2014-06-18 | 西安交通大学 | Flexible electronic material plate micro-hole high-speed manufacturing device based on ultrafast laser |
| US9076860B1 (en) | 2014-04-04 | 2015-07-07 | Applied Materials, Inc. | Residue removal from singulated die sidewall |
| US8975163B1 (en) | 2014-04-10 | 2015-03-10 | Applied Materials, Inc. | Laser-dominated laser scribing and plasma etch hybrid wafer dicing |
| US8932939B1 (en) | 2014-04-14 | 2015-01-13 | Applied Materials, Inc. | Water soluble mask formation by dry film lamination |
| US8912078B1 (en) | 2014-04-16 | 2014-12-16 | Applied Materials, Inc. | Dicing wafers having solder bumps on wafer backside |
| US8999816B1 (en) | 2014-04-18 | 2015-04-07 | Applied Materials, Inc. | Pre-patterned dry laminate mask for wafer dicing processes |
| US8912075B1 (en) | 2014-04-29 | 2014-12-16 | Applied Materials, Inc. | Wafer edge warp supression for thin wafer supported by tape frame |
| US8980727B1 (en) | 2014-05-07 | 2015-03-17 | Applied Materials, Inc. | Substrate patterning using hybrid laser scribing and plasma etching processing schemes |
| US9112050B1 (en) | 2014-05-13 | 2015-08-18 | Applied Materials, Inc. | Dicing tape thermal management by wafer frame support ring cooling during plasma dicing |
| US9034771B1 (en) | 2014-05-23 | 2015-05-19 | Applied Materials, Inc. | Cooling pedestal for dicing tape thermal management during plasma dicing |
| US9093518B1 (en) | 2014-06-30 | 2015-07-28 | Applied Materials, Inc. | Singulation of wafers having wafer-level underfill |
| US9142459B1 (en) | 2014-06-30 | 2015-09-22 | Applied Materials, Inc. | Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination |
| US9130057B1 (en) | 2014-06-30 | 2015-09-08 | Applied Materials, Inc. | Hybrid dicing process using a blade and laser |
| US9117868B1 (en) | 2014-08-12 | 2015-08-25 | Applied Materials, Inc. | Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing |
| US11195756B2 (en) | 2014-09-19 | 2021-12-07 | Applied Materials, Inc. | Proximity contact cover ring for plasma dicing |
| US9130056B1 (en) | 2014-10-03 | 2015-09-08 | Applied Materials, Inc. | Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing |
| US10692765B2 (en) | 2014-11-07 | 2020-06-23 | Applied Materials, Inc. | Transfer arm for film frame substrate handling during plasma singulation of wafers |
| US9721839B2 (en) | 2015-06-12 | 2017-08-01 | Applied Materials, Inc. | Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch |
| US11217536B2 (en) | 2016-03-03 | 2022-01-04 | Applied Materials, Inc. | Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process |
| US9972575B2 (en) | 2016-03-03 | 2018-05-15 | Applied Materials, Inc. | Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process |
| US9852997B2 (en) | 2016-03-25 | 2017-12-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process |
| US9793132B1 (en) | 2016-05-13 | 2017-10-17 | Applied Materials, Inc. | Etch mask for hybrid laser scribing and plasma etch wafer singulation process |
| US11158540B2 (en) | 2017-05-26 | 2021-10-26 | Applied Materials, Inc. | Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process |
| US10363629B2 (en) | 2017-06-01 | 2019-07-30 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
| US10661383B2 (en) | 2017-06-01 | 2020-05-26 | Applied Materials, Inc. | Mitigation of particle contamination for wafer dicing processes |
| US10535561B2 (en) | 2018-03-12 | 2020-01-14 | Applied Materials, Inc. | Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process |
| US11011424B2 (en) | 2019-08-06 | 2021-05-18 | Applied Materials, Inc. | Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process |
| US11342226B2 (en) | 2019-08-13 | 2022-05-24 | Applied Materials, Inc. | Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process |
| US10903121B1 (en) | 2019-08-14 | 2021-01-26 | Applied Materials, Inc. | Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process |
| US11600492B2 (en) | 2019-12-10 | 2023-03-07 | Applied Materials, Inc. | Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process |
| US11211247B2 (en) | 2020-01-30 | 2021-12-28 | Applied Materials, Inc. | Water soluble organic-inorganic hybrid mask formulations and their applications |
| Publication | Publication Date | Title |
|---|---|---|
| JPH09216085A (en) | Substrate cutting method and cutting device | |
| JP4908552B2 (en) | Method for forming cutting start region | |
| CN1817603B (en) | Wafer dividing method | |
| CN100479969C (en) | Laser Beam Processing Equipment | |
| EP2070636B1 (en) | Laser processing method | |
| US8093530B2 (en) | Laser cutting apparatus and laser cutting method | |
| US20090035879A1 (en) | Laser dicing device and laser dicing method | |
| TWI414383B (en) | Angle processing device | |
| CN1788916A (en) | Laser segmented cutting | |
| JP2000156358A (en) | Method and device for processing transparent medium using laser | |
| US20050224475A1 (en) | Laser beam processing machine | |
| KR20150050357A (en) | Laser machining apparatus | |
| WO2008004395A1 (en) | Laser processing method | |
| JP5686551B2 (en) | Wafer processing method | |
| TW200300572A (en) | Forming method of scribing for semiconductor wafer and forming apparatus of scribing | |
| JP2005135964A (en) | Wafer division method | |
| JP4750427B2 (en) | Wafer laser processing method | |
| JP4776911B2 (en) | Laser processing apparatus and laser processing method | |
| TW200936290A (en) | Method for chamfering/machining brittle material substrate and chamfering/machining apparatus | |
| WO2015125134A1 (en) | A method and apparatus for internal marking of ingots and wafers | |
| JP2001168068A (en) | Apparatus and method for processing deposited film and deposited film processed by the method | |
| TW202012912A (en) | Laser machining device, laser machining system and laser machining method | |
| JPH09253879A (en) | Method and apparatus for cutting brittle substrate by laser beam | |
| JP2006179790A (en) | Laser cleaving method and cleaved member that can be cleaved by the method | |
| JP2001347497A (en) | Separation and cutting method and apparatus |
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination | Free format text:JAPANESE INTERMEDIATE CODE: A300 Effective date:20030506 |