【0001】[0001]
【産業上の利用分野】本発明は新規DNAおよびポリペ
プチドに関する。FIELD OF THE INVENTION The present invention relates to novel DNAs and polypeptides.
【0002】[0002]
【従来の技術】ヒトB型肝炎は、DNAウイルスの1種
であるB型肝炎ウイルス(Hepatitis B V
irus;以下、HBVと称することもある)の感染に
よって発症する。HBVは、デン粒子としてその性状が
知られており、このウイルス粒子の表面にはHBV表面
抗原(以下、HBsAgと略称する)、粒子内部に一部
分単鎖部分をもつ二重鎖環状DNA、HBVコア抗原
(以下、HBcAgと略称する)、HBVe抗原(HB
eAg)が存在し、また二重鎖DNAの単鎖部分を修復
する酵素として内存性DNA合成酵素の活性が検出され
ている。HBV DNAは分子量2.1×106ダルトン
で約3,200の塩基対を有する。HBsAgの抗原性
は共通抗原のaを中心にadr,adw,ayr,ay
wの4種類が知られている。 HBcAgはHBV感染
の早期診断のための診断用試薬として使用できる。すな
わち、HBVに感染すると抗HBs抗体が血中に現われ
る前に、抗HBc抗体が出現するので、これを検出する
ことによりHBV感染の有無を早期に判定できる。ま
た、HBcAgは最近、HBVの感染防御に有効である
との報告もなされている。一方、HBeAgを含有する
血液はデン粒子の含有量も多く、HBVの感染性のある
血液として危険性が高い。それ故、HBeAgの存在の
有無を知ることはHBV感染患者の治療においても重要
であり、HBV感染の診断に必須である。BACKGROUND OF THE INVENTION Human hepatitis B is one of the DNA viruses, Hepatitis B virus.
irus; hereinafter sometimes referred to as HBV). The properties of HBV are known as den particles, and the surface of this virus particle is HBV surface antigen (hereinafter abbreviated as HBsAg), double-stranded circular DNA partially having a single-stranded portion, and HBV core. Antigen (hereinafter abbreviated as HBcAg), HBVe antigen (HB
eAg) is present, and the activity of endogenous DNA synthase has been detected as an enzyme that repairs the single-stranded portion of double-stranded DNA. HBV DNA has a molecular weight of 2.1 × 106 Daltons and has about 3,200 base pairs. The antigenicity of HBsAg is adr, adw, ayr, ay centered on the common antigen a.
Four types of w are known. HBcAg can be used as a diagnostic reagent for early diagnosis of HBV infection. That is, when infected with HBV, the anti-HBc antibody appears before the anti-HBs antibody appears in the blood. Therefore, the presence or absence of HBV infection can be determined early by detecting this. In addition, it has recently been reported that HBcAg is effective in preventing HBV infection. On the other hand, blood containing HBeAg also has a high content of den particles, and is highly dangerous as blood having an HBV infectivity. Therefore, knowing the presence or absence of HBeAg is important in the treatment of HBV-infected patients and is essential for the diagnosis of HBV infection.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、HBc
AgおよびHBeAgを得るには一度デン粒子を集め、
この中のHBcAg,HBeAgを分離しなければなら
ないが、デン粒子中に含まれるHBcAgおよびHBe
Agは微量であるため、これらを安全に、しかも大量に
得る方法の確立が望まれていた。[Problems to be Solved by the Invention] However, HBc
To obtain Ag and HBeAg, once collect the den particles,
HBcAg and HBeAg in this must be separated, but HBcAg and HBe contained in the den particles are separated.
Since the amount of Ag is very small, it has been desired to establish a method for safely obtaining a large amount of Ag.
【0004】[0004]
【課題を解決するための手段】本発明者等は上記課題を
解決すべく研究を重ねた結果、HBcAgおよびHBe
Agを遺伝子工学的方法により、これらを大量に得る方
法を提供することに成功したものである。即ち、本発明
はB型肝炎ウイルスe抗原性を示す新規なポリペプチ
ド、該ポリペプチドをコードするDNAを含有する組換
えDNA、該組換えDNAを含有する形質転換体、該形
質転換体を培養するB型肝炎ウイルスe抗原性を示すポ
リペプチドの製造法、B型肝炎ウイルスc抗原性を示す
ポリペプチドをコードするDNAを含有する組換えDN
A、該組換えDNAを含有する形質転換体、該形質転換
体を培養するB型肝炎ウイルスc抗原性を示すポリペプ
チドの製造法に関し、更に詳しくは (1)次のアミノ酸配列: Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Ile Thr Asn、 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu Arg Ala Ser、 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu Arg Ala Ser、または Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser 、 を有するB型肝炎ウイルスe抗原性を示すポリペプチ
ド、(2)プロモーター、該プロモーターの下流に、翻
訳開始コドン、B型肝炎ウイルスe抗原性を示すポリペ
プチドをコードするDNAおよびその直後に停止コドン
を連結してなる組換えDNAを含有する形質転換体を培
養し、該培養物からB型肝炎ウイルスe抗原性を示すポ
リペプチドを回収することを特徴とする、B型肝炎ウイ
ルスe抗原性を示すポリペプチドの製造法、(3)プロ
モーターのSD配列と翻訳開始コドンとの間の配列がA
TCGGGCである、(2)記載のB型肝炎ウイルスe
抗原性を示すポリペプチドの製造法、(4)プロモータ
ー、該プロモーターの下流に、翻訳開始コドン、B型肝
炎ウイルスc抗原性を示すポリペプチドをコードするD
NAおよびその直後に停止コドンを連結してなる組換え
DNAにおいて、該プロモーターのSD配列と翻訳開始
コドンとの間の配列がATCGGGCであることを特徴
とする組換えDNA、(5)次のプラスミド: pTB(4)369(FERM BP−1153) pTB(4)369−4 pTB(4)369−32およびpTB(4)369−41 から選ばれるものである、(4)記載の組換えDNA、
(6)プロモーター、該プロモーターの下流に、翻訳開
始コドン、B型肝炎ウイルスc抗原性を示すポリペプチ
ドをコードするDNAおよびその直後に停止コドンを連
結してなる組換えDNAであって、該プロモーターのS
D配列と翻訳開始コドンとの間の配列がATCGGGC
であることを特徴とする組換えDNAを含有する形質転
換体、(7)プロモーター、該プロモーターの下流に、
翻訳開始コドン、B型肝炎ウイルスc抗原性を示すポリ
ペプチドをコードするDNAおよびその直後に停止コド
ンを連結してなる組換えDNAにおいて、該プロモータ
ーのSD配列と翻訳開始コドンとの間の配列がATCG
GGCであることを特徴とする組換えDNAを含有する
形質転換体を培養し、該培養物からB型肝炎ウイルスc
抗原性を示すポリペプチドを回収することを特徴とす
る、B型肝炎ウイルスc抗原性を示すポリペプチドの製
造法、を提供するものである。Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that HBcAg and HBe
The inventors have succeeded in providing a method for obtaining Ag in a large amount by a genetic engineering method. That is, the present invention relates to a novel polypeptide exhibiting hepatitis B virus e antigenicity, recombinant DNA containing DNA encoding the polypeptide, transformant containing the recombinant DNA, and culture of the transformant. Method for producing polypeptide showing hepatitis B virus e antigenicity, recombinant DN containing DNA encoding polypeptide showing hepatitis B virus c antigenicity
A, a transformant containing the recombinant DNA, and a method for producing a polypeptide showing hepatitis B virus c antigenicity, which comprises culturing the transformant, more specifically, (1) the following amino acid sequence: Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Ile Thr Asn, Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu S er Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu Arg Ala Ser, Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu Arg Ala Ser, or Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pr o His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser, a polypeptide exhibiting hepatitis B virus e antigenicity, (2) promoter, translation initiation downstream of the promoter A transformant containing a codon, a DNA encoding a polypeptide having hepatitis B virus e antigenicity, and a recombinant DNA having a stop codon immediately linked thereto is cultured, and the hepatitis B virus e is cultured from the culture. A method for producing a polypeptide exhibiting hepatitis B virus e antigenicity, which comprises recovering a polypeptide exhibiting antigenicity, (3) a sequence between the SD sequence of a promoter and a translation initiation codon is A
Hepatitis B virus e according to (2), which is TCGGGC
A method for producing a polypeptide having antigenicity, (4) a promoter, a translation initiation codon downstream of the promoter, and D encoding a polypeptide having hepatitis B virus c antigenicity
Recombinant DNA comprising NA and a stop codon immediately thereafter, wherein the sequence between the SD sequence of the promoter and the translation initiation codon is ATCGGGC, (5) The following plasmid A recombinant DNA according to (4), which is selected from pTB (4) 369 (FERM BP-1153) pTB (4) 369-4 pTB (4) 369-32 and pTB (4) 369-41.
(6) A promoter, a recombinant DNA comprising a translation initiation codon, a DNA encoding a polypeptide exhibiting hepatitis B virus c antigenicity, and a stop codon immediately after the promoter, which is downstream of the promoter. Of S
The sequence between the D sequence and the translation initiation codon is ATCGGGGC.
A transformant containing the recombinant DNA, wherein (7) a promoter and downstream of the promoter,
In a recombinant initiation codon, a DNA encoding a polypeptide exhibiting hepatitis B virus c antigenicity, and a recombinant DNA obtained by ligating a stop codon immediately after that, the sequence between the SD sequence of the promoter and the translation initiation codon is ATCG
A transformant containing a recombinant DNA characterized by being GGC is cultured, and the hepatitis B virus c is obtained from the culture.
The present invention provides a method for producing a polypeptide having hepatitis B virus c antigenicity, which comprises recovering a polypeptide having antigenicity.
【0005】本発明のB型肝炎ウイルスe抗原性を示す
ポリペプチドを生産する形質転換体の宿主たる微生物と
してはB型肝炎ウイルスe抗原性を示すポリペプチドを
生産する能力を有するものであればいかなるものであっ
てもよいが、プロモーターの下流に、翻訳開始コドン、
B型肝炎ウイルスe抗原性を示すポリペプチドをコード
するDNAおよびその直後に停止コドンを連結してなる
組換えDNAを保持する大腸菌、酵母などがあげられる
が、なかでも上記組換えDNAを保持する大腸菌が好ま
しい。プロモーターとしては、RNAポリメラーゼが結
合することによってmRNA合成を開始させるのに必要
な部位を含むものであれば、いかなるものであってもよ
い。たとえば大腸菌を宿主として用いる場合に使用する
プロモーターとしてはtrpプロモーター,recAプ
ロモーター,lacプロモーター,λPLプロモータ
ー,tufBプロモーターなどがあげられ、とりわけt
rpプロモーターが好適である。さらに好ましくは、プ
ロモーター中のSD〔シャイン−ダルガーノ(Shine-Da
lgarno)〕配列と、後述の翻訳開始コドンとの間の配列
がATCGGGCであるプロモーターがあげられる。た
とえば酵母を宿主として使用する場合においては酵母で
機能しうるプロモーターであればいかなるものであって
もよい。翻訳開始コドンとしては好ましくはATGがあ
げられる。B型肝炎ウイルスc抗原性を示すポリペプチ
ドをコードするDNAとしてはいかなるサブタイプのB
型肝炎ウイルスc抗原性を示すポリペプチドをコードす
るDNAであってもよいが、図2に示されるポリペプチ
ドをコードするDNA(adw型)が好ましい。さらに
好ましくは、図1(adw型HBV DNAの全塩基配
列を示す)に示される塩基配列順序1901〜2455
のDNA(adw型)がさらに好ましい。B型肝炎ウイ
ルスe抗原性を示すポリペプチドをコードするDNAと
してはいかなるサブタイプのB型肝炎ウイルスe抗原性
を示すポリペプチドをコードするDNAであってもよい
が、図2に示されるアミノ酸配列順序1より始まり95
ないし184のポリペプチド(adw型)をコードする
DNAが好ましい。さらに好ましくは、図1に示される
塩基配列順序1901より始まり2263(2263番
目の塩基はCでもよい)ないし2356のDNA(ad
w型)がさらに好ましい。 B型肝炎ウイルスc抗原性
またはe抗原性を示すポリペプチドをコードするDNA
は、生産されるポリペプチドの抗原性が失なわれない限
り、一部のアミノ酸,ペプチドを欠除、他のアミノ酸,
ペプチドへの置換、あるいは他のアミノ酸,ペプチドの
付加がなされているポリペプチドをコードするDNAで
あってもよい。停止コドンとしてはTAA,TAG,T
GAがあげられる。The microorganism that is a host of the transformant that produces the polypeptide showing hepatitis B virus e antigenicity of the present invention is any microorganism that has the ability to produce a polypeptide showing hepatitis B virus e antigenicity. It may be any, but a translation initiation codon,
Escherichia coli, yeast, etc., which retains a DNA encoding a polypeptide exhibiting hepatitis B virus e antigenicity and a recombinant DNA formed by ligating a stop codon immediately after that, include, among others, the above recombinant DNAs. E. coli is preferred. The promoter may be any promoter as long as it contains a site necessary for initiating mRNA synthesis by binding with RNA polymerase. For example, when Escherichia coli is used as a host, examples of the promoter used include trp promoter, recA promoter, lac promoter, λPL promoter, tufB promoter and the like.
The rp promoter is preferred. More preferably, SD [Shine-Darugano (Shine-Da
lgarno)] sequence and the sequence between the translation initiation codon described below is ATCGGGC. For example, when yeast is used as a host, any promoter may be used so long as it can function in yeast. The translation initiation codon is preferably ATG. Any subtype of B can be used as a DNA encoding a polypeptide showing hepatitis B virus c antigenicity.
Although it may be a DNA encoding a polypeptide exhibiting hepatitis C virus c antigenicity, a DNA encoding the polypeptide shown in FIG. 2 (adw type) is preferable. More preferably, the nucleotide sequence order 1901 to 2455 shown in FIG. 1 (which shows the entire nucleotide sequence of adw type HBV DNA).
Is more preferable (adw type). The DNA encoding a polypeptide exhibiting hepatitis B virus e antigenicity may be a DNA encoding a polypeptide exhibiting hepatitis B virus e antigenicity of any subtype, and the amino acid sequence shown in FIG. Start from sequence 1 95
DNAs encoding polypeptides 184 to 184 (adw type) are preferred. More preferably, it starts from the base sequence order 1901 shown in FIG. 1 and starts from 2263 (the 2263rd base may be C) to 2356 DNA (ad
w type) is more preferable. DNA encoding a polypeptide showing hepatitis B virus c antigenicity or e antigenicity
Is a deficiency of some amino acids and peptides, other amino acids, unless the antigenicity of the produced polypeptide is lost.
It may be a DNA encoding a polypeptide having a substitution with a peptide, or addition of another amino acid or peptide. TAA, TAG, T as stop codon
GA can be given.
【0006】たとえばadw型HBc抗原性を示すポリ
ペプチドをコードするDNAは、ヌクレイック・アシッ
ズ・リサーチ(Nucleic Acids Res.),11巻,174
7頁(1983年)に記載されているpBR322−E
coRI/HBV933(pHBV933と略称)を制
限酵素HhaI消化により断片化し、得られるDNA断
片のうちHBc抗原性を示すポリペプチドをコードする
DNAを含有する約1キロ塩基対のDNAを分離し、E
coRIリンカーを結合した後、トリプトファンプロモ
ーターを含むptrp781〔ptrp701(ヨーロ
ッパ特許公開第0068719号公報参照)を制限酵素
EcoRI消化後、ClaIで部分分解し、生じたのり
しろ部分をDNAポリメラーゼIラージフラグメントで
修復し、T4DNAリガーゼを用いて環状化されたプラ
スミドであって、EcoRI部位に近い方のClaI部
位がこわれたもの〕のEcoRI部位に結合されたプラ
スミドpHE1を得る。さらに該プラスミドpHE1を
EcoRI消化し、さらにヌクレアーゼBal 31で
消化した後、ClaIリンカーを結合させ、trpプロ
モーターを含むptrp771(ヨーロッパ特許公開第
0068719号公報参照)のClaΙ部位に挿入すれ
ば目的のHBc抗原性を示すポリペプチドをコードする
DNAを含有するプラスミドpTB368を得ることが
できる(図4参照)。該プラスミドで大腸菌(DH1,
χ1776,C600など)を形質転換することにより
HBc抗原性を示すポリペプチドの生産能を有する大腸
菌株が得られる。adw型HBe抗原性を示すポリペプ
チドをコードするDNAは、たとえば適当な制限酵素
(例、AvaI,AvaII)でプラスミドpTB368
を切断し、必要によりさらにヌクレアーゼBal 31
で消化した後、停止コドンを含む適当なリンカーを結合
させ、ptrp 771に組み込むことにより、目的の
HBe抗原性を示すポリペプチドをコードするDNA含
有するプラスミドを得ることができる。得られたプラス
ミドで大腸菌(DH1,χ1776,C600など)を
形質転換することによりHBe抗原性を示すポリペプチ
ドの生産能を有する大腸菌株が得られる(図5参照)。
adw型以外のサブタイプのHBc抗原性あるいはHB
e抗原性を示すポリペプチドをコードするDNAも上記
と同様にして得ることができ、また、大腸菌以外の微生
物を宿主として用いる場合においても、該宿主において
機能しうるプロモーターを含有するプラスミドに上記D
NAを挿入することにより目的とするポリペプチドの生
産能を有する微生物が得られる。プロモーターのSD配
列と翻訳開始コドンとの間の配列がATCGGGCであ
る組換えDNAはたとえば、適当な制限酵素(例、Ec
oRI)で処理した後、S1ヌクレアーゼを作用させ、
ライゲーション反応を行うことにより得ることもできる
が、オリゴヌクレチオド・ミュータジェネシス(oligon
ucleotide mutagenesis)などの公知の方法を用いて作
製することもできる。[0006] For example, DNA encoding a polypeptide exhibiting adw-type HBc antigenicity is described in Nucleic Acids Res., Vol. 11, 174.
PBR322-E described on page 7 (1983).
coRI / HBV933 (abbreviated as pHBV933) was fragmented by digestion with a restriction enzyme HhaI, and about 1 kilobase pair DNA containing a DNA encoding a polypeptide showing HBc antigenicity was isolated from the resulting DNA fragment.
After the coRI linker was ligated, ptrp781 containing a tryptophan promoter [ptrp701 (see European Patent Publication No. 0068719) was digested with the restriction enzyme EcoRI and partially digested with ClaI, and the resulting margin was repaired with DNA polymerase I large fragment. , A plasmid circularized with T4 DNA ligase, in which the ClaI site closer to the EcoRI site was broken], resulting in the plasmid pHE1 ligated to the EcoRI site. Further, the plasmid pHE1 is digested with EcoRI, further digested with nuclease Bal31, and then a ClaI linker is ligated thereto, and the desired HBc antigen can be obtained by inserting it into the ClaI site of ptrp771 containing the trp promoter (see European Patent Publication No. 0068719). A plasmid pTB368 containing a DNA encoding a sex-providing polypeptide can be obtained (see FIG. 4). E. coli (DH1,
χ1776, C600, etc.) to obtain an E. coli strain having the ability to produce a polypeptide showing HBc antigenicity. The DNA encoding the polypeptide exhibiting adw-type HBe antigenicity can be obtained by, for example, using an appropriate restriction enzyme (eg, AvaI, AvaII) to prepare plasmid pTB368.
And nuclease Bal 31 if necessary.
After digestion with, a suitable linker containing a stop codon is ligated and incorporated into ptrp 771 to obtain a plasmid containing a DNA encoding the desired polypeptide having HBe antigenicity. By transforming Escherichia coli (DH1, χ1776, C600, etc.) with the obtained plasmid, an Escherichia coli strain capable of producing a polypeptide showing HBe antigenicity can be obtained (see FIG. 5).
HBc antigenicity or HB of subtypes other than adw type
DNA encoding a polypeptide exhibiting e-antigenicity can be obtained in the same manner as described above, and when a microorganism other than Escherichia coli is used as a host, the above-mentioned D
By inserting the NA, a microorganism having the ability to produce the target polypeptide can be obtained. Recombinant DNA in which the sequence between the SD sequence of the promoter and the translation initiation codon is ATCGGGC is, for example, a suitable restriction enzyme (eg, Ec
and then treated with S1 nuclease,
Although it can also be obtained by carrying out a ligation reaction, it is possible to use oligonucleotide mutagenesis (oligon
ucleotide mutagenesis).
【0007】得られた大腸菌の形質転換体は自体公知の
培地で培養することができる。培地としてはLブロス,
ペナセイ(Penassay)ブロス,グルコース,カザミノ酸
を含むM−9培地などの公知の培地があげられる。必要
によりプロモーターを効率よく働かせるために、たとえ
ば、3β−インドリルアクリル酸のような薬剤を加える
ことができる。培養は通常15〜43℃、好ましくは2
8〜40℃で2〜24時間、好ましくは3〜8時間行
い、必要により通気や攪拌を加えることもできる。培養
後、公知の方法で菌体を集め、緩衝液に懸濁し、超音波
処理、リゾチームおよび(または)凍結融解によって菌
体を破壊したのち、遠心分離により目的とするポリペプ
チドを含む抽出液を得る方法などの公知の方法を用いる
ことができる。また抽出液からの目的とするポリペプチ
ドの分離、精製も自体公知の方法により行なわれる。大
腸菌以外の微生物の場合も同様にして目的とするポリペ
プチドを得ることができる。The obtained E. coli transformant can be cultured in a medium known per se. L broth as the medium,
Known media such as M-9 medium containing Penassay broth, glucose and casamino acid can be mentioned. If necessary, a drug such as 3β-indolylacrylic acid can be added to allow the promoter to work efficiently. Culturing is usually 15 to 43 ° C., preferably 2
It is carried out at 8 to 40 ° C. for 2 to 24 hours, preferably 3 to 8 hours, and aeration and stirring can be added if necessary. After culturing, cells are collected by a known method, suspended in a buffer solution, disrupted by sonication, lysozyme and / or freeze-thawing, and then centrifuged to obtain an extract containing the polypeptide of interest. A known method such as a method of obtaining the same can be used. Further, separation and purification of the desired polypeptide from the extract are also carried out by a method known per se. In the case of microorganisms other than E. coli, the target polypeptide can be obtained in the same manner.
【0008】[0008]
【作用】本発明のHBc抗原性あるいはHBe抗原性を
示すポリペプチドは天然由来のHBc,HBe抗原と同
様にB型肝炎の診断剤,B型肝炎ウイルスの感染の防御
(予防)剤として使用することができる。プロモーター
のSD配列と翻訳開始コドンとの間の配列がATCGG
GCである組換えDNAにおいては、HBc抗原性ある
いはHBe抗原性を示すポリペプチドの生産量が増大
し、HBc抗原あるいはHBe抗原の製造に有利であ
る。The polypeptide of the present invention showing HBc antigenicity or HBe antigenicity is used as a hepatitis B diagnostic agent and a hepatitis B virus infection preventive (preventive) agent in the same manner as naturally occurring HBc and HBe antigens. be able to. The sequence between the SD sequence of the promoter and the translation initiation codon is ATCGG.
In the recombinant DNA which is GC, the production amount of the polypeptide showing HBc antigenicity or HBe antigenicity is increased, which is advantageous for the production of HBc antigen or HBe antigen.
【0009】[0009]
【実施例】以下に実施例を示して本発明をさらに具体的
に説明するが、本発明はこれらに限定されるべきもので
はない。 実施例1 プラスミドpHBV933を制限酵素EcoRIおよび
HhaIで切断し、1%アガロースゲル電気泳動によ
り、HBc抗原遺伝子を含むDNA断片(1005b
p)を分離した。緩衝液中(10mM酢酸ナトリウム,
150mM NaCl,0.05mM ZnSO4,pH
4.0)でヌクレアーゼS1処理した後、EcoRIリ
ンカー d(GGAATTCC)を結合し、さらにEc
oRI処理した。このDNA断片をプラスミドptrp
781のEcoRI部位に挿入した後、これを用いて大
腸菌DH1を形質転換した。HBcAg遺伝子が組み込
まれたプラスミド(pHBcHE1)を保持するクロー
ンよりプラスミドを抽出し、該プラスミドよりEcoR
I DNA断片を切り出した。5μgの該DNA断片を
緩衝液中(600mM NaC1,20mMトリス・H
C1,pH8.0,12mM CaC12,12mM M
gC12,1.0mM EDTA)で2ユニットのBal
31で24℃,1分間処理した。C1aIリンカー d
(CATCGATG)を結合したのち、C1aIで消化
した。該DNA断片をptrp 771のC1aI部位
に挿入し、これを用いて大腸菌DH1を形質転換させ、
テトラサイクリン耐性の形質転換体(Escherichia coli
DH1/pTB368)を得た。The present invention will be described in more detail with reference to the following examples, but the present invention should not be limited thereto. Example 1 Plasmid pHBV933 was cleaved with restriction enzymes EcoRI and HhaI and subjected to 1% agarose gel electrophoresis to obtain a DNA fragment containing the HBc antigen gene (1005b
p) was separated. In buffer (10 mM sodium acetate,
150 mM NaCl, 0.05 mM ZnSO4 , pH
After treatment with nuclease S1 with 4.0), EcoRI linker d (GGAATTCC) was ligated, and Ec was further added.
It was subjected to oRI treatment. This DNA fragment is used as the plasmid ptrp.
After insertion into the EcoRI site of 781, this was used to transform E. coli DH1. A plasmid was extracted from a clone having a plasmid (pHBcHE1) in which the HBcAg gene was integrated, and EcoR was extracted from the plasmid.
The I DNA fragment was excised. 5 μg of the DNA fragment in buffer (600 mM NaCl, 20 mM Tris.H
C1, pH 8.0, 12 mM CaC12 , 12 mM M
gC12 , 1.0 mM EDTA) with 2 units of Bal
It was treated with 31 at 24 ° C. for 1 minute. C1aI linker d
After ligating (CATCGATG), it was digested with C1aI. The DNA fragment was inserted into the C1aI site of ptrp 771 and used to transform Escherichia coli DH1,
Transformants resistant to tetracycline (Escherichia coli
DH1 / pTB368) was obtained.
【0010】実施例2 実施例1で得られた形質転換体を8μg/mlのテトラ
サイクリンを含むM−9培地(10ml)中、37℃で
培養し、クレット・ユニット(Klett unit)[580n
mの吸光度]が180〜200の時、3β−インドリル
アクリル酸を25μg/mlの濃度に加えて、培養をさ
らに2〜3時間続けた。培養液を5000rpm,10
分間遠心分離して菌体を集め、1mlの緩衝液(20m
M トリス・HCl,pH7.6,20%ショ糖)に懸
濁し、リゾチーム(3mg/ml),EDTA(最終濃
度5mM)およびPMSF(最終濃度1mM)を添加し
て、よく攪拌したのち、4℃で1時間静置した。超音波
破砕により菌体をさらに破壊し、15000rpmで2
0分間遠心を行い(2回)、得られた上清(抽出液)を
アボット社のHBeリアキットを使用してHBc抗原価
の測定に使用した。その結果、該形質転換体はHBc抗
原発現クローンであることがわかった。該形質転換体の
菌体抽出液を生理食塩水で希釈し、その抗原価を測定し
た結果、少なくとも2500倍希釈の濃度でもHBc抗
原の検出は可能であった。Example 2 The transformant obtained in Example 1 was cultivated at 37 ° C. in M-9 medium (10 ml) containing 8 μg / ml tetracycline to obtain a Klett unit [580n].
m absorbance] of 180-200, 3β-indolylacrylic acid was added to a concentration of 25 μg / ml, and the culture was continued for another 2-3 hours. Culture medium at 5000 rpm, 10
Collect the cells by centrifugation for 1 minute and collect 1 ml of buffer solution (20 m
Suspend in M Tris.HCl, pH 7.6, 20% sucrose), add lysozyme (3 mg / ml), EDTA (final concentration 5 mM) and PMSF (final concentration 1 mM), stir well, and then at 4 ° C. It was left still for 1 hour. The cells are further destroyed by ultrasonic disruption, and 2 at 15000 rpm
Centrifugation was performed for 0 minutes (twice), and the obtained supernatant (extract) was used for measurement of HBc antigen titer using HBe rear kit of Abbott. As a result, it was found that the transformant was an HBc antigen-expressing clone. The cell extract of the transformant was diluted with physiological saline and the antigen titer was measured. As a result, it was possible to detect the HBc antigen even at a concentration of at least 2500 times.
【0011】実施例3 上記形質転換体(Escherichia coli DH1/pTB3
68)よりプラスミド(pTB368)を抽出し、該プ
ラスミドを制限酵素AvaΙで切断し、ヌクレアーゼB
al 31で30〜90秒間処理した。停止コドンを有
するEcoRΙリンカーを結合し、ptrp771のC
laΙ・EcoRΙ部位に挿入したのち、大腸菌DH1
を形質転換した。得られた形質転換体をM−9培地で培
養し、実施例2に記載の方法でHBe抗原価を測定し
た。HBe抗原を産生する形質転換体(Escherichia co
li DH1/pTB441,Escherichia coli DH1/
pTB449,Escherichia coli DH1/pTB55
2)を得た。 実施例4 形質転換体の菌体抽出液を生理食塩水で5倍に希釈し、
アボット社のHBeリアキットで抗原価を測定した。結
果を以下に示す。P/N=(ポジティブ cpm)/(ネガティブ・コン
トロール cpm)。Example 3 The above transformant (Escherichia coli DH1 / pTB3
68), a plasmid (pTB368) is extracted, and the plasmid is cleaved with a restriction enzyme AvaI to obtain nuclease B.
Al 31 for 30-90 seconds. An EcoRl linker with a stop codon was attached to the C of ptrp771.
E. coli DH1 after insertion at the laI / EcoRΙ site
Was transformed. The obtained transformant was cultured in M-9 medium, and the HBe antigen titer was measured by the method described in Example 2. Transformants that produce HBe antigen (Escherichia co
li DH1 / pTB441, Escherichia coli DH1 /
pTB449, Escherichia coli DH1 / pTB55
2) was obtained. Example 4 A bacterial cell extract of the transformant was diluted 5 times with physiological saline,
The antigen titer was measured with the HBe rear kit from Abbott. The results are shown below. P / N = (positive cpm) / (negative control cpm).
【0012】実施例5 i)大腸菌DH1/pTB368の菌体抽出液をベック
マン超遠心機(SW55ローター)で40,000rp
m,4℃で6時間遠心し、沈殿物を緩衝液(20mMト
リス・HC1,1mM EDTA,0.15M NaC
1,pH7.6)に溶解した。試料50μlに2倍濃度
のSDSポリアクリルアミド用緩衝液(0.15Mトリ
ス・HC1,pH6.8,4%SDS,20%グリセロ
ール,10% 2−メルカプトエタノール,0.002
%ブロモフェノールブルー)50μlを加え、100
℃,5〜10分間加熱した後、ポリアクリルアミドゲル
電気泳動を行った。ニトロセルロースフィルターに上記
の分離された蛋白を電気的に吸着させ、125Ι−抗−H
Be抗血清を反応させ、洗浄後オートラジオグラフを取
った。その結果、該形質転換体が産生する蛋白は分子量
が21,500〜22,000ダルトンと推定された(図
6参照)。 ii)大腸菌DH1/pTB368の菌体抽出液に固形の
セシウムクロリドを加え、平均ρ=1.20となるよう
にした後、38,000rpmで72時間遠心し、分画
した後、HBc抗原の抗原性の存在する分画を検討した
結果、HBc抗原はρ=1.34付近にピークとして分
画された(図7参照)。以上、i,iiの結果から、該形
質転換体の産物はHBcAgの粒子を形成していると推
定される。Example 5 i) A bacterial cell extract of Escherichia coli DH1 / pTB368 was subjected to 40,000 rp with a Beckman ultracentrifuge (SW55 rotor).
Centrifuge at 4 ° C. for 6 hours and the precipitate is buffered (20 mM Tris-HC1, 1 mM EDTA, 0.15 M NaC
1, pH 7.6). A buffer solution for SDS polyacrylamide having a double concentration (0.15 M Tris-HC1, pH 6.8, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.002) was added to 50 μl of the sample.
% Bromophenol blue) 50 μl was added to 100
After heating at 5 ° C for 5 to 10 minutes, polyacrylamide gel electrophoresis was performed. The nitrocellulose filter is electrically adsorbed with the above-mentioned separated protein, and125 I-anti-H
After reacting with Be antiserum, an autoradiograph was taken after washing. As a result, the protein produced by the transformant was estimated to have a molecular weight of 21,500 to 22,000 daltons (see FIG. 6). ii) After adding solid cesium chloride to the bacterial cell extract of E. coli DH1 / pTB368 so that the average ρ = 1.20, centrifuge at 38,000 rpm for 72 hours to fractionate the antigen of HBc antigen. As a result of examining the fraction having sex, the HBc antigen was fractionated as a peak near ρ = 1.34 (see FIG. 7). As described above, from the results of i and ii, it is estimated that the product of the transformant forms particles of HBcAg.
【0013】iii)大腸菌DH1/pTB368,大腸
菌pTB441の菌体抽出液0.5mlを5〜25%の
ショ糖濃度勾配液(20mM トリス,pH7.6,
0.15MNaCl,0.001M EDTA)35m
l上に重層し、24,000rpm,4℃で4時間遠心
した後、30本に分画した。それぞれの分画の200μ
lずつをHBcAgのEIA(Enzyme Immunoassayキッ
ト,アボット社)法によりHBcAg,HBeAgの検
出を行った。大腸菌DH1/pTB368の産物は主に
分画9,10に、大腸菌DH1/pTB441の産物は
分画20,21,22,23に分画され(図8参照)、
前者は粒子状、後者は粒子の形態をとらないペプチドと
推定された。 iv)大腸菌DH1/pTB368の菌体抽出液にHBV
感染チンパンジーの肝臓から抽出したHBcAg粒子で
免疫して得た抗HBc抗血清を加えた後、抗体価の減少
を抗HBc測定用キット(アボット社)で測定した結
果、抽出物は抗HBc抗体と反応し、抗HBc抗体を中
和することが明らかとなった。一方、大腸菌DH1/p
TB441, 大腸菌DH1/pTB449,大腸菌D
H1/pTB552 の菌体抽出物は殆ど抗HBc抗体
と反応しなかった。各形質転換体の抽出物と125Ι−抗
−HBc抗体とを反応させ、125Ι−抗−HBc抗体の
残存量を抗HBc 測定用キット(アボット社)で検討
した結果を以下に示す。Iii) 0.5 ml of the cell extract of Escherichia coli DH1 / pTB368 and E. coli pTB441 was added to a sucrose concentration gradient solution (20 mM Tris, pH 7.6) of 5 to 25%.
0.15M NaCl, 0.001M EDTA) 35m
It was layered on 1 and centrifuged at 24,000 rpm at 4 ° C. for 4 hours, and then fractionated into 30 tubes. 200μ of each fraction
HBcAg and HBeAg were detected by the EIA (Enzyme Immunoassay kit, Abbott) method for HBcAg. The product of E. coli DH1 / pTB368 was mainly fractionated into fractions 9 and 10, and the product of E. coli DH1 / pTB441 was fractionated into fractions 20, 21, 22, and 23 (see FIG. 8).
The former was presumed to be in the form of particles and the latter was presumed to be in the form of particles. iv) HBV was added to the bacterial cell extract of E. coli DH1 / pTB368.
After addition of anti-HBc antiserum obtained by immunization with HBcAg particles extracted from the liver of an infected chimpanzee, the decrease in antibody titer was measured with an anti-HBc measurement kit (Abbott), and the extract was identified as anti-HBc antibody. It was revealed that they reacted and neutralized the anti-HBc antibody. On the other hand, E. coli DH1 / p
TB441, E. coli DH1 / pTB449, E. coli D
The H1 / pTB552 cell extract hardly reacted with the anti-HBc antibody. The results obtained by reacting the extract of each transformant with125 I-anti-HBc antibody and examining the remaining amount of125 I-anti-HBc antibody with an anti-HBc assay kit (Abbott) are shown below.
【0014】実施例7 予め、約20000cpmを示すよう生理食塩水で希釈
した菌体抽出物(大腸菌DH1/pTB368,64倍
希釈;大腸菌DH1/pTB441,4倍希釈)および
血清HBeAg(未希釈)100μlに、生理食塩水で
100倍,500倍,1000倍に希釈したウサギ抗H
Bc抗体およびコントロールとして生理食塩水,固相H
Be(HBc)抗体を加え、室温一晩反応後、固相に結
合した抗原を測定した。結果はコントロールとして生理
食塩水を加えた系のカウントを100%として%(パー
セント)で図10に示した。なお、コントロールのカウ
ントは各々、大腸菌DH1/pTB368,22340
cpm,大腸菌DH1/pTB441,23471cp
m,血清HBeAg,9491cpmであった。血清H
BeAgはカウントで、他の約1/2量の抗原しか加え
ていないのにもかかわらず、図10から明らかなように
抗HBc抗体を添加してもカウントは最大10%程度し
か低下しなかった。従ってこの抗HBc抗体はHBcA
gの検出にはほとんど影響を及ぼさないものと考えられ
る。大腸菌DH1/pTB368抽出物では抗HBc抗
体の添加により明らかにカウントの低下がみられ、産生
物がHBc抗原性を有していることがわかる。大腸菌D
H1/pTB441抽出物では大腸菌DH1/pTB3
68抽出物のような明らかなカウントの低下はみられ
ず、産生物は主にHBe抗原性を示していることが示唆
される。Example 7 A bacterial cell extract (E. coli DH1 / pTB368, 64 times diluted; E. coli DH1 / pTB441, 4 times diluted) previously diluted with physiological saline to show about 20,000 cpm and 100 μl of serum HBeAg (undiluted) Rabbit anti-H diluted 100 times, 500 times and 1000 times with physiological saline
Bc antibody and saline as control, solid phase H
A Be (HBc) antibody was added, and the mixture was reacted overnight at room temperature, and then the antigen bound to the solid phase was measured. The results are shown in FIG. 10 as a percentage (percentage) with the count of the system containing physiological saline as a control taken as 100%. The control counts were E. coli DH1 / pTB368 and 22340, respectively.
cpm, E. coli DH1 / pTB441, 23471 cp
m, serum HBeAg, 9491 cpm. Serum H
As for BeAg, the count was reduced only by about 10% at maximum even when the anti-HBc antibody was added, as is clear from FIG. 10, although the other about 1/2 amount of the antigen was added. . Therefore, this anti-HBc antibody is HBcA
It is considered that it has almost no effect on the detection of g. In the E. coli DH1 / pTB368 extract, the count was clearly decreased by the addition of the anti-HBc antibody, indicating that the product has HBc antigenicity. E. coli D
E. coli DH1 / pTB3 in H1 / pTB441 extract
No apparent decrease in count was seen as with 68 extract, suggesting that the product is predominantly HBe antigenic.
【0015】実施例8 プラスミドpTB441,pTB449およびpTB5
52に挿入されているHBeAgをコードするDNAの
3′末端側の塩基配列を以下に示す。 i)pTB441 CCA・CCA・AAT・GCC・CCT・AGA・ATT・CTT・ Pro Pro Asn Ala Pro Arg Ile Leu (134) GAA・GAC・GAA・AGG・GCC・TCG・TGA Glu Asp Glu Arg Ala Ser − すなわち、該プラスミドにより生産されるペプチドはH
BcAgのC末端側のアミノ酸47個が欠損(天然のHBe
AgのC末端側のアミノ酸 7個が欠損)し、9個の別のア
ミノ酸が付加したものである。 ii)pTB449 AGA・CGA・CGG・CTA・GAA・TTC・TTG・AAG・ (2348) ACG・AAA・GGG・CCT・CGT・GAT・ACG・CCT・ ATT・TTT・ATA・GGT・TAA すなわち、HBcAgのC末端側のアミノ酸33個が欠損
し、16個の別のアミノ酸が付加している。 iii)pTB552 GTA・CTT・GAA・TAT・TTG・GTC・TCC・TAG (2243) すなわち、HBcAgのC末端側のアミノ酸64個を欠損し
ている。Example 8 Plasmids pTB441, pTB449 and pTB5
Of the DNA encoding HBeAg inserted at 52
The base sequence on the 3'end side is shown below. i) pTB441 CCA, CCA, AAT, GCC, CCT, AGA, ATT, CTT, Pro Pro Asn Ala Pro Arg Ile Leu (134) GAA, GAC, GAA, AGG, GCC, TCG, TGA Glu Asp Glu Arg Ala Ser- That is, the peptide produced by the plasmid is H
47 amino acids at the C-terminal side of BcAg are deleted (natural HBe
(7 amino acids at the C-terminal side of Ag are deleted), and 9 other amino acids are added. ii) pTB449 AGA, CGA, CGG, CTA, GAA, TTC, TTG, AAG, (2348) ACG, AAA, GGG, CCT, CGT, GAT, ACG, CCT, ATT, TTT, ATA, GGT, TAA, that is, HBcAg. 33 amino acids on the C-terminal side are deleted and 16 other amino acids are added. iii) pTB552 GTA / CTT / GAA / TAT / TTG / GTC / TCC / TAG (2243) That is, 64 amino acids at the C-terminal side of HBcAg are deleted.
【0016】実施例9 プラスミドpTB368を制限酵素EcoRΙで切断し
た後、エクソヌクレアーゼBal31で処理した。次
に、PstIリンカーd(GCTGCAGC)を結合
し、ClaIおよびPstIで処理してHBcAg遺伝
子を含むClaI・PstIDNA断片を得た。該DN
A断片をptrp771のClaI・PstI部位に組
込んだ後、ClaIで切断し、EcoRIリンカーd
(GGAATTCC)を結合させ、EcoRIおよびP
stI処理で得られたDNA断片をptrp781のE
coRI部位に組込み、これを用いて大腸菌DH1を形
質転換させ、プラスミドpTB(4)368−1を保持
する形質転換体(Escherichia coli DH1/pTB
(4)368−1)を得た。 該形質転換体をM−9培
地で培養し、菌体抽出物のHBcAg産生量を測定した
結果、該形質転換体は大腸菌DH1/pTB368の約
10倍のHBcAg生産量が確認された。プラスミドp
TB(4)368−1のプロモーター部位のSD配列か
らHBcAg遺伝子の翻訳開始コドンまでの塩基配列を
調べた結果、以下のとおり14bpであった。 5’ AAAAGGGTATCGAAGGCCGGGCATG SD SD配列とATGとの間の塩基数を減らすためにpTB
(4)368−1をEcoRIで切断し、S1ヌクレア
ーゼ処理した後、ライゲーション(ligation)反応を行
い、該反応液を用いて、大腸菌DH1を形質転換し、プ
ラスミドpTB(4)369を保持する大腸菌/pTB
(4)369を得た。該形質転換体のHBcAg生産量
を測定した結果、大腸菌DH1/pTB368の105
倍量のHBcAgを生産することがわかった。プラスミ
ドpTB(4)369のSD配列とATGとの間の塩基
配列は以下のとおり7bpであった。Example 9 The plasmid pTB368 was digested with the restriction enzyme EcoRΙ and then treated with the exonuclease Bal31. Next, PstI linker d (GCTGCAGC) was ligated and treated with ClaI and PstI to obtain a ClaI.PstI DNA fragment containing the HBcAg gene. The DN
The A fragment was integrated into the ClaI and PstI sites of ptrp771 and then cut with ClaI to obtain EcoRI linker d.
(GGAATTCC), EcoRI and P
The DNA fragment obtained by the stI treatment was treated with E of ptrp781.
A transformant (Escherichia coli DH1 / pTB) carrying plasmid pTB (4) 368-1 which was integrated into the coRI site and used to transform Escherichia coli DH1.
(4) 368-1) was obtained. The transformant was cultured in M-9 medium, and the HBcAg production amount of the bacterial cell extract was measured. As a result, the transformant was confirmed to have an HBcAg production amount about 10 times higher than that of Escherichia coli DH1 / pTB368. Plasmid p
As a result of examining the nucleotide sequence from the SD sequence of the promoter site of TB (4) 368-1 to the translation initiation codon of the HBcAg gene, it was 14 bp as follows.5'AA AAGGGT ATCGAAGGCCGGGCATG SD pTB to reduce the number of bases between the SD sequence and ATG
(4) Escherichia coli harboring plasmid pTB (4) 369 by cutting 368-1 with EcoRI and treating with S1 nuclease, and then carrying out a ligation reaction, and transforming Escherichia coli DH1 with the reaction solution. / PTB
(4) 369 was obtained. As a result of measuring the amount of HBcAg produced by the transformant, the yield of E. coli DH1 / pTB368 was 105.
It was found to produce double the amount of HBcAg. The base sequence between the SD sequence of plasmid pTB (4) 369 and ATG was 7 bp as shown below.
【0017】実施例10 (i)プラスミドpTB(4)369をAvaIで切断
し、Klenow フラグメントで単鎖部分を二重鎖とした
後、PstIで処理し、大断片を分離し、PstI認識
部位を有するPstIストップリンカー5 'ATAACTAACTAACTGCA3'3 'TATTGATTGATTG5' を結合した。PstIで処理し、大断片を分離し、ライ
ゲーション反応を行い、プラスミドpTB(4)369
−4を得た(図11参照)。 (ii)また、pTB(4)369をStyIで処理し、
小断片を得、該断片をAvaIIで処理した後、Klenow
フラグメントで修復した。前記のPstIストップリン
カーを結合した後、HpaIおよびPstIで処理し、
502bp断片を分離し、該断片をptrp781のH
paI・PstI部位に組込み、pTB(4)369−
32を得た(図12参照)。 (iii)また、pTB(4)369のStyI処理で得
られた小断片をHpaIIで処理した後、Klenow フラグ
メントで修復した。前記のPstIストップリンカーを
結合した後、HpaIおよびPstIで処理し、472
bp断片を分離し、該断片をptrp771のHpaI
・PstI部位に組込み、pTB(4)369−41を
得た(図12参照)。 (iv)pTB441のHBeAg遺伝子中に2つ存在す
るBglII部位の5’側のBglII部位とベクター中の
PstI部位間のDNA断片をpTB(4)369のB
glII(5’側)・PstI部位に組込み、pTB
(4)441−1を得た(図13参照)。 (v)pTB441のHBeAg遺伝子中に2つ存在す
るBglII部位の3’側のBglII部位とベクター中の
PstI部位間のDNA断片をpTB(4)369のB
glII(5’側)・PstI部位に組込み、pTB
(4)441−8を得た(図14参照)。 (vi)pTB552のHBeAg遺伝子中に2つ存在す
るBglII部位の5’側のBglII部位とベクター中の
PstI部位間のDNA断片をpTB(4)369のB
glII(5’側)・PstI部位に組込み、pTB
(4)552−8を得た(図15参照)。Example 10 (i) The plasmid pTB (4) 369 was cleaved with AvaI, the single-stranded portion was made into a double strand with Klenow fragment, and then treated with PstI to separate the large fragment, and the PstI recognition site was isolated. combines the PstI stop linker5 'ATAACTAACTAACTGCA 3' 3 'TATTGATTGATTG 5' with. Treatment with PstI, the large fragment was isolated, ligation reaction was performed, and the plasmid pTB (4) 369 was isolated.
-4 was obtained (see FIG. 11). (Ii) In addition, pTB (4) 369 was treated with StyI,
After obtaining a small fragment and treating the fragment with AvaII, Klenow
Repaired with fragment. After ligation of the PstI stop linker described above, treatment with HpaI and PstI,
The 502 bp fragment was isolated and the fragment was labeled with H of ptrp781.
Incorporated into the paI / PstI site, pTB (4) 369-
32 was obtained (see FIG. 12). (Iii) In addition, the small fragment obtained by the StyI treatment of pTB (4) 369 was treated with HpaII and then repaired with Klenow fragment. After ligation with the PstI stop linker described above, treated with HpaI and PstI, 472
The bp fragment was isolated and the fragment was isolated from HpaI of ptrp771.
-Incorporation into the PstI site gave pTB (4) 369-41 (see Figure 12). (Iv) The DNA fragment between the BglII site on the 5'side of the two BglII sites present in the HBeAg gene of pTB441 and the PstI site in the vector was designated as B of pTB (4) 369.
glII (5 'side) -Integrated at PstI site, pTB
(4) 441-1 was obtained (see FIG. 13). (V) The DNA fragment between the BglII site 3'of the two BglII sites present in the HBeAg gene of pTB441 and the PstI site in the vector was designated as B of pTB (4) 369.
glII (5 'side) -Integrated at PstI site, pTB
(4) 441-8 was obtained (see FIG. 14). (Vi) A DNA fragment between the BglII site on the 5'side of the two BglII sites present in the HBeAg gene of pTB552 and the PstI site in the vector was designated as B of pTB (4) 369.
glII (5 'side) -Integrated at PstI site, pTB
(4) 552-8 was obtained (see FIG. 15).
【0018】実施例11 実施例9および10で得られたプラスミドを保持する大
腸菌DH1を実施例2と同様に培養した後、菌体を集
め、EDTAおよびリゾチームを加え、超音波破砕によ
り菌体抽出液を得た。アボット社のHBe・EIAおよ
びコアザイム(Corzyme)を用いてHBcAgおよびH
BeAgの測定を行った結果、pTB(4)369,pT
B(4)369−4,pTB(4)369−32またはpT
B(4)369−41を保持する大腸菌DH1はHBcA
gおよびHBeAgを産生していることが、また、pT
B(4)441−1またはpTB(4)552−8を保持す
る大腸菌DH1はHBeAgを産生していることがわか
った。pTB(4)441−8を保持する大腸菌DH1
の菌体抽出液を希釈し、アボット社のRIA HBe測
定キットで抗原価を測定した。結果を以下に示す。Example 11 Escherichia coli DH1 harboring the plasmids obtained in Examples 9 and 10 were cultured in the same manner as in Example 2, then the cells were collected, EDTA and lysozyme were added, and the cells were extracted by ultrasonication. A liquid was obtained. HBcAg and H using HBe EIA and Corezyme (Corzyme) from Abbott
As a result of measuring BeAg, pTB (4) 369, pT
B (4) 369-4, pTB (4) 369-32 or pT
E. coli DH1 carrying B (4) 369-41 is HBcA
g and HBeAg producing pT
It was found that E. coli DH1 carrying B (4) 441-1 or pTB (4) 552-8 produced HBeAg. E. coli DH1 harboring pTB (4) 441-8
The microbial cell extract was diluted and the antigen titer was measured with a RIA HBe measurement kit from Abbott. The results are shown below.
【0019】実施例12 プラスミドpTB(4)369−4,pTB(4)36
9−32および pTB369−41に挿入されている
HBeAgをコードするDNAの3’末端側の塩基配列
を以下に示す。プラスミドpTB(4)441−8はHBcAg遺伝子
中の29〜82番目のアミノ酸をコードする部位が欠損
し、C末端側のアミノ酸47個をコードする部分が欠損
し、9個の別のアミノ酸をコードする塩基配列を有して
いる。Example 12 Plasmids pTB (4) 369-4, pTB (4) 36
The nucleotide sequences of the 3'-terminal side of the DNA encoding HBeAg inserted in 9-32 and pTB369-41 are shown below. The plasmid pTB (4) 441-8 lacks the site encoding the 29th to 82nd amino acids in the HBcAg gene, lacks the part encoding the 47 amino acids at the C-terminal side, and encodes 9 other amino acids. It has a base sequence that
【0020】実施例13 pTB(4)441−1またはpTB(4)552−8
を保持する大腸菌DH1のHBeAg抗原性を示す産生
物の分子量を125I−抗HBe 抗血清を使用したウエ
スタン・ブロッテング(Western blotting)法〔Towbi
n,H, 「プロシージング オブ ナショナル アカデミー オ
ブ サイエンス(Proc.Natl.Acad.Sci. U.S.A.)76巻、
9号、4350〜4354頁(1979)〕およびヒト抗
HBe抗血清を使用した免疫沈降法により決定した。す
なわち、ウエスタン・ブロッテング 法によりpTB
(4)441−1を保持する大腸菌の産生物の分子量は
15,000〜15,500ダルトンであることがわか
った(図16参照)。また、pTB(4)552−8を
保持する大腸菌1を14C−アミノ酸存在下にM−9培地
で培養し、菌体抽出物にヒト抗HBe抗血清を加えて3
7℃で反応させた後、ProteinA(10%溶液)
を加えて抗原抗体反応物を回収し、ポリアクリルアミド
ゲル(17%)電気泳動を行い、オートラジオグラフィ
−により、産生物の分子量を測定した結果13,000
〜13,500ダルトンであることがわかった(図1
7)。なお、形質転換体の寄託機関および受託番号は以
下のとおりである。なお、大腸菌DH1は公知の微生物である〔Selson,M.
E.ら,ネイチャー,第217巻,1110頁(1968
年)〕。IFOは財団法人発酵研究所の受託番号を、F
ERMは通商産業省工業技術院生命工学工業技術研究所
の受託番号を表す。Example 13 pTB (4) 441-1 or pTB (4) 552-8
The molecular weight of the Escherichia coli DH1 product exhibiting HBeAg antigenicity was determined by the Western blotting method using125 I-anti-HBe antiserum [Towbi
n, H, “Procedure of National Academy of Science (Proc.Natl.Acad.Sci. USA) 76 volumes,
No. 9, 4350-4354 (1979)] and an immunoprecipitation method using a human anti-HBe antiserum. That is, pTB was determined by the Western blotting method.
(4) The molecular weight of the Escherichia coli product retaining 441-1 was found to be 15,000 to 15,500 daltons (see FIG. 16). In addition, Escherichia coli 1 harboring pTB (4) 552-8 was cultured in M-9 medium in the presence of14 C-amino acids, and human anti-HBe antiserum was added to the bacterial cell extract to obtain 3
After reacting at 7 ° C, Protein A (10% solution)
Was added to collect the antigen-antibody reaction product, polyacrylamide gel (17%) electrophoresis was performed, and the molecular weight of the product was measured by autoradiography.
It was found to be ~ 13,500 daltons (Fig. 1
7). The depositary institutions and deposit numbers of the transformants are as follows. Escherichia coli DH1 is a known microorganism [Selson, M.
E. et al., Nature, 217, 1110 (1968).
Year)〕. IFO is the Fermentation Institute's trust number, F
ERM represents the consignment number of the Institute of Biotechnology, Institute of Biotechnology, Ministry of International Trade and Industry.
【0021】[0021]
【発明の効果】HBc抗原,HBe抗原は天然にはHB
V感染後のヒトあるいはチンパンジーのみから得ること
しかできず、量的にも制約されてきた。また、これらの
疾患動物の取扱いはHBV感染の危険を伴い、不都合で
あった。本発明はこれらの問題を解決し、本発明によれ
ば抗原性が天然のものに近く、安価で、安全で、しかも
大量にHBc抗原性あるいはHBe抗原性を示すポリペ
プチドが得られる。EFFECT OF THE INVENTION HBc antigen and HBe antigen are naturally HB
It can only be obtained from humans or chimpanzees after V infection, and has been quantitatively limited. In addition, handling of these diseased animals is inconvenient because of the risk of HBV infection. The present invention solves these problems, and according to the present invention, a polypeptide having an antigenicity close to that of natural one, inexpensive, safe, and large in amount showing HBc antigenicity or HBe antigenicity can be obtained.
【0022】[0022]
【配列表】配列番号:1 配列の長さ:147 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala 65 70 75 80 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110 Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140 Ile Thr Asn 145。[Sequence Listing] SEQ ID NO: 1 Sequence length: 147 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala 65 70 75 80 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110 Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140 Ile Thr Asn 145.
【0023】配列番号:1 配列の長さ:147 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala 65 70 75 80 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110 Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu 130 135 140 Arg Ala Ser 145。SEQ ID NO: 1 Sequence length: 147 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala 65 70 75 80 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110 Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu 130 135 140 Arg Ala Ser 145.
【0024】配列番号:3 配列の長さ:93 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Val Val 20 25 30 Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp 35 40 45 Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr 50 55 60 Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro 65 70 75 80 Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu Arg Ala Ser 85 90。SEQ ID NO: 3 Sequence length: 93 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Val Val 20 25 30 Asn Tyr Val Asn Thr Asn Met Gly Leu Lys Ile Arg Gln Leu Leu Trp 35 40 45 Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Leu Glu Tyr 50 55 60 Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Arg Pro 65 70 75 80 Pro Asn Ala Pro Arg Ile Leu Glu Asp Glu Arg Ala Ser 85 90.
【0025】配列番号:4 配列の長さ:121 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala 65 70 75 80 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110 Glu Thr Val Leu Glu Tyr Leu Val Ser 115 120。SEQ ID NO: 4 Sequence length: 121 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 55 60 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Gln Asp Pro Ala 65 70 75 80 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110 Glu Thr Val Leu Glu Tyr Leu Val Ser 115 120.
【図1−1】adw型HBV DNAの全塩基配列を示
し、図1−2に続く。FIG. 1-1 shows the entire nucleotide sequence of adw-type HBV DNA, which is continued from FIG. 1-2.
【図1−2】adw型HBV DNAの全塩基配列を示
し、図1−3に続く。1-2 shows the entire base sequence of adw-type HBV DNA, which is continued from FIG. 1-3.
【図1−3】adw型HBV DNAの全塩基配列を示
し、図1−4に続く。FIG. 1-3 shows the entire base sequence of adw-type HBV DNA, which is continued from FIG. 1-4.
【図1−4】adw型HBV DNAの全塩基配列を示
し、図1−5に続く。FIG. 1-4 shows the entire base sequence of adw-type HBV DNA, which is continued from FIG. 1-5.
【図1−5】adw型HBV DNAの全塩基配列を示
し、図1−6に続く。FIG. 1-5 shows the entire nucleotide sequence of adw-type HBV DNA, which is continued from FIG. 1-6.
【図1−6】adw型HBV DNAの全塩基配列を示
し、図1−7に続く。FIG. 1-6 shows the entire base sequence of adw-type HBV DNA, which is continued from FIG. 1-7.
【図1−7】adw型HBV DNAの全塩基配列を示
し、図1−1から図1−7にて完了する。FIG. 1-7 shows the entire nucleotide sequence of adw-type HBV DNA, which is completed in FIGS. 1-1 to 1-7.
【図2】adw型HBcAgのアミノ酸配列を示す。FIG. 2 shows the amino acid sequence of adw-type HBcAg.
【図3】adw型HBcAgをコードするDNAの塩基
配列を示す。FIG. 3 shows the nucleotide sequence of DNA encoding adw-type HBcAg.
【図4】pTB368の構築図である。FIG. 4 is a construction diagram of pTB368.
【図5】HBeAg発現用プラスミドの構築図である。FIG. 5 is a construction diagram of a plasmid for expressing HBeAg.
【図6】レーン1,2とも大腸菌DH1/pTB368
の産生物のウエスタン・ブロッティング(Western blot
ting)の結果を示す。FIG. 6: E. coli DH1 / pTB368 in both lanes 1 and 2.
Western blot of the product of
ting) results.
【図7】大腸菌DH1/pTB368の産生物のセシウ
ムクロリド平衡密度勾配遠心による解析結果を示す。FIG. 7 shows the analysis results of the product of Escherichia coli DH1 / pTB368 by cesium chloride equilibrium density gradient centrifugation.
【図8】大腸菌DH1/pTB368の産生物のショ糖
濃度勾配遠心による解析結果を示す。FIG. 8 shows the analysis results of the product of Escherichia coli DH1 / pTB368 by sucrose gradient centrifugation.
【図9】大腸菌DH1/pTB441の産生物のショ糖
濃度勾配遠心による解析結果を示す。FIG. 9 shows the results of analysis of the product of Escherichia coli DH1 / pTB441 by sucrose gradient centrifugation.
【図10】ウサギ抗HBc抗体によるHBe(HBc)
RIAの中和試験結果を示す。FIG. 10: HBe (HBc) by rabbit anti-HBc antibody
The result of the neutralization test of RIA is shown.
【図11】pTB(4)369−4の構築図である。FIG. 11 is a construction diagram of pTB (4) 369-4.
【図12】pTB(4)369−32及びpTB(4)
369−41の構築図である。FIG. 12: pTB (4) 369-32 and pTB (4)
369-41 is a construction drawing.
【図13】pTB(4)441−1の構築図である。FIG. 13 is a construction diagram of pTB (4) 441-1.
【図14】pTB(4)441−8の構築図である。FIG. 14 is a construction diagram of pTB (4) 441-8.
【図15】pTB(4)552−8の構築図である。FIG. 15 is a construction diagram of pTB (4) 552-8.
【図16】本発明産生物の分子量のウェスタン・ブロッ
ティング法による解析図である。FIG. 16 is an analysis diagram of the molecular weight of the product of the present invention by Western blotting.
【図17】本発明産生物の分子量の免疫沈降法による解
析図である。FIG. 17 is an analysis diagram of the molecular weight of the product of the present invention by an immunoprecipitation method.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 21/02 C 9282−4B //(C12N 1/21 C12R 1:91) (C12N 15/09 ZNA C12R 1:92) (C12P 21/02 C12R 1:91) C12R 1:92)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl.6 Identification code Internal reference number FI Technical indication C12P 21/02 C 9282-4B // (C12N 1/21 C12R 1:91) (C12N 15/09 ZNA C12R 1:92) (C12P 21/02 C12R 1:91) C12R 1:92)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7067521AJP2648122B2 (en) | 1985-10-03 | 1995-03-27 | Novel polypeptide and method for producing the same |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60-221518 | 1985-10-03 | ||
| JP22151885 | 1985-10-03 | ||
| JP7067521AJP2648122B2 (en) | 1985-10-03 | 1995-03-27 | Novel polypeptide and method for producing the same |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61205036ADivisionJPH084507B2 (en) | 1985-10-03 | 1986-09-02 | Novel DNA and polypeptide |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9055857ADivisionJP2749010B2 (en) | 1985-10-03 | 1997-03-11 | Novel DNA and method for producing polypeptide using the same |
| Publication Number | Publication Date |
|---|---|
| JPH0859695Atrue JPH0859695A (en) | 1996-03-05 |
| JP2648122B2 JP2648122B2 (en) | 1997-08-27 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7067521AExpired - Fee RelatedJP2648122B2 (en) | 1985-10-03 | 1995-03-27 | Novel polypeptide and method for producing the same |
| Country | Link |
|---|---|
| JP (1) | JP2648122B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1764369A1 (en)* | 2005-09-16 | 2007-03-21 | Rhein Biotech Gesellschaft für neue biotechnologische Prozesse und Produkte mbH | Vaccines comprising truncated HBC core protein plus saponin-based adjuvant |
| WO2008031878A1 (en)* | 2006-09-15 | 2008-03-20 | Rhein Biotech Gesellschaft für neue Biotechnologische Prozesse und Produkte mbH | A composition for therapy and/or for prophylaxis of hbv-infections and hbv-mediated diseases |
| EP1902727A1 (en)* | 2006-09-22 | 2008-03-26 | Rhein Biotech Gesellschaft für neue biotechnologische Prozesse und Produkte mbH | Vaccines comprising truncated HBC core protein plus saponin-based adjuvants |
| Title |
|---|
| JOURNAL OF IMMUNOLOGY V130-6=1983* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1764369A1 (en)* | 2005-09-16 | 2007-03-21 | Rhein Biotech Gesellschaft für neue biotechnologische Prozesse und Produkte mbH | Vaccines comprising truncated HBC core protein plus saponin-based adjuvant |
| WO2007031334A3 (en)* | 2005-09-16 | 2007-05-18 | Rhein Biothech Ges Fuer Neue B | Vaccines comprising truncated hbc core protein plus saponin-based adjuvants |
| AU2006291430B2 (en)* | 2005-09-16 | 2011-10-20 | Rhein Biotech Gesellschaft Fur Neue Biotechnologische Prozesse Und Produkte Mbh | Vaccines comprising truncated HBC core protein plus saponin-based adjuvants |
| WO2008031878A1 (en)* | 2006-09-15 | 2008-03-20 | Rhein Biotech Gesellschaft für neue Biotechnologische Prozesse und Produkte mbH | A composition for therapy and/or for prophylaxis of hbv-infections and hbv-mediated diseases |
| EP1902727A1 (en)* | 2006-09-22 | 2008-03-26 | Rhein Biotech Gesellschaft für neue biotechnologische Prozesse und Produkte mbH | Vaccines comprising truncated HBC core protein plus saponin-based adjuvants |
| Publication number | Publication date |
|---|---|
| JP2648122B2 (en) | 1997-08-27 |
| Publication | Publication Date | Title |
|---|---|---|
| US4710463A (en) | Recombinant DNA molecules capable of expressing HBV core and surface antigens | |
| EP0244924B1 (en) | Production of vaccines against Hepatitis B virus | |
| US4977092A (en) | Expression of exogenous polypeptides and polypeptide products including hepatitis B surface antigen in yeast cells | |
| Galibert et al. | Nucleotide sequence of a cloned woodchuck hepatitis virus genome: comparison with the hepatitis B virus sequence | |
| JPS6362198B2 (en) | ||
| EP0171908A2 (en) | Hepatitis B virus surface antigen and production thereof | |
| JPS6155950B2 (en) | ||
| EP0182442B1 (en) | Recombinant dna molecules and their method of production | |
| EP0174444A2 (en) | Hepatitis surface antigen particle vaccine | |
| Murray | Application of recombinant DNA techniques in the development of viral vaccines | |
| JPH084507B2 (en) | Novel DNA and polypeptide | |
| JPS5974985A (en) | Novel dna, its preparation and transformant having the same | |
| JP2648122B2 (en) | Novel polypeptide and method for producing the same | |
| JPS63185996A (en) | Method for producing hepatitis B e antigen and its materials | |
| EP0288198A2 (en) | Production of Peptide | |
| US6270955B1 (en) | Pharmaceutical compositions and methods for producing antibodies to hepatitis b virus and kits and methods for detecting antibodies to hepatitis b virus | |
| JP2749010B2 (en) | Novel DNA and method for producing polypeptide using the same | |
| JPS58194897A (en) | Novel dna, its preparation and host transformed with the same | |
| IE59389B1 (en) | Method for producing hepatitis b virus core antigen (HBcAg) in yeast | |
| CA1341644C (en) | Recombinant dna molecules and their method of production | |
| JP3305342B2 (en) | Method for producing hepatitis B virus protein | |
| Sominskaya et al. | A VLP Library of C-Terminally Truncated Hepatitis B Core Proteinsμ Correlation of RNA Encapsidation with a Th1/Thβ Switch in the Immune Responses of Mice | |
| EP0277770A1 (en) | Alpha-mating factor promoter is modified by deleting pre-pro secretory leader sequence | |
| WO1986003411A1 (en) | Process for preparing novel protein | |
| WO1986007384A1 (en) | Process for preparing hapatitis b virus surface antigen p31 |
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:19970425 | |
| LAPS | Cancellation because of no payment of annual fees |