【0001】[0001]
【発明の属する技術分野】本発明はアルミナ製マイクロ
波導入窓及びその製造方法に関し、より詳細にはマイク
ロ波の照射により発生するプラズマを利用して半導体基
板等にエッチング、アッシング又はCVD等の処理を施
す装置(以下、プラズマ処理装置と記す)等に用いられ
るアルミナ製マイクロ波導入窓及びその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave introduction window made of alumina and a method for manufacturing the same. More specifically, the invention uses a plasma generated by microwave irradiation to etch, ash, or CVD a semiconductor substrate or the like. The present invention relates to an alumina microwave introduction window used for an apparatus for applying a heat treatment (hereinafter referred to as a plasma processing apparatus) and the like, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】真空近くに減圧した容器内に反応ガスと
マイクロ波を導入し、ガス放電を起こさせてプラズマを
生成させ、このプラズマを半導体基板表面に導いてエッ
チングやレジスト除去(アッシング)、CVD(Chemic
al Vapor Deposition )等の処理(以下、プラズマ処理
とも記す)を行わせるプラズマ処理装置は、半導体基板
等に低温で効率良くプラズマ処理を施すことができ、エ
ッチング深さ等の制御も比較的簡単であり、かつ半導体
基板等にダメージを与える虞れが少ないので、高集積半
導体装置等の製造において欠くことができないものとな
っている。2. Description of the Related Art A reaction gas and a microwave are introduced into a container depressurized to near vacuum, a gas discharge is caused to generate plasma, and the plasma is guided to the surface of a semiconductor substrate to perform etching or resist removal (ashing). CVD (Chemic
A plasma processing apparatus that performs processing such as al Vapor Deposition) (hereinafter also referred to as plasma processing) can efficiently perform plasma processing on a semiconductor substrate or the like at low temperature, and control of etching depth and the like is relatively easy. In addition, since the semiconductor substrate and the like are less likely to be damaged, it is indispensable for manufacturing highly integrated semiconductor devices and the like.
【0003】図1はこの種のプラズマ処理装置の一例を
模式的に示した断面図であり、図中、11は中空直方体
形状の反応容器を示している。この反応容器11はステ
ンレス等の金属により形成され、その周囲壁は二重構造
となっており、その内部は冷却水流通室18となってい
る。そして、装置の作動中はこの冷却水流通室18に冷
却水が流通させられて反応容器11の周囲が冷却され
る。FIG. 1 is a cross-sectional view schematically showing an example of this type of plasma processing apparatus. In the figure, 11 indicates a hollow rectangular parallelepiped reaction vessel. The reaction vessel 11 is made of metal such as stainless steel, and its peripheral wall has a double structure, and the inside thereof is a cooling water flow chamber 18. Then, during the operation of the apparatus, the cooling water is circulated in the cooling water circulation chamber 18 to cool the periphery of the reaction vessel 11.
【0004】反応容器11の上部はプラズマ生成室20
となっており、プラズマ生成室20の上部はマイクロ波
の透過性を有し、誘電損失が小さく、かつ耐熱性を有す
る石英ガラス、アルミナセラミックス等の誘電体板を用
いて形成されたマイクロ波導入窓22によって気密状態
に封止されている。プラズマ生成室20の下方にはメッ
シュ構造の仕切板17を介して、反応室21が形成され
ており、反応室21内にはマイクロ波導入窓22と対向
する位置に試料Sを載置するための試料台23が配設さ
れている。また、反応室21の下部壁には図示しない排
気装置に接続された排気口14が形成されており、プラ
ズマ生成室21の一側壁には反応容器11内に所要の反
応ガスを供給するためのガス供給管13が接続されてい
る。The upper part of the reaction vessel 11 is a plasma generation chamber 20.
The upper part of the plasma generation chamber 20 is microwave-transmissive, is formed using a dielectric plate such as quartz glass, alumina ceramics, or the like, which has microwave permeability, small dielectric loss, and heat resistance. The window 22 is hermetically sealed. A reaction chamber 21 is formed below the plasma generation chamber 20 through a partition plate 17 having a mesh structure, and the sample S is placed in the reaction chamber 21 at a position facing the microwave introduction window 22. The sample table 23 is provided. An exhaust port 14 connected to an exhaust device (not shown) is formed in the lower wall of the reaction chamber 21, and one side wall of the plasma generation chamber 21 is provided for supplying a required reaction gas into the reaction container 11. The gas supply pipe 13 is connected.
【0005】一方、反応容器11の上方には誘電体線路
12が配設されており、誘電体線路12の上部にはアル
ミニウム(Al)等を用いて形成された金属板12aが
配設され、金属板12aの下面には誘電体層12bがボ
ルトで固定されている。この誘電体層12bは誘電損失
の小さいフッ素樹脂、ポリエチレンあるいはポリスチレ
ン等を用いて形成されている。誘電体線路12には導波
管15を介してマイクロ波発振器16が連結されてお
り、マイクロ波発振器16からのマイクロ波が導波管1
5を介して誘電体線路12に導入されるようになってい
る。On the other hand, a dielectric line 12 is arranged above the reaction vessel 11, and a metal plate 12a made of aluminum (Al) or the like is arranged above the dielectric line 12. The dielectric layer 12b is fixed to the lower surface of the metal plate 12a with bolts. The dielectric layer 12b is made of fluororesin, polyethylene, polystyrene or the like, which has a small dielectric loss. A microwave oscillator 16 is connected to the dielectric line 12 via a waveguide 15, and the microwave from the microwave oscillator 16 is coupled to the waveguide 1.
It is adapted to be introduced into the dielectric line 12 through the line 5.
【0006】このように構成されたプラズマ処理装置を
用い、例えば試料台23上に載置された試料S表面にプ
ラズマ処理を施す場合、まず排気口14から排気を行っ
て反応容器11内を所要の真空度に設定した後、ガス供
給管13からプラズマ生成室20内にCF4 、C3 F
8 、Cl2 、HBr、Ar、O2 等の反応性ガスを供給
する。また装置の作動中は、冷却水を冷却水流通室18
に流して反応容器11周辺を冷却する。次いで、マイク
ロ波発振器16を作動させてマイクロ波を発振させ、こ
のマイクロ波を導波管15を介して誘電体線路12に導
入する。これにより誘電体線路12下方に電界が形成さ
れ、形成された電界がマイクロ波導入窓22を通過して
プラズマ生成室20内に導入される。一方、ガス供給管
13から供給されたガスは、プラズマ生成室20内に導
入され、マイクロ波の照射によりプラズマ化される。こ
のプラズマのうち電気的に中性のラジカルが主にメッシ
ュ状の仕切板17を透過して反応室21内に均一に広が
り、試料台23に載置された試料S表面に到達し、試料
Sにプラズマ処理が施される。When the plasma processing apparatus having the above-described structure is used to perform plasma processing on the surface of the sample S placed on the sample table 23, first, the inside of the reaction vessel 11 is exhausted by exhausting from the exhaust port 14. After setting the degree of vacuum of CF4 and C3 F from the gas supply pipe 13 into the plasma generation chamber 20,
A reactive gas such as8 , Cl2 , HBr, Ar or O2 is supplied. During operation of the device, the cooling water is supplied to the cooling water flow chamber 18
To cool the periphery of the reaction vessel 11. Then, the microwave oscillator 16 is operated to oscillate the microwave, and this microwave is introduced into the dielectric line 12 via the waveguide 15. Thereby, an electric field is formed below the dielectric line 12, and the formed electric field is introduced into the plasma generation chamber 20 through the microwave introduction window 22. On the other hand, the gas supplied from the gas supply pipe 13 is introduced into the plasma generation chamber 20 and turned into plasma by irradiation with microwaves. Of the plasma, electrically neutral radicals mainly permeate through the mesh-shaped partition plate 17 and spread uniformly in the reaction chamber 21, reach the surface of the sample S mounted on the sample table 23, and reach the sample S. Is subjected to plasma treatment.
【0007】このようなプラズマ処理装置においては、
従来、上述したようにプラズマ生成室20の上部にマイ
クロ波の透過性を有し、誘電損失が小さく、かつ耐熱性
を有する石英ガラス、アルミナセラミックス等の誘電体
板を用いて形成されたマイクロ波導入窓22が配設さ
れ、これにより反応容器11内部の気密性が保持されて
いた。In such a plasma processing apparatus,
Conventionally, as described above, a microwave is formed in the upper part of the plasma generation chamber 20 by using a dielectric plate made of quartz glass, alumina ceramics, or the like, which has microwave permeability, small dielectric loss, and heat resistance. The introduction window 22 was provided, and thereby the airtightness inside the reaction vessel 11 was maintained.
【0008】しかしながら、マイクロ波導入窓22とし
て前記石英ガラス等のガラス板が用いられた場合、前記
ガラス板はフッ化物系の反応ガスに対する耐食性に劣る
ため、このようなガスをエッチングガスとして使用する
ことができないという問題があった。また、前記ガラス
板は放射熱等を透過しやすいため、反応室21内部に生
成したプラズマによる熱が樹脂により形成された誘電体
層12bに放射されて熱変形を生じ、プロセス性能を低
下させるという問題があった。However, when the glass plate such as the quartz glass is used as the microwave introduction window 22, the glass plate is inferior in the corrosion resistance to the reaction gas of the fluoride system, and therefore such a gas is used as the etching gas. There was a problem that I could not. Further, since the glass plate easily transmits radiant heat and the like, the heat generated by the plasma generated inside the reaction chamber 21 is radiated to the dielectric layer 12b made of resin to cause thermal deformation, which deteriorates the process performance. There was a problem.
【0009】一方、マイクロ波導入窓22としてアルミ
ナセラミックスからなる板(以下単にアルミナ板と記
す)が用いられた場合、マイクロ波を透過する際の誘電
損失に起因して発生する熱や反応室21内部のプラズマ
による熱のためにアルミナ板の温度が上昇して熱応力が
発生し、長時間使用しないうちに破損に至るという問題
があった。また、この誘電損失による発熱に起因して、
反応室21内部で発生したプラズマが安定せず、試料S
にエッチング等のプラズマ処理を施す際に、プラズマ処
理の速度が次第に低下していくという問題もあった。On the other hand, when a plate made of alumina ceramics (hereinafter simply referred to as an alumina plate) is used as the microwave introduction window 22, heat generated due to dielectric loss when transmitting microwaves and the reaction chamber 21. There is a problem in that the temperature of the alumina plate rises due to the heat generated by the internal plasma and thermal stress is generated, resulting in damage before being used for a long time. Also, due to the heat generated by this dielectric loss,
The plasma generated in the reaction chamber 21 is not stable, and the sample S
There is also a problem that the plasma processing speed gradually decreases when plasma processing such as etching is performed.
【0010】[0010]
【発明が解決しようとする課題】このような問題を解決
するために、誘電損失を小さくするアルミナ製磁器材料
として、例えば特開平4−356922号公報には、マ
イクロ波を透過させる性質を有し、かつプラズマ放電雰
囲気において使用されるプラズマ放電部材で、アルカリ
金属(Na2 O、K2 O)の総含有量が150ppm以
下で、誘電損失(tanδ)が1×10-4〜1×1
0-3、すなわちQ値が1000〜10000の高純度多
結晶アルミナ又は高純度単結晶アルミナからなるプラズ
マ放電部材が開示されている。In order to solve such a problem, as an alumina porcelain material for reducing dielectric loss, for example, Japanese Patent Laid-Open No. 4-356922 has a property of transmitting microwaves. In a plasma discharge member used in a plasma discharge atmosphere, the total content of alkali metals (Na2 O, K2 O) is 150 ppm or less, and the dielectric loss (tan δ) is 1 × 10−4 to 1 × 1.
A plasma discharge member made of high-purity polycrystalline alumina or high-purity single-crystal alumina having a Q value of 0 to3 , that is, 1000 to 10,000 is disclosed.
【0011】しかしながら、前記公報の実施例の項に記
載されているような方法で高純度のアルミナを製造する
には、原料自身の純度が99.9%の高純度アルミナを
使用し、かつ水素雰囲気中で焼成する必要がある。その
ために特殊な焼成炉を必要とし、製造されるアルミナ自
身は高価なものとなってしまう。また、前記方法では肉
厚の大型品を製造するのが難しいという工業プロセス的
な制約が存在する。However, in order to produce high-purity alumina by the method described in the above-mentioned Examples of the publication, high-purity alumina in which the raw material itself has a purity of 99.9% is used, and hydrogen is used. It is necessary to fire in an atmosphere. Therefore, a special firing furnace is required, and the produced alumina itself becomes expensive. Further, there is an industrial process restriction that it is difficult to manufacture a large-sized product with the above-mentioned method.
【0012】そこで、安価ないわゆる低ソーダアルミナ
と呼ばれるアルミナ原料(一般に300〜500ppm
程度のナトリウムを含む)を用いて焼結体を製造する方
法が考えられるが、大気雰囲気中で従来から行われてい
るような方法で焼成することにより得られる肉厚(厚
さ:15mm以上)のアルミナ板は、該アルミナ板を通
過したプラズマの均一性が悪く、例えば前記アルミナ板
が使用されたプラズマ処理装置を用いてアッシング処理
を施した場合には、被処理物のアッシング速度が場所に
より不均一になるという課題があった。Therefore, an inexpensive alumina raw material called so-called low soda alumina (generally 300 to 500 ppm) is used.
A method of producing a sintered body using a certain amount of sodium is included, but the thickness (thickness: 15 mm or more) obtained by firing in a conventional manner in an air atmosphere. Of the alumina plate is not uniform in plasma passing through the alumina plate. For example, when the ashing process is performed using the plasma processing apparatus using the alumina plate, the ashing speed of the object to be processed may vary depending on the location. There was a problem of becoming non-uniform.
【0013】[0013]
【課題を解決するための手段】そこで、前記した安価な
アルミナ原料が使用された大型マイクロ波導入窓におい
て被処理物のアッシング速度が不均一になる原因につ
き、実際に大型マイクロ波導入窓を製造して調査を行っ
た。すなわち、製造した380mm×380mm×20
mmのマイクロ波導入窓の様々な部分から、面内方向及
び厚み方向の誘電特性(マイクロ波領域)を評価するサ
ンプル及び不純物濃度を評価するサンプルを採取し、評
価を行った。その結果、fQ値は採取した部分により2
0,000〜120,000の間でばらつき、fQ値の
高い部分ではナトリウム含有量が100ppm以下であ
り、一方fQ値の低い部分ではナトリウム含有量が10
0ppmを超え、含有量が高いものと低いものとの範囲
は70〜250ppmであることがわかった。Therefore, the reason why the ashing speed of the object to be treated becomes uneven in the large-sized microwave introduction window using the above-mentioned inexpensive alumina raw material is that the large-sized microwave introduction window is actually manufactured. I did an investigation. That is, the manufactured 380 mm x 380 mm x 20
Samples for evaluating the dielectric properties (microwave region) in the in-plane direction and the thickness direction and samples for evaluating the impurity concentration were sampled and evaluated from various portions of the mm microwave introduction window. As a result, the fQ value is 2 depending on the collected part.
The sodium content is 100 ppm or less in the high fQ value portion, while the sodium content is 10 ppm or less in the low fQ value portion.
It was found that the range of the content exceeding 0 ppm and the content being high and low is 70 to 250 ppm.
【0014】また前記結果より、アッシング処理速度の
遅い部分とアッシング処理速度の早い部分とについて、
マイクロ波透過性の指標となる直上のマイクロ波導入窓
のfQ値(周波数×Q値)とを対応させたところ、これ
ら各部位のfQ値とアッシング処理速度の値とがほぼ一
定の相関関係を有することがわかった。このようにマイ
クロ波の透過性はプラズマの生成効率に影響を与え、こ
のマイクロ波導入窓のマイクロ波透過率の不均一性に起
因して、被処理物のアッシング速度が不均一となると推
定される。Further, from the above results, regarding the portion where the ashing processing speed is slow and the portion where the ashing processing speed is fast,
When the fQ value (frequency × Q value) of the microwave introduction window immediately above, which is an index of microwave permeability, is made to correspond to each other, the fQ value of each of these portions and the value of the ashing processing speed show a substantially constant correlation. Found to have. Thus, the microwave permeability affects the plasma generation efficiency, and it is estimated that the ashing rate of the object to be processed becomes non-uniform due to the non-uniformity of the microwave transmittance of the microwave introduction window. It
【0015】本発明者は、安定なプロセス性能が得られ
る大型のマイクロ波導入窓を低コストで得ることを目的
とし、安価なアルミナを原料としたマイクロ波導入窓を
備えたプラズマ処理装置を用いてプラズマ処理を行う際
の処理速度の不均一性の原因について検討したところ、
前記マイクロ波導入窓中のナトリウム含有量の不均一性
に起因するfQ値の不均一性により処理速度の不均一が
生じること、及び前記マイクロ波導入窓を製造する際の
焼成条件(加熱条件)をうまく設定することにより、前
記マイクロ波導入窓中のナトリウム含有量の不均一性が
解消されることを見出し本発明を完成するに至った。The inventor of the present invention uses a plasma processing apparatus equipped with a microwave introduction window made of inexpensive alumina as a raw material for the purpose of obtaining a large-scale microwave introduction window which can obtain stable process performance at low cost. When we investigated the cause of the non-uniformity of the processing speed when performing plasma processing,
The non-uniformity of the fQ value caused by the non-uniformity of the sodium content in the microwave introduction window causes the non-uniformity of the processing speed, and the firing conditions (heating conditions) for manufacturing the microwave introduction window. It was found that the non-uniformity of the sodium content in the microwave introduction window can be eliminated by properly setting the above-mentioned condition, and the present invention has been completed.
【0016】本発明に係るアルミナ製マイクロ波導入窓
は、厚さが15mm以上で、ナトリウム含有量がいずれ
の部分においても100ppm以下であり、かつ前記ナ
トリウム含有量のばらつきが50ppm以下であること
を特徴としている。The microwave introducing window made of alumina according to the present invention has a thickness of 15 mm or more, a sodium content of 100 ppm or less in any portion, and a variation of the sodium content of 50 ppm or less. It has a feature.
【0017】また本発明に係るアルミナ製マイクロ波導
入窓の製造方法(1)は、アルミナ原料粉末の成形体を
1200〜1550℃で15時間以上保持し、その後焼
結させることを特徴としている。The method (1) for manufacturing an alumina microwave introduction window according to the present invention is characterized in that the alumina raw material powder compact is held at 1200 to 1550 ° C. for 15 hours or more and then sintered.
【0018】また本発明に係るアルミナ製マイクロ波導
入窓の製造方法(2)は、アルミナ原料粉末の成形体を
加熱する際に、1200〜1550℃の温度範囲を20
℃/時間以下の昇温速度で昇温させ、その後さらに焼結
させることを特徴としている。Further, in the method (2) for manufacturing the microwave introduction window made of alumina according to the present invention, the temperature range of 1200 to 1550 ° C. is set to 20 when heating the formed body of the alumina raw material powder.
It is characterized in that the temperature is raised at a temperature rising rate of not more than ° C / hour and then further sintered.
【0019】[0019]
【発明の実施の形態】本発明の実施の形態に係るアルミ
ナ製マイクロ波導入窓は、厚さが15mm以上で、ナト
リウム含有量がいずれの部分においても100ppm以
下であり、かつ前記ナトリウム含有量のばらつきが50
ppm以下である。BEST MODE FOR CARRYING OUT THE INVENTION The microwave introduction window made of alumina according to the embodiment of the present invention has a thickness of 15 mm or more, a sodium content of 100 ppm or less in any portion, and 50 variations
ppm or less.
【0020】上記アルミナ製マイクロ波導入窓のナトリ
ウム含有量のばらつきを50ppm以下としたのは、ナ
トリウム含有量のばらつきが50ppmを超えるとアッ
シング処理等を施す際の処理速度が不均一となるからで
ある。また、ナトリウム含有量がいずれの部分において
も100ppm以下としたのは、ナトリウム含有量がい
ずれかの部分において100ppmを超えるとfQ値が
100,000より小さくなり、誘電損失に起因する発
熱によりマイクロ波導入窓が破損する虞れがあるからで
ある。The variation of the sodium content of the alumina microwave introduction window is set to 50 ppm or less because the variation of the sodium content exceeds 50 ppm, the processing speed at the time of performing the ashing treatment becomes non-uniform. is there. In addition, the sodium content is set to 100 ppm or less in any part, because the fQ value becomes smaller than 100,000 when the sodium content exceeds 100 ppm in any part, and microwaves are generated due to heat generation due to dielectric loss. This is because the introduction window may be damaged.
【0021】ここで、前記アルミナ製マイクロ波導入窓
の厚さを15mm以上と規定したのは、その厚さが15
mm未満のアルミナ製マイクロ波導入窓については、従
来の製造方法によってもナトリウム含有量が100pp
m以下で、fQ値が100,000以上のものを得るこ
とができるからである。なお、fQ値とは周波数(GH
z)と誘電損失(tanδ)の逆数であるQ値との積で
あり、マイクロ波に対する誘電損失が格子振動の減衰項
に起因する場合はfQ値が一定になることが知られてお
り、材料固有の値として評価することができる。Here, the thickness of the microwave introduction window made of alumina is defined as 15 mm or more because the thickness is 15 mm.
Regarding the microwave introduction window made of alumina of less than mm, the sodium content is 100 pp even by the conventional manufacturing method.
This is because it is possible to obtain a resin having an fQ value of 100,000 or more at m or less. The fQ value is the frequency (GH
z) and the Q value which is the reciprocal of the dielectric loss (tan δ). It is known that the fQ value becomes constant when the dielectric loss with respect to microwaves is caused by the attenuation term of the lattice vibration. It can be evaluated as a unique value.
【0022】実施の形態に係るアルミナ製マイクロ波導
入窓は、他の不純物として、金属元素の総含有量が20
00ppm以下であるのが好ましい。また、前記アルミ
ナ製マイクロ波導入窓をプラズマ処理装置に配設した
際、前記プラズマ処理装置の内部は気密に封止される必
要があるため、前記アルミナ製マイクロ波導入窓は開気
孔を有さず、その理論密度比は97%以上であるのが好
ましい。また、前記アルミナ製マイクロ波導入窓は、内
部が真空に近い状態で加熱されても破損しない必要があ
るため、その曲げ強度が20〜40kg/mm2 程度の
範囲にあるのが好ましい。ここで理論密度とは、X線回
折により求めたアルミナの格子定数から得られる単位格
子の体積と、単位体積に占めるAl、Oの総重量から求
めた値をいう。また理論密度比とは、前記理論密度に対
するアルキメデス法により求めた嵩密度の比をいう。The alumina microwave introduction window according to the embodiment has a total content of metal elements of 20 as other impurities.
It is preferably 00 ppm or less. Further, when the alumina microwave introduction window is provided in the plasma processing apparatus, the inside of the plasma processing apparatus needs to be hermetically sealed, so that the alumina microwave introduction window has open pores. However, the theoretical density ratio is preferably 97% or more. In addition, since the microwave introduction window made of alumina needs not to be damaged even if it is heated in a state close to a vacuum, the bending strength thereof is preferably in the range of about20 to 40 kg / mm2 . Here, the theoretical density means a value obtained from the volume of a unit cell obtained from the lattice constant of alumina obtained by X-ray diffraction and the total weight of Al and O in the unit volume. The theoretical density ratio means the ratio of the bulk density to the theoretical density obtained by the Archimedes method.
【0023】前記特性を有するアルミナ製マイクロ波導
入窓は、誘電損失が極めて小さいため、マイクロ波を照
射しても、誘電損失により発生する熱等に起因する熱応
力により前記アルミナ製マイクロ波導入窓が破損するこ
とはない。また、前記マイクロ波導入窓が装備されたプ
ラズマ処理装置を用いてプラズマ処理等を行う際の処理
速度を均一化することができる。The alumina microwave introduction window having the above characteristics has a very small dielectric loss. Therefore, even if microwave irradiation is performed, the alumina microwave introduction window is thermally stressed by heat generated by the dielectric loss. Will not be damaged. Further, it is possible to make uniform the processing speed when performing plasma processing or the like using the plasma processing apparatus equipped with the microwave introduction window.
【0024】次に、本発明の実施の形態に係るアルミナ
製マイクロ波導入窓の製造方法について説明する。Next, a method of manufacturing the microwave introduction window made of alumina according to the embodiment of the present invention will be described.
【0025】実施の形態1に係るアルミナ製マイクロ波
導入窓の製造方法においては、アルミナ原料粉末の成形
体を1200〜1550℃で15時間以上保持する他
は、通常のセラミックス製品の製造方法と同様の方法で
前記アルミナ製マイクロ波導入窓を製造することができ
る。In the method of manufacturing the alumina microwave introduction window according to the first embodiment, the method is the same as the method of manufacturing ordinary ceramic products except that the formed body of alumina raw material powder is held at 1200 to 1550 ° C. for 15 hours or more. The microwave introduction window made of alumina can be manufactured by the above method.
【0026】すなわち、市販のナトリウム分の含有量が
比較的少ない、安価な低ソーダアルミナ粉末(ナトリウ
ム含有量:300〜500ppm、平均粒径:0.2〜
1.5μm)に、焼結助剤としてMgO等を0.1〜5
重量%程度添加した後、さらに有機バインダや水等を添
加してスラリを調製する。このスラリをスプレードライ
ヤ等を用いて造粒、乾燥させることにより造粒粉末を得
る。この造粒粉末をゴム型等に入れ、静水圧プレスで所
定のプレート形状に成形するのが望ましい。また、造粒
粉末を金型に入れ、一軸圧成形機を用いて所定の形状に
成形してもかまわない。また、金型内で一軸成形後、さ
らに静水圧プレスを行ってもかまわない。このようにし
て作製された成形体を加熱して脱脂を行った後、通常は
焼結を行い焼結体(マイクロ波導入窓)を製造するが、
実施の形態に係るアルミナ製マイクロ波導入窓の製造方
法においては、焼結前に大気雰囲気の下、1200〜1
550℃で15時間以上保持する。That is, an inexpensive low soda alumina powder having a relatively low sodium content on the market (sodium content: 300 to 500 ppm, average particle size: 0.2 to
1.5 μm) with 0.1 to 5 of MgO or the like as a sintering aid.
After adding about wt%, an organic binder, water, etc. are further added to prepare a slurry. A granulated powder is obtained by granulating and drying this slurry using a spray dryer or the like. It is desirable to put this granulated powder in a rubber mold or the like and form it into a predetermined plate shape by isostatic pressing. Further, the granulated powder may be put into a mold and molded into a predetermined shape using a uniaxial pressure molding machine. Further, after the uniaxial molding in the mold, further isostatic pressing may be performed. After heating the molded body produced in this way to degrease it, sintering is usually performed to produce a sintered body (microwave introduction window).
In the method for manufacturing the microwave introduction window made of alumina according to the embodiment, 1200 to 1 under an air atmosphere before sintering.
Hold at 550 ° C for 15 hours or more.
【0027】アルミナ原料粉末中でのナトリウムの存在
形態は明らかでないが、加熱温度を前記した温度範囲に
設定することにより、前記成形体中のナトリウムの蒸気
圧が高くなり、成形体中から開気孔を通じてナトリウム
が外部に飛散して行くと考えられる。保持温度が120
0℃未満では、ナトリウムの蒸気圧が低いため、その含
有量が100ppm以下で、かつそのばらつきが50p
pm以下にするのに長時間を要し、実用的でなく、他方
保持温度が1550℃を超えると、焼結が進行し、成形
体内から外部に通じる開気孔が少なくなるため、ナトリ
ウムの飛散する経路が小さくなり、その飛散速度が著し
く遅くなり、ナトリウム含有量を100ppm以下と
し、かつそのばらつきを50ppm以下とすることがで
きない。保持時間は製造するマイクロ波導入窓の厚さと
の兼ね合いで、厚さが厚いものほど、ナトリウムを飛散
させるのに長時間を要する。マイクロ波導入窓に要求さ
れる厚さは15〜40mm程度であるので、少なくとも
保持時間を15時間以上とることにより、製造されるマ
イクロ導入窓はいずれの部分をとってナトリウム含有量
が100ppm以下で、そのばらつきが50ppm以下
となり、マイクロ導入窓の各部分を面内方向及び厚み方
向のいずれの方向で測定してもfQ値が100,000
以上となる。しかし、前記保持時間を48時間以上とし
てもナトリウム飛散の効果はそれほど変わらないので、
生産性を考慮すると、保持時間は15〜48時間が好ま
しい。このときの加熱雰囲気は、成形体内部に含まれる
バインダによる残炭問題を考慮し、大気圧下等の酸化雰
囲気が好ましい。また減圧下でもよい。Although the form of sodium present in the alumina raw material powder is not clear, by setting the heating temperature in the above-mentioned temperature range, the vapor pressure of sodium in the molded body becomes high, and open pores are formed in the molded body. Sodium is thought to be scattered to the outside. Holding temperature is 120
Below 0 ° C, the vapor pressure of sodium is low, so its content is 100 ppm or less, and its variation is 50 p.
It takes a long time to reach pm or less and is not practical. On the other hand, when the holding temperature exceeds 1550 ° C., the sintering progresses and the number of open pores communicating with the outside from the molded body decreases, so that sodium scatters. The path becomes smaller, the scattering speed becomes remarkably slow, and the sodium content cannot be 100 ppm or less and the variation thereof cannot be 50 ppm or less. The holding time is in consideration of the thickness of the microwave introduction window to be manufactured, and the thicker it is, the longer time is required to disperse sodium. Since the required thickness of the microwave introduction window is about 15 to 40 mm, by keeping the holding time at least 15 hours or more, the produced microwave introduction window has a sodium content of 100 ppm or less in any part. The variation is 50 ppm or less, and the fQ value is 100,000 regardless of whether the respective portions of the micro introduction window are measured in the in-plane direction or the thickness direction.
That is all. However, even if the holding time is 48 hours or more, the effect of sodium scattering does not change so much,
Considering productivity, the holding time is preferably 15 to 48 hours. The heating atmosphere at this time is preferably an oxidizing atmosphere under atmospheric pressure or the like in consideration of the problem of residual carbon due to the binder contained in the molded body. It may also be under reduced pressure.
【0028】その後、1600〜1700℃で1〜10
時間焼結させることにより、アルミナ製マイクロ波導入
窓を製造することができる。Thereafter, 1 to 10 at 1600 to 1700 ° C.
The alumina microwave introduction window can be manufactured by sintering for a time.
【0029】また本発明の実施の形態2に係るアルミナ
製マイクロ波導入窓の製造方法においては、1200〜
1550℃の温度範囲において、アルミナ原料粉末の成
形体を20℃/時間以下の昇温速度で昇温させる他は、
前記した実施の形態1に係るアルミナ製マイクロ波導入
窓の製造方法と同様の条件で製造することができる。In addition, in the method of manufacturing the microwave introduction window made of alumina according to the second embodiment of the present invention, 1200 to
In the temperature range of 1550 ° C., the temperature of the alumina raw material powder compact is raised at a temperature rising rate of 20 ° C./hour or less,
It can be manufactured under the same conditions as the method for manufacturing the alumina microwave introduction window according to the first embodiment described above.
【0030】昇温速度が20℃/時間を超えると、昇温
速度が早すぎるため、ナトリウムが成形体の外に飛散す
る前に焼結が進行するようになり、ナトリウム含有量が
低下しなくなる。しかし、昇温速度が5℃/時間よりも
小さいと、ナトリウムを飛散させるのに時間がかかりす
ぎ、経済的でない。従って、加熱時間を15〜48時間
の範囲でやめ、その後、昇温、焼結を行えばよい。When the heating rate exceeds 20 ° C./hour, the heating rate is too fast, so that the sintering proceeds before sodium scatters out of the compact, and the sodium content does not decrease. . However, if the heating rate is lower than 5 ° C./hour, it takes too much time to disperse sodium, which is not economical. Therefore, the heating time may be stopped within the range of 15 to 48 hours, and then the temperature may be raised and the sintering may be performed.
【0031】[0031]
【実施例及び比較例】以下、本発明に係るアルミナ製マ
イクロ波導入窓の実施例を説明する。市販の低ソーダア
ルミナ粉末(アルミナ純度:99.8wt%、ナトリウ
ム含有量:0.04wt%、平均粒径0.9μm)10
0重量部に焼結助剤としてMgO(平均粒径:0.7μ
m)を0.3重量部を添加して混合し、この混合粉末に
有機バインダ(ポリビニルアルコール)3重量部と純水
100重量部とを混合してスラリを調製した。次に、こ
のスラリをスプレ−ドライヤ−により乾燥して造粒し
た。次に、この造粒粉末をゴム型に充填し、1.2to
n/cm2 の静水圧を加え、500mm×500mm×
30mmのプレート形状に成形した。EXAMPLES AND COMPARATIVE EXAMPLES Examples of the microwave introduction window made of alumina according to the present invention will be described below. Commercially available low soda alumina powder (alumina purity: 99.8 wt%, sodium content: 0.04 wt%, average particle size 0.9 μm) 10
0 parts by weight of MgO as a sintering aid (average particle size: 0.7μ
0.3 part by weight of m) was added and mixed, and the mixed powder was mixed with 3 parts by weight of an organic binder (polyvinyl alcohol) and 100 parts by weight of pure water to prepare a slurry. Next, this slurry was dried with a spray dryer and granulated. Next, this granulated powder is filled in a rubber mold, and 1.2 to
Applying hydrostatic pressure of n / cm2 , 500 mm × 500 mm ×
It was molded into a plate shape of 30 mm.
【0032】次に、この成形体を10℃/時間の昇温速
度で1000℃まで昇温させて有機バインダを徐々に飛
散させた後、1000℃から保持温度まで30℃/時間
の速度で昇温させ、所定の温度及び時間で保持した後、
30℃/時間の速度で1650℃まで昇温させ、165
0℃の温度で3時間焼結させることによりアルミナセラ
ミックスよりなるマイクロ波導入窓の製造を完了した。
室温から1000℃までの昇温速度、1000℃〜保持
温度までの昇温速度、保持温度、保持時間、保持温度か
ら1650℃までの昇温速度、焼結温度(1650
℃)、焼結時間、及び1650℃から室温までの冷却速
度を下記の表1に示している。Next, the molded body was heated to 1000 ° C. at a temperature rising rate of 10 ° C./hour to gradually scatter the organic binder, and then the temperature was raised from 1000 ° C. to the holding temperature at a rate of 30 ° C./hour. After warming and holding at a predetermined temperature and time,
The temperature is raised to 1650 ° C. at a rate of 30 ° C./hour, and 165
The microwave introduction window made of alumina ceramics was completed by sintering at a temperature of 0 ° C. for 3 hours.
Temperature rising rate from room temperature to 1000 ° C, temperature rising rate from 1000 ° C to holding temperature, holding temperature, holding time, temperature rising rate from holding temperature to 1650 ° C, sintering temperature (1650
° C), sintering time, and cooling rate from 1650 ° C to room temperature are shown in Table 1 below.
【0033】また、別の焼成パターンとして、1000
〜1200℃まで30℃/時間で昇温させた後、120
0〜1550℃まで、下記の表2に示す昇温速度で昇温
した他は、上記したパターンと同様に加熱、焼結を行
い、マイクロ波導入窓を製造した。室温から1000℃
までの昇温速度、1000〜1200℃までの昇温速
度、1200〜1550℃までの昇温速度、1550〜
1650℃までの昇温速度、焼結温度(1650℃)、
焼結時間、及び1650℃から室温までの冷却速度を下
記の表2に示している。Another firing pattern is 1000
After heating up to ~ 1200 ° C at 30 ° C / hour, 120
A microwave introduction window was manufactured by performing heating and sintering in the same manner as the above pattern except that the temperature was raised from 0 to 1550 ° C. at the heating rate shown in Table 2 below. Room temperature to 1000 ° C
Heating rate up to 1000-1200 ° C, heating rate up to 1200-1550 ° C, 1550-
Heating rate up to 1650 ° C, sintering temperature (1650 ° C),
The sintering time and the cooling rate from 1650 ° C. to room temperature are shown in Table 2 below.
【0034】前記製造条件により得られたマイクロ波導
入窓の厚さ方向及び面内方向につき30か所から直径1
6mm、厚さ6.3mmの円柱状サンプルを切り出し、
ネットワークアナライザで誘電特性の測定を行った。The microwave introduction window obtained under the above manufacturing conditions has a diameter of 1 from 30 points in the thickness direction and the in-plane direction.
Cut out a cylindrical sample having a thickness of 6 mm and a thickness of 6.3 mm,
Dielectric properties were measured with a network analyzer.
【0035】また、上記誘電体特性評価サンプルを粉砕
し、発光分光分析法を用いてナトリウム含有量の測定を
行った。Further, the above-mentioned dielectric property evaluation sample was crushed, and the sodium content was measured by an emission spectroscopic analysis method.
【0036】前記マイクロ波導入窓とは別に、380m
m×380mm×20mmの形状のマイクロ波導入窓を
前記実施例及び比較例と同様の条件で製造した。次に、
このマイクロ波導入窓を図1に示したプラズマ処理装置
のマイク波導入窓として実際に使用し、Siウエハ(試
料S)上に形成されたSi酸化膜にエッチング処理を施
し、Siウエハの各部分におけるエッチング速度の分布
を測定した。Apart from the microwave introduction window, 380 m
A microwave introduction window having a shape of m × 380 mm × 20 mm was manufactured under the same conditions as those of the above-mentioned Examples and Comparative Examples. next,
This microwave introduction window is actually used as a microphone introduction window of the plasma processing apparatus shown in FIG. 1, and the Si oxide film formed on the Si wafer (sample S) is subjected to an etching treatment to obtain each portion of the Si wafer. The distribution of the etching rate was measured.
【0037】このエッチング処理は、CF4 とO2 との
混合ガスを用い、ガスの流量比をCF4 :O2 =9:1
に設定し、また反応容器11内の圧力を133Pa、ガ
ス流量を1slm(standard liter per minute )に設
定して、混合ガスを反応容器11内に流通させることに
より行った。また、このときマイクロ波パワーを1.4
kWに設定し、1枚のSiウエハを処理するために、2
分間のマイクロ波パワーの印加を行い、Siウエハの各
部分におけるエッチング速度の分布を測定した。結果を
同じく下記の表3及び表4に示している。In this etching process, a mixed gas of CF4 and O2 is used, and the gas flow rate ratio is CF4 : O2 = 9: 1.
Was set to 1, the pressure in the reaction vessel 11 was set to 133 Pa, the gas flow rate was set to 1 slm (standard liter per minute), and the mixed gas was circulated in the reaction vessel 11. At this time, the microwave power is 1.4
2 kW to set one kW and process one Si wafer
Microwave power was applied for a minute, and the distribution of the etching rate in each part of the Si wafer was measured. The results are also shown in Tables 3 and 4 below.
【0038】また、比較例に係るマイクロ波導入窓につ
いても同様に、その製造条件、及び特性の測定結果を下
記の表1〜表4に記載している。Similarly, with respect to the microwave introduction window according to the comparative example, the manufacturing conditions and the measurement results of the characteristics are shown in Tables 1 to 4 below.
【0039】[0039]
【表1】[Table 1]
【0040】[0040]
【表2】[Table 2]
【0041】[0041]
【表3】[Table 3]
【0042】[0042]
【表4】[Table 4]
【0043】上記表1及び表2に記載したマイクロ波導
入窓の製造条件及び表3及び表4に示したマイクロ波導
入窓に関する特性より明らかなように、実施例に係るマ
イクロ波導入窓は、ナトリウム含有量がいずれの部分に
おいても100ppm以下であり、かつ前記ナトリウム
含有量のばらつきが45ppm以下で、fQ値が11
0,000〜175,000であり、実施例に係るマイ
クロ波導入窓が使用されたプラズマ処理装置では、Si
ウエハの面内エッチング速度のばらつきがいずれも5%
以内となっており、エッチング速度が極めて均一であ
る。なお、実施例に係るマイクロ波導入窓の抗折強度は
25〜40kg/mm2 の範囲であった。As is clear from the manufacturing conditions of the microwave introducing window shown in Tables 1 and 2 and the characteristics concerning the microwave introducing window shown in Tables 3 and 4, the microwave introducing window according to the embodiment is The sodium content is 100 ppm or less in any part, the variation in the sodium content is 45 ppm or less, and the fQ value is 11
In the plasma processing apparatus using the microwave introduction window according to the embodiment, the Si is
5% variation in in-plane etching rate of wafer
Within the range, the etching rate is extremely uniform. The bending strength of the microwave introduction window according to the example was in the range of 25 to 40 kg / mm2 .
【0044】他方、比較例に係るマイクロ波導入窓につ
いて、その特性を見てみると、比較例1の場合は、一定
の温度での保持工程なしに焼結を行っているため、厚み
方向にナトリウム含有量のばらつきが大きく、fQ値も
20,000〜120,000とばらついている。その
ため、エッチング速度のばらつきも12%と大きくなっ
ている。また、保持温度が1150℃と低い比較例2の
場合も、ナトリウム含有量が低減されておらず、エッチ
ング速度のばらつきも10%と大きくなっている。比較
例3〜7の場合は、保持時間が15時間より短いため、
ナトリウム含有量が100ppm以下に低減されない
か、ナトリウム含有量のばらつきが50ppmより大き
く、エッチング速度のばらつきも7%以上となってい
る。比較例8、9の場合は、保持温度が1600℃と高
いため、ナトリウムが飛散する前に焼結が始まり、結果
的にナトリウムの含有量が低減されていない。さらに比
較例10、11の場合のように、1200〜1500℃
の温度範囲における昇温速度が20℃/時間を超えて
も、ナトリウム含有量が100ppm以下に低減されな
いか、ナトリウム含有量のばらつきが50ppmより大
きくなっている。On the other hand, looking at the characteristics of the microwave introduction window according to the comparative example, in the case of the comparative example 1, since the sintering is performed without the holding step at a constant temperature, The sodium content varies greatly, and the fQ value also varies from 20,000 to 120,000. Therefore, the variation in etching rate is as large as 12%. Further, also in Comparative Example 2 in which the holding temperature is as low as 1150 ° C., the sodium content is not reduced, and the variation in the etching rate is as large as 10%. In the case of Comparative Examples 3 to 7, since the retention time is shorter than 15 hours,
The sodium content is not reduced to 100 ppm or less, or the variation in sodium content is larger than 50 ppm, and the variation in etching rate is 7% or more. In Comparative Examples 8 and 9, since the holding temperature was as high as 1600 ° C., sintering started before the sodium was scattered, and as a result, the sodium content was not reduced. Further, as in Comparative Examples 10 and 11, 1200 to 1500 ° C.
Even if the rate of temperature increase in the temperature range of 20 ° C./hour exceeds 20 ° C./hour, the sodium content is not reduced to 100 ppm or less, or the variation in sodium content is more than 50 ppm.
【0045】[0045]
【発明の効果】上記アルミナ製マイクロ波導入窓によれ
ば、各部分のfQ値を均一化することができ、そのため
に前記マイクロ波導入窓が装備されたプラズマ処理装置
を用いてアッシング処理等を行う際の処理速度を均一化
することができる。また、誘電損失に起因する発熱によ
るマイクロ波導入窓の破損を防止することができる。According to the above-mentioned alumina microwave introduction window, the fQ value of each portion can be made uniform, and therefore, ashing treatment or the like is performed using the plasma treatment apparatus equipped with the microwave introduction window. The processing speed at the time of performing can be made uniform. Further, it is possible to prevent the microwave introduction window from being damaged by heat generated due to the dielectric loss.
【0046】上記アルミナ製マイクロ波導入窓の製造方
法(1)又は(2)によれば、ナトリウムを成形体中か
ら飛散させることができ、その後の焼結により、ナトリ
ウム含有量が小さく、かつ均一な、各部分においてfQ
値が大きなアルミナ製マイクロ波導入窓を製造すること
ができる。According to the manufacturing method (1) or (2) of the above-mentioned alumina microwave introduction window, sodium can be scattered from the molded body, and the subsequent sintering causes the sodium content to be small and uniform. FQ in each part
It is possible to manufacture a microwave introduction window made of alumina having a large value.
【図1】プラズマ処理装置の一例を模式的に示した断面
図である。FIG. 1 is a sectional view schematically showing an example of a plasma processing apparatus.
22 マイクロ波導入窓 22 Microwave introduction window
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP07260326AJP3102318B2 (en) | 1995-10-06 | 1995-10-06 | Manufacturing method of microwave introduction window made of alumina |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP07260326AJP3102318B2 (en) | 1995-10-06 | 1995-10-06 | Manufacturing method of microwave introduction window made of alumina |
| Publication Number | Publication Date |
|---|---|
| JPH09102488Atrue JPH09102488A (en) | 1997-04-15 |
| JP3102318B2 JP3102318B2 (en) | 2000-10-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP07260326AExpired - LifetimeJP3102318B2 (en) | 1995-10-06 | 1995-10-06 | Manufacturing method of microwave introduction window made of alumina |
| Country | Link |
|---|---|
| JP (1) | JP3102318B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005158675A (en)* | 2003-10-30 | 2005-06-16 | Kyocera Corp | Plasma processing equipment |
| US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
| US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
| US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
| US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
| JP2008266095A (en)* | 2007-04-24 | 2008-11-06 | Kyocera Corp | Plasma processing apparatus member and plasma processing apparatus using the same |
| US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
| US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
| US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
| US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
| US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
| US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
| US7728251B2 (en) | 2004-10-29 | 2010-06-01 | Sharp Kabushiki Kaisha | Plasma processing apparatus with dielectric plates and fixing member wavelength dependent spacing |
| JP2010141341A (en)* | 1998-07-29 | 2010-06-24 | Applied Materials Inc | Method and apparatus for processing substrate, and ceramic composition for them |
| JP2014001116A (en)* | 2012-06-20 | 2014-01-09 | Taiheiyo Cement Corp | Alumina sintered body and method for manufacturing the same |
| KR20140044963A (en)* | 2012-09-07 | 2014-04-16 | 타이헤이요 세멘트 가부시키가이샤 | Alumina-based sintered body and the preparation method thereof |
| WO2019026871A1 (en) | 2017-08-01 | 2019-02-07 | 株式会社フェローテックセラミックス | Alumina sintered compact, method of manufacturing same, and component for semiconductor manufacturing apparatus |
| JP2023098596A (en)* | 2021-12-28 | 2023-07-10 | クアーズテック株式会社 | Alumina sintered body and its manufacturing method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010141341A (en)* | 1998-07-29 | 2010-06-24 | Applied Materials Inc | Method and apparatus for processing substrate, and ceramic composition for them |
| US7432470B2 (en) | 2002-05-08 | 2008-10-07 | Btu International, Inc. | Surface cleaning and sterilization |
| US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
| US7214280B2 (en) | 2002-05-08 | 2007-05-08 | Btu International Inc. | Plasma-assisted decrystallization |
| US7227097B2 (en) | 2002-05-08 | 2007-06-05 | Btu International, Inc. | Plasma generation and processing with multiple radiation sources |
| US7309843B2 (en) | 2002-05-08 | 2007-12-18 | Btu International, Inc. | Plasma-assisted joining |
| US7132621B2 (en) | 2002-05-08 | 2006-11-07 | Dana Corporation | Plasma catalyst |
| US7497922B2 (en) | 2002-05-08 | 2009-03-03 | Btu International, Inc. | Plasma-assisted gas production |
| US7560657B2 (en) | 2002-05-08 | 2009-07-14 | Btu International Inc. | Plasma-assisted processing in a manufacturing line |
| US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
| US7494904B2 (en) | 2002-05-08 | 2009-02-24 | Btu International, Inc. | Plasma-assisted doping |
| US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
| US7498066B2 (en) | 2002-05-08 | 2009-03-03 | Btu International Inc. | Plasma-assisted enhanced coating |
| US7608798B2 (en) | 2002-05-08 | 2009-10-27 | Btu International Inc. | Plasma catalyst |
| US7592564B2 (en) | 2002-05-08 | 2009-09-22 | Btu International Inc. | Plasma generation and processing with multiple radiation sources |
| US7189940B2 (en) | 2002-12-04 | 2007-03-13 | Btu International Inc. | Plasma-assisted melting |
| JP2005158675A (en)* | 2003-10-30 | 2005-06-16 | Kyocera Corp | Plasma processing equipment |
| US7728251B2 (en) | 2004-10-29 | 2010-06-01 | Sharp Kabushiki Kaisha | Plasma processing apparatus with dielectric plates and fixing member wavelength dependent spacing |
| JP2008266095A (en)* | 2007-04-24 | 2008-11-06 | Kyocera Corp | Plasma processing apparatus member and plasma processing apparatus using the same |
| JP2014001116A (en)* | 2012-06-20 | 2014-01-09 | Taiheiyo Cement Corp | Alumina sintered body and method for manufacturing the same |
| KR20140044963A (en)* | 2012-09-07 | 2014-04-16 | 타이헤이요 세멘트 가부시키가이샤 | Alumina-based sintered body and the preparation method thereof |
| WO2019026871A1 (en) | 2017-08-01 | 2019-02-07 | 株式会社フェローテックセラミックス | Alumina sintered compact, method of manufacturing same, and component for semiconductor manufacturing apparatus |
| KR20200052876A (en) | 2017-08-01 | 2020-05-15 | 가부시키가이샤 페로텍 머티리얼 테크놀로지즈 | Alumina sintered body and its manufacturing method and parts for semiconductor manufacturing equipment |
| US11306029B2 (en) | 2017-08-01 | 2022-04-19 | Ferrotec Material Technologies Corporation | Alumina sintered body, method for manufacturing the same, and part for semiconductor manufacturing apparatus |
| JP2023098596A (en)* | 2021-12-28 | 2023-07-10 | クアーズテック株式会社 | Alumina sintered body and its manufacturing method |
| Publication number | Publication date |
|---|---|
| JP3102318B2 (en) | 2000-10-23 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH09102488A (en) | Alumina microwave introduction window and manufacturing method thereof | |
| TW557473B (en) | Semiconductor processing equipment having improved particle performance | |
| JP3984820B2 (en) | Vertical vacuum CVD equipment | |
| JP2001274149A (en) | Plasma processing system, member for generating and introducing plasma and dielectric | |
| JP3036367B2 (en) | Alumina porcelain composition | |
| JP2001240482A (en) | Plasma-resistant member, high-frequency transmission member, and plasma device | |
| JP2001151559A (en) | Corrosion resistant materials | |
| JP3382372B2 (en) | Microwave introduction window material and plasma processing device | |
| JP3116723B2 (en) | Quartz glass material for microwave plasma equipment | |
| JPH06345527A (en) | Microwave introduction window material | |
| JP4245771B2 (en) | Plasma-resistant member, electromagnetic wave transmission window member and plasma processing apparatus | |
| JP4458963B2 (en) | Doped silica glass and method for producing the same | |
| JP4495840B2 (en) | Manufacturing method of high frequency transmission material | |
| JP3739028B2 (en) | High frequency transmission body and method for manufacturing the same | |
| JPH11278944A (en) | Silicon nitride corrosion-resistant member and method of manufacturing the same | |
| JP4450473B2 (en) | Cleaning container | |
| JP2001233676A (en) | Plasma corrosion-resistant member and method for producing the same | |
| JP2005005617A (en) | Semiconductor wafer heating apparatus | |
| JPH0840765A (en) | Production of sintered alumina | |
| JP2001274148A (en) | System and method for plasma processing | |
| JPH0629223A (en) | Resistance heating-type heating element for multipurpose apparatus for semiconductor manufacturing, susceptor for multipurpose apparatus for semiconductor manufacturing and multipurpose apparatus for semiconductor manufacturing | |
| CN115142124B (en) | Silicon carbide crystal growth device, method and electronic equipment | |
| JP4060575B2 (en) | Manufacturing method of high frequency transmission material | |
| JP3419992B2 (en) | Ceramic members | |
| JPH0665629B2 (en) | Ceramic material for semiconductor manufacturing apparatus and manufacturing method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20000725 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20070825 Year of fee payment:7 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080825 Year of fee payment:8 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313113 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080825 Year of fee payment:8 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080825 Year of fee payment:8 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090825 Year of fee payment:9 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| S533 | Written request for registration of change of name | Free format text:JAPANESE INTERMEDIATE CODE: R313533 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090825 Year of fee payment:9 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090825 Year of fee payment:9 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090825 Year of fee payment:9 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090825 Year of fee payment:9 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100825 Year of fee payment:10 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100825 Year of fee payment:10 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110825 Year of fee payment:11 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110825 Year of fee payment:11 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120825 Year of fee payment:12 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120825 Year of fee payment:12 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20130825 Year of fee payment:13 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| EXPY | Cancellation because of completion of term |