Movatterモバイル変換


[0]ホーム

URL:


JPH0859285A - Infrared-visible wavelength converting glass material - Google Patents

Infrared-visible wavelength converting glass material

Info

Publication number
JPH0859285A
JPH0859285AJP21940594AJP21940594AJPH0859285AJP H0859285 AJPH0859285 AJP H0859285AJP 21940594 AJP21940594 AJP 21940594AJP 21940594 AJP21940594 AJP 21940594AJP H0859285 AJPH0859285 AJP H0859285A
Authority
JP
Japan
Prior art keywords
chloride
mol
glass material
glass
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21940594A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Akira Okubo
晶 大久保
Satoshi Okada
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials CorpfiledCriticalMitsubishi Materials Corp
Priority to JP21940594ApriorityCriticalpatent/JPH0859285A/en
Publication of JPH0859285ApublicationCriticalpatent/JPH0859285A/en
Withdrawnlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE: To obtain the subject glass material easy in vitrification, large in luminous strength, and releasing visible light having strength and stability durable for practical uses by the irradiation of infrared semiconductor laser light as excitation light by adding erbium chloride to a chloride glass preform material comprising gadolinium chloride as a main vitrifying material and an alkaline earth metal chloride as a vitrifying auxiliary. CONSTITUTION: This glass material comprises 35-92mol.% of gadolinium chloride, 7-45mol.% of barium chloride, and 0.15-33mol.% of erbium chloride. An Er ion used as a luminous center emits green light by the irradiation of excitation light. The figure shows a three-dimensional vitrification range expressing a glass material-forming composition range comprising GdCl2 -BaCl2 -ErCl2 , and the glass material is obtained in the oblique line composition range of the figure. The chloride glass material of this invention is obtained by compounding the purified and dried chloride powder of these raw materials each in a prescribed amount with each other, heating and melting the mixture powder in a chlorine gas atmosphere or under vacuum, and subsequently quenching the melt product. The glass transition point of the vitrified material is >=200 deg.C which is higher than those of conventional chloride vitrified materials.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外光を可視光に変換
する赤外可視波長変換材料に関する。より詳しくは、変
換効率および取扱性に優れ、しかも製造が容易であり、
ディスプレイ用蛍光体、赤外光検知体あるいはアップコ
ンバージョンレーザーの材料等に幅広い応用が可能な赤
外可視波長変換ガラス材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared visible wavelength conversion material for converting infrared light into visible light. More specifically, it has excellent conversion efficiency and handling, and is easy to manufacture,
The present invention relates to an infrared-visible wavelength conversion glass material which can be widely applied to materials for display phosphors, infrared light detectors or up-conversion lasers.

【0002】[0002]

【従来技術とその課題】一般に蛍光発光においては、放
出光は入射光(励起光)より波長が長くなるが、希土類
イオン含有物質の中には励起光よりも短波長の光を放出
するアップコンバージョンと呼ばれる蛍光を示すものが
ある。これは、希土類イオンの電子が光子の2段階吸収
などによって励起されることによるものである。具体的
には、赤外光を励起光とし可視光を発する蛍光体が知ら
れており、肉眼では見えない赤外光の光路を識別する材
料として用いられているほか、ディスプレイ用蛍光体、
あるいは、赤外レーザーと組み合わせて可視光レーザー
の光源としての利用が期待されている。特に透明ガラス
材料からなる蛍光体は、(i) 透明であるために可視光発
生の際の損失や散乱が少ない、(ii)ファイバー等の任意
の形態に成型することができる、(iii) 励起光の波長ゆ
らぎに伴う吸収効率の変動が小さいので、温度や電流等
の影響により出力波長が変動しやすい半導体レーザーを
励起光として用いた場合でも比較的安定した出力が得ら
れる等の利点がある。
2. Description of the Related Art Generally, in fluorescence emission, the emitted light has a longer wavelength than the incident light (excitation light), but some rare earth ion-containing substances emit light having a shorter wavelength than the excitation light. There is one that shows fluorescence called. This is because the electrons of the rare earth ions are excited by two-step absorption of photons or the like. Specifically, a phosphor that emits visible light using infrared light as excitation light is known, and is used as a material for identifying the optical path of infrared light that is invisible to the naked eye, and a phosphor for display,
Alternatively, it is expected to be used as a light source of a visible light laser in combination with an infrared laser. In particular, a phosphor made of a transparent glass material has (i) a small loss or scattering when visible light is generated because it is transparent, (ii) it can be molded into any shape such as a fiber, (iii) excitation Since the fluctuation of the absorption efficiency due to the fluctuation of the wavelength of light is small, there is an advantage that a relatively stable output can be obtained even when a semiconductor laser whose output wavelength is apt to change due to the influence of temperature, current, etc. .

【0003】例えば、特開平3-295828号公報には、重金
属酸化物あるいは希土類元素酸化物を含有する酸化物ガ
ラス蛍光体が記載されている。また特開平4-12035 号公
報にはZrおよびBaのフッ化物を主成分とする、L
a、Al、Na、InからなるZBLANとよばれるガ
ラスにErおよびYbの各フッ化物を含有するフッ化物
ガラス蛍光体が開示されており、特開平4-328191号公報
には、アルカリ金属、LiおよびZrの各フッ化物を主
成分として、Er、Tm、Hoの何れかおよびYbのフ
ッ化物を含有する希土類含有フッ化物ガラス蛍光体が提
案されている。
For example, Japanese Patent Application Laid-Open No. 3-295828 describes an oxide glass phosphor containing a heavy metal oxide or a rare earth element oxide. Further, in Japanese Patent Laid-Open No. 4-12035, L containing a fluoride of Zr and Ba as the main component,
A fluoride glass phosphor containing Er and Yb fluorides in a glass called ZBLAN composed of a, Al, Na and In is disclosed. JP-A-4-328191 discloses an alkali metal, Li. There has been proposed a rare earth-containing fluoride glass phosphor containing each of the fluorides of Zr and Zr as a main component and containing the fluoride of Er, Tm, or Ho and Yb.

【0004】しかし、これらのガラス材料も現状では波
長変換効率が不十分である。例えば上記ZBLAN では、格
子振動の最大エネルギーが400〜500cm-1と大きい
が、一般に格子振動エネルギーが大きいと多フォノン緩
和時間が短くなるため(J. P.van der Ziel et al. J. A
ppln. Phys. 60, (1986) 4262-67)、波長変換効率が低
下する。さらに,上記ガラス材料は何れもフッ化物ない
し酸化物であるが、均質なガラス材を得るのが難しいと
云う問題がある。
However, these glass materials also have insufficient wavelength conversion efficiency at present. For example, in the above ZBLAN, the maximum energy of lattice vibration is as large as 400 to 500 cm-1 , but generally, when the lattice vibration energy is large, the multiphonon relaxation time becomes short (JP van der Ziel et al. J. A.
ppln. Phys. 60, (1986) 4262-67), wavelength conversion efficiency decreases. Further, all the above glass materials are fluorides or oxides, but there is a problem that it is difficult to obtain a homogeneous glass material.

【0005】[0005]

【発明の解決課題】本発明は、従来のガラス材における
上記問題を解決し、ガラス化が容易で、かつ発光強度が
強く、赤外半導体レーザー光を励起光として実用に耐え
る強度および安定性で可視光を放出する赤外可視波長変
換ガラス材の提供を目的とする。
The present invention solves the above problems in conventional glass materials, is easy to vitrify, has a high emission intensity, and has strength and stability that can be practically used as an infrared semiconductor laser beam as excitation light. An object is to provide an infrared-visible wavelength conversion glass material that emits visible light.

【0006】[0006]

【課題解決の手段】本出願人は、先に、エルビウム(E
r)イオンを発光源物質とし、発光補助物質としてガド
リニウム(Gd)イオンを含むハロゲン化物からなる蛍
光体を提案した(特願平5-237190号)。この蛍光体は予
備励起が不要でしかも変換効率が高い特徴を有する。本
発明者等は、かかる研究成果に基づいてさらに検討を続
けた結果、塩化ガドリニウム(塩化Gd)を単なる発光
補助物質としてではなく、アルカリ土類塩化物をガラス
形成補助剤として併用することにより、塩化Gdをガラ
ス母材の主成分とする塩化物ガラスを形成できることを
見出し、これを光透過用ガラス材として提案した(特願
平6-95477 号)。本発明は、この塩化Gdをガラス母材
の主成分としアルカリ土類塩化物をガラス形成助剤とす
る塩化物ガラスに、発光中心としてErイオンを含有さ
せることによって、優れたアップコンバージョン特性を
有する赤外励起発光体を得たものである。
[Means for Solving the Problems] The present applicant has previously proposed that erbium (E
We proposed a phosphor comprising a halide containing r) ions as a luminescent source substance and gadolinium (Gd) ions as a luminescence assisting substance (Japanese Patent Application No. 5-237190). This phosphor has a characteristic that pre-excitation is unnecessary and conversion efficiency is high. As a result of further studies based on such research results, the present inventors have found that gadolinium chloride (Gd chloride) is not used as a mere luminescence auxiliary substance, but an alkaline earth chloride is used as a glass formation auxiliary agent. We have found that it is possible to form a chloride glass containing Gd chloride as the main component of the glass base material, and proposed this as a glass material for light transmission (Japanese Patent Application No. 6-95477). The present invention has excellent upconversion characteristics by incorporating Er ions as a luminescent center in a chloride glass containing Gd chloride as a main component of a glass base material and an alkaline earth chloride as a glass forming aid. This is an infrared-excited luminescent material.

【0007】すなわち、本発明によれば以下の構成を有
する赤外可視波長変換ガラス材が提供される。 (1)塩化Gdを主成分のガラス形成剤とし、アルカリ
土類塩化物をガラス形成助剤とする塩化物ガラス母材に
塩化Erを含有させてなる赤外可視波長変換ガラス材。 (2)上記ガラス形成助剤が、塩化Ba、塩化Sr、塩
化Caまたはこれらの2種以上の組合せである上記(1)
の赤外可視波長変換ガラス材。 (3)塩化Gd35〜92モル%、塩化Ba7〜45モ
ル%および塩化Er0.15〜33モル%からなる上記
(2) の赤外可視波長変換ガラス材。 (4)塩化Gd54〜81モル%、塩化Sr18〜43
モル%、および塩化Er0.15〜16モル%からなる
上記(2) の赤外可視波長変換ガラス材。 (5)塩化Gd54〜81モル%、塩化Ca18〜41
モル%、および塩化Er0.15〜12モル%からなる
上記(2) の赤外可視波長変換ガラス材。 (6)塩化Gd35〜90モル%、塩化Ba1〜48モ
ル%、および塩化Sr1〜42モル%であって塩化Ba
と塩化Srの合計量が6〜49モル%、塩化Er0.1
5〜30モル%からなる請求項2の赤外可視波長変換ガ
ラス材。 (7)塩化Gd40〜90モル%、塩化Ba1〜48モ
ル%および塩化カルシウム1〜40モル%であって塩化
Baと塩化Caの合計量が6〜49モル%、塩化Er
0.15〜30モル%からなる請求項2の赤外可視波長
変換ガラス材。 (8)塩化Gd50〜81モル%、塩化Sr1〜42モ
ル%および塩化Ca1〜40モル%であって塩化Srと
塩化Caの合計量が18〜43モル%、塩化Er0.1
5〜17モル%からなる請求項2の赤外可視波長変換ガ
ラス材。 (9)塩化Gd35〜91モル%、塩化Ba1〜48モ
ル%、塩化Sr1〜42モル%および塩化カルシウム1
〜40モル%であって塩化Baと塩化Srと塩化Caの
合計量が7〜49モル%、塩化Er0.15〜30モル
%からなる請求項2の赤外可視波長変換ガラス材。
That is, the present invention provides an infrared-visible wavelength conversion glass material having the following constitution. (1) An infrared-visible wavelength conversion glass material obtained by incorporating Er chloride into a chloride glass base material containing Gd chloride as a main glass-forming agent and alkaline earth chloride as a glass-forming aid. (2) The above glass forming auxiliary is Ba chloride, Sr chloride, Ca chloride or a combination of two or more thereof (1)
Infrared visible wavelength conversion glass material. (3) The above consisting of 35 to 92 mol% of Gd chloride, 7 to 45 mol% of Ba chloride and 0.15 to 33 mol% of Er chloride.
Infrared visible wavelength conversion glass material of (2). (4) Gd 54-81 mol% chloride, Sr 18-43 chloride
The infrared-visible wavelength conversion glass material according to the above (2), which comprises 0.1% to 16% by mole of Er chloride and 0.15 to 16% by mole of Er chloride. (5) Gd chloride 54-81 mol%, Ca chloride 18-41
The infrared-visible wavelength conversion glass material according to (2) above, which comprises 0.1% to 12% by mole of Er chloride and 0.15 to 12% by mole of Er chloride. (6) Gd 35 to 90 mol% chloride, Ba 1 to 48 mol% chloride, and Sr 1 to 42 mol% chloride and Ba chloride
And Sr chloride total amount 6 to 49 mol%, Er chloride 0.1
The infrared-visible wavelength conversion glass material according to claim 2, which comprises 5 to 30 mol%. (7) Gd chloride 40 to 90 mol%, Ba chloride 1 to 48 mol% and calcium chloride 1 to 40 mol% in which the total amount of Ba chloride and Ca chloride is 6 to 49 mol% and Er chloride.
The infrared-visible wavelength conversion glass material according to claim 2, which comprises 0.15 to 30 mol%. (8) Gd chloride 50-81 mol%, Sr chloride 1-42 mol% and Ca chloride 1-40 mol%, the total amount of Sr chloride and Ca chloride being 18-43 mol%, Er chloride 0.1.
The infrared-visible wavelength conversion glass material according to claim 2, which comprises 5 to 17 mol%. (9) Gd 35 to 91 mol%, Ba chloride 1 to 48 mol%, Sr 1 to 42 mol% and calcium chloride 1
The infrared-visible wavelength conversion glass material according to claim 2, wherein the total content of Ba chloride, Sr chloride and Ca chloride is ˜40 mol%, and the total amount is 7 to 49 mol%, and Er chloride is 0.15 to 30 mol%.

【0008】[0008]

【発明の具体的な開示】本発明のガラス材では、塩化ガ
ドリニウム(GdCl3)をガラス形成剤とする。塩化
物ガラスは、フッ化物ガラスよりも多フォノン緩和速度
が小さいので、赤外可視光変換において高い変換効率が
実現される。なお従来知られている塩化物ガラスの代表
例は塩化亜鉛(ZnCl2)をガラス母材とするもので
あるが、ZnCl2は潮解性が著しい。塩化Gdはこの
ような欠点を有しない。なお、本発明においては、塩化
Gdは、ガラス母材の主成分としての量が必要であり、
ガラス材の全組成中、少なくとも約40モル%、通常は
50モル%以上を含有する必要がある。
DETAILED DESCRIPTION OF THE INVENTION In the glass material of the present invention, gadolinium chloride (GdCl3 ) is used as the glass forming agent. Since chloride glass has a lower multiphonon relaxation rate than fluoride glass, high conversion efficiency is achieved in infrared-visible light conversion. Incidentally, a typical example of conventionally known chloride glass uses zinc chloride (ZnCl2 ) as a glass base material, but ZnCl2 has a remarkable deliquescent property. Gd chloride does not have such drawbacks. In the present invention, the amount of Gd chloride as the main component of the glass base material is required,
In the total composition of the glass material, at least about 40 mol%, usually 50 mol% or more should be contained.

【0009】塩化Gd単独ではガラス化しないので従
来、塩化Gdをガラス母材とする塩化物ガラスは知られ
ていない。塩化Gdと共に一定量のアルカリ土類塩化物
をガラス形成助剤として併用することによりガラス化が
可能となる。併用されるアルカリ土類塩化物としては、
塩化Ba、塩化Sr、塩化Caが好適である。これらは
2種以上併用しても良い。これらを2種以上用いたもの
はさらに安定なガラス材を得ることができる。塩化Ba
はZnCl2系ガラスなどにおいてガラス形成助剤とし
て常用されているが、塩化Ba自体はガラス化せず、塩
化Gdと併用例も従来は知られていない。塩化Gdと塩
化Baとからなるガラス材は本発明者等により初めて提
案された(特願平6-95477 号)。一方、塩化Srはガラ
ス形成助剤として従来使用されているが、塩化Gdと併
用した例は知られていない。塩化Caについても同様で
ある。なお、これらのガラス形成助剤の中では、ガラス
転移点の最も高いガラス材料が得られるBaCl2が最
も好ましい。
Since Gd chloride alone does not vitrify, chloride glass containing Gd chloride as a glass base material has not been known. Vitrification is possible by using a certain amount of alkaline earth chloride together with Gd chloride as a glass forming aid. As the alkaline earth chloride used in combination,
Ba chloride, Sr chloride, and Ca chloride are preferable. You may use these 2 or more types together. If two or more of these are used, a more stable glass material can be obtained. Ba chloride
Is commonly used as a glass forming aid in ZnCl2 type glass and the like, but Ba chloride itself does not vitrify, and no example of combined use with Gd chloride has hitherto been known. A glass material composed of Gd chloride and Ba chloride was first proposed by the present inventors (Japanese Patent Application No. 6-95477). On the other hand, Sr chloride is conventionally used as a glass forming aid, but an example of using it together with Gd chloride is not known. The same applies to Ca chloride. Among these glass forming aids, BaCl2 is most preferable because it gives a glass material having the highest glass transition point.

【0010】発光中心として、上記ガラス材中にErイ
オンが含有される。Erイオンは、赤外励起光(励起波
長1500nm、 980nmおよび 810nm)によって緑色(約460
〜560nm )の発光を生じる。Erイオンの含有量が過少
であると発光強度が微弱となるため、塩化Erの添加量
は0.15モル%以上が好ましく、1モル%以上がより
好ましい。一方、塩化Erの量が過剰であるとイオン間
のエネルギー伝達が支配的となって濃度消光により発光
効率が低下し、またガラス化を妨げるため、その添加量
は最大33モル%であり、好ましくは15モル%以下で
ある。
Er ions are contained in the glass material as a luminescent center. Er ions are green (about 460 nm) by infrared excitation light (excitation wavelengths 1500 nm, 980 nm and 810 nm).
It produces an emission of ~ 560 nm. If the content of Er ions is too small, the emission intensity becomes weak. Therefore, the amount of Er chloride added is preferably 0.15 mol% or more, more preferably 1 mol% or more. On the other hand, when the amount of Er chloride is excessive, the energy transfer between ions becomes dominant, the concentration quenching lowers the emission efficiency, and vitrification is hindered. Therefore, the addition amount is 33 mol% at maximum, and Is 15 mol% or less.

【0011】本発明に係る赤外可視波長変換ガラス材の
組成範囲の一例を図1に示す。図1はGdCl3−Ba
Cl2−ErCl3からなるガラス材の組成範囲を示す
3元系ガラス化範囲であり、本発明のガラス材は図1の
斜線部の組成範囲において得られる。斜線部の組成範囲
から外れると、結晶化速度が非常に大きくなるため、急
冷してもガラス化が困難となり、一部または全体が失透
(結晶化)する。斜線部における各成分の上限・下限値
は、GdCl338〜92モル%、BaCl27〜50
モル%、ErCl30〜33モル%である。とくに塩化
Gd55〜93モル%、塩化Ba7〜45モル%および
塩化Er1〜15モル%の範囲で緑色光の発光強度が高
く、この組成範囲が最も好適である。
An example of the composition range of the infrared-visible wavelength conversion glass material according to the present invention is shown in FIG. Figure 1 shows GdCl3 -Ba
It is a ternary vitrification range showing the composition range of the glass material consisting of Cl2 -ErCl3, and the glass material of the present invention can be obtained in the composition range of the shaded area in FIG. 1. If the composition is out of the composition range of the shaded portion, the crystallization rate becomes very high, and vitrification becomes difficult even if rapidly cooled, and part or the whole is devitrified (crystallized). The upper and lower limits of each component in the shaded area are GdCl3 38 to 92 mol%, BaCl2 7 to 50
Mol% and ErCl3 0 to 33 mol%. In particular, the emission intensity of green light is high in the range of 55 to 93 mol% of Gd chloride, 7 to 45 mol% of Ba chloride and 1 to 15 mol% of Er chloride, and this composition range is most preferable.

【0012】GdCl3−SrCl2−ErCl3の場
合には以下の組成範囲が好ましい。塩化Gd:54〜8
1モル%、塩化Sr:18〜43モル%、塩化Er:
0.15〜16モル%、好ましくは1〜15モル%。
In the case of GdCl3 --SrCl2 --ErCl3 , the following composition range is preferable. Gd chloride: 54-8
1 mol%, Sr chloride: 18 to 43 mol%, Er chloride:
0.15 to 16 mol%, preferably 1 to 15 mol%.

【0013】GdCl3−CaCl2−ErCl3の場
合には以下の組成範囲が好ましい。塩化Gd:54〜8
1モル%、塩化Ca:18〜41モル%、塩化Er:
0.15〜12モル%、好ましくは1〜12モル%。
In the case of GdCl3 --CaCl2 --ErCl3 , the following composition range is preferable. Gd chloride: 54-8
1 mol%, Ca chloride: 18 to 41 mol%, Er chloride:
0.15 to 12 mol%, preferably 1 to 12 mol%.

【0014】GdCl3−BaCl2−SrCl2−E
rCl3の場合には以下の組成範囲が好ましい。塩化G
d:35〜90モル%、塩化Ba:1〜48モル%、塩
化Sr:1〜42モル%、(但し、塩化Baと塩化Sr
の合計量:6〜49モル%)、塩化Er:0.15〜3
0モル%、好ましくは1〜15モル%。
GdCl3 --BaCl2 --SrCl2 --E
In the case of rCl3 , the following composition range is preferable. G chloride
d: 35 to 90 mol%, Ba chloride: 1 to 48 mol%, Sr chloride: 1 to 42 mol% (however, Ba chloride and Sr chloride
(Total amount of 6 to 49 mol%), Er chloride: 0.15 to 3
0 mol%, preferably 1 to 15 mol%.

【0015】GdCl3−BaCl2−CaCl2−E
rCl3の場合には以下の組成範囲が好ましい。塩化G
d:40〜90モル%、塩化Ba:1〜48モル%、塩
化Ca:1〜40モル%、(但し、塩化Baと塩化Ca
の合計量:6〜49モル%)、塩化Er:0.15〜3
0モル%、好ましくは1〜15モル%。
[0015] GdCl3 -BaCl2 -CaCl2 -E
In the case of rCl3 , the following composition range is preferable. G chloride
d: 40 to 90 mol%, Ba chloride: 1 to 48 mol%, Ca chloride: 1 to 40 mol% (however, Ba chloride and Ca chloride
(Total amount of 6 to 49 mol%), Er chloride: 0.15 to 3
0 mol%, preferably 1 to 15 mol%.

【0016】GdCl3−SrCl2−CaCl2−E
rCl3の場合には以下の組成範囲が好ましい。塩化G
d:50〜81モル%、塩化Sr:1〜42モル%、塩
化Ca:1〜40モル%、(但し、塩化Srと塩化Ca
の合計量:18〜43モル%)、塩化Er:0.15〜
17モル%、好ましくは1〜15モル%。
[0016] GdCl3 -SrCl2 -CaCl2 -E
In the case of rCl3 , the following composition range is preferable. G chloride
d: 50 to 81 mol%, Sr chloride: 1 to 42 mol%, Ca chloride: 1 to 40 mol% (however, Sr chloride and Ca chloride
(Total amount of 18 to 43 mol%), Er chloride: 0.15 to
17 mol%, preferably 1 to 15 mol%.

【0017】GdCl3−BaCl2−SrCl2−C
aCl2−ErCl3の場合には以下の組成範囲が好ま
しい。塩化Gd:35〜91モル%、塩化Ba:1〜4
8モル%、塩化Sr:1〜42モル%、塩化Ca:1〜
40モル%、(但し、塩化Baと塩化Srと塩化Caの
合計量:7〜50モル%)、塩化Er:0.15〜30
モル%、好ましくは1〜15モル%。
GdCl3 --BaCl2 --SrCl2 --C
In the case of aCl2 —ErCl3 , the following composition range is preferable. Gd chloride: 35 to 91 mol%, Ba chloride: 1 to 4
8 mol%, Sr chloride: 1 to 42 mol%, Ca chloride: 1 to
40 mol% (however, the total amount of Ba chloride, Sr chloride and Ca chloride: 7 to 50 mol%), Er chloride: 0.15 to 30
Mol%, preferably 1 to 15 mol%.

【0018】上記ガラス形成助剤(BaCl2、SrC
2、CaCl2)と共にLiCl、NaCl、KC
l、RbCl、CsCl、PbCl2およびTlClを
併用すれば更に安定なガラス材を得ることができる。こ
れらの添加量は約30モル%未満である。因みに、本発
明のガラス形成助剤(BaCl2、SrCl2、CaC
2)に加えて、これらLiCl、NaCl、KCl、
RbCl、CsCl、PbCl2およびTlClをGd
Cl3と共に用いるとガラス転移点が低くなる。
The above glass forming aids (BaCl2 , SrC)
l2 , CaCl2 ) together with LiCl, NaCl, KC
A more stable glass material can be obtained by using 1, RbCl, CsCl, PbCl2 and TlCl in combination. These additions are less than about 30 mol%. Incidentally, the glass forming aid (BaCl2 , SrCl2 , CaC of the present invention is used.
l2 ) in addition to these LiCl, NaCl, KCl,
RbCl, CsCl, PbCl2 and TlCl to Gd
When used with Cl3 , the glass transition point becomes low.

【0019】本発明の塩化物ガラス材は、精製乾燥した
原料の塩化物粉末を所定量調合した混合粉末を塩素ガス
雰囲気または真空下で加熱溶融し、急冷して得られる。
得られた急冷体のX線回折曲線は、図2に例示するよう
に、結晶体に見られるような鋭いピークが認められず、
ガラス質であることが確認できる。また、これは、図3
の示差熱分析曲線に例示されるように、ガラス転移点が
認められ、これによってもガラス質であることが分か
る。
The chloride glass material of the present invention is obtained by heating and melting a mixed powder prepared by mixing a predetermined amount of purified and dried raw material chloride powder in a chlorine gas atmosphere or under vacuum and then rapidly cooling it.
As shown in FIG. 2, the X-ray diffraction curve of the obtained quenched body does not show a sharp peak as seen in the crystalline body,
It can be confirmed that it is glassy. This is also shown in FIG.
As shown in the differential thermal analysis curve of 1., a glass transition point is recognized, which also shows that the glass is vitreous.

【0020】[0020]

【実施例および比較例】以下に本発明の実施例を比較例
と共に示す。なお、本実施例は例示であり、本発明の範
囲を限定するものではない。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below together with comparative examples. It should be noted that the present embodiment is merely an example and does not limit the scope of the present invention.

【0021】実施例1 ガラス母材のGdCl3および発光物質であるErCl
3粉末は、それぞれ純度99.95 %以上の市販Gd23
またはEr23から常法により合成した後に加熱溶融
して塩化ガスを吹き込み完全に脱水精製したものを用い
た。またガラス形成助剤のBaCl2粉末は320℃の
乾燥容器中で2日間乾燥した高純度の無水結晶を用い
た。これらの原料粉末をGdCl391.5モル%、BaC
27.3 モル%、ErCl31.2 モル%の割合に調合し
た混合粉末を透明石英ガラス管(内径1.5mm,肉厚0.6mm,
長さ200mm )に真空封入してアンプルを作成し、これを
加熱炉にて600℃で15分間溶融させた。得られた融
液をアンプルごと直ちに250℃まで急冷し、そのまま
徐冷を行なって薄いピンク色の透明体を得た。この透明
体をX線回折により測定したところ、その散乱強度の曲
線は図2に示すように、結晶体に見られるような鋭いピ
ークが認められず、ガラス質であることが確認された。
また、この透明体の示差熱分析曲線は、図3に示すよう
に、260℃付近でガラス転移点(Tg)が認められ、この
測定からもガラス質であることが確認された。
Example 1 GdCl3 as a glass base material and ErCl as a luminescent material
3 powders are commercially available Gd2 O3 with a purity of 99.95% or more.
Alternatively, a product obtained by synthesizing Er2 O3 by a conventional method, then heat-melting and blowing chlorine gas to completely dehydrate and refine was used. Further, as the glass forming aid BaCl2 powder, high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used. 91.5 mol% GdCl3 and BaC
l2 7.3 mol%, ErCl3 1.2 mol% transparent quartz glass tube a mixed powder obtained by compounding the ratio of (inner diameter 1.5 mm, wall thickness 0.6 mm,
An ampoule was prepared by vacuum-sealing it to a length of 200 mm) and melted in a heating furnace at 600 ° C. for 15 minutes. The obtained melt together with the ampoule was rapidly cooled to 250 ° C. and gradually cooled to obtain a light pink transparent body. When this transparent body was measured by X-ray diffraction, the curve of the scattering intensity thereof was not glassy, as shown in FIG. 2, and it was confirmed that it was vitreous.
The differential thermal analysis curve of this transparent body showed a glass transition point (Tg) at around 260 ° C. as shown in FIG. 3, and it was confirmed from this measurement that it was vitreous.

【0022】実施例2〜5 実施例1と全く同一の原料を用い、表1に示すモル比に
調合したGdCl3−BaCl2−ErCl3混合粉末
を実施例1と全く同様にして処理して透明なガラス材を
得た。得られたガラス材を肉眼で観察したところ、内部
にも表面にも結晶の析出は認められなかった。実施例1
と同様にして透明体がガラス体であることを確認した。
Examples 2 to 5 Using the same raw materials as in Example 1, the GdCl3 --BaCl2 --ErCl3 mixed powder prepared in the molar ratio shown in Table 1 was treated in the same manner as in Example 1. A transparent glass material was obtained. When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface. Example 1
It was confirmed that the transparent body was a glass body in the same manner as in.

【0023】実施例6〜9 BaCl2に代えてSrCl2を用い、表1に示すモル
比に調合したGdCl3−SrCl2−ErCl3混合
粉末を実施例1と全く同様に処理して透明なガラス材を
得た。なお、原料のSrCl2は320℃の乾燥容器中
で2日間乾燥した高純度の無水結晶を用いた。得られた
ガラス材を肉眼で観察したところ、内部にも表面にも結
晶の析出は認められなかった。実施例1と同様にして透
明体がガラス体であることを確認した。
Examples 6 to 9 GdCl3 --SrCl2 --ErCl3 mixed powder prepared by using SrCl2 in place of BaCl2 and having a molar ratio shown in Table 1 was treated in the same manner as in Example 1 to give a transparent powder. A glass material was obtained. As the raw material SrCl2 , high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used. When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface. It was confirmed that the transparent body was a glass body in the same manner as in Example 1.

【0024】実施例10〜14 BaCl2に代えてCaCl2を用い、表1に示すモル
比に調合したGdCl3−CaCl2−ErCl3混合
粉末を実施例1と全く同様に処理して透明なガラス材を
得た。なお、原料のCaCl2は320℃の乾燥容器中
で2日間乾燥した高純度の無水結晶を用いた。得られた
ガラス材を肉眼で観察したところ、内部にも表面にも結
晶の析出は認められなかった。実施例1と同様にして透
明体がガラス体であることを確認した。
Examples 10-14 GdCl3 -CaCl2 -ErCl3 mixed powders prepared by using CaCl2 instead of BaCl2 and having the molar ratios shown in Table 1 were treated in the same manner as in Example 1 to give a transparent powder. A glass material was obtained. As the raw material CaCl2 , high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used. When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface. It was confirmed that the transparent body was a glass body in the same manner as in Example 1.

【0025】実施例15〜18 ガラス形成助剤として実施例1のBaCl2に加えてS
rCl2を用い、表1に示すモル比に調合したGdCl
3−BaCl2−SrCl2−ErCl3混合粉末を実
施例1と全く同様に処理して透明なガラス材を得た。な
お、原料のBaCl2およびSrCl2は320℃の乾
燥容器中で2日間乾燥した高純度の無水結晶を用いた。
得られたガラス材を肉眼で観察したところ、内部にも表
面にも結晶の析出は認められなかった。実施例1と同様
にして透明体がガラス体であることを確認した。
Examples 15 to 18 In addition to BaCl2 of Example 1 as a glass forming aid, S
GdCl prepared by using rCl2 in a molar ratio shown in Table 1.
3 -BaCl2 -SrCl2 -ErCl3 mixed powder was treated in the same manner as in Example 1 to obtain a transparent glass material. As the raw materials BaCl2 and SrCl2 , high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used.
When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface. It was confirmed that the transparent body was a glass body in the same manner as in Example 1.

【0026】実施例19〜22 ガラス形成助剤として実施例1のBaCl2に加えてC
aCl2を用い、表1に示すモル比に調合したGdCl
3−BaCl2−CaCl2−ErCl3混合粉末を実
施例1と全く同様に処理して透明なガラス材を得た。な
お、原料のBaCl2およびCaCl2は320℃の乾
燥容器中で2日間乾燥した高純度の無水結晶を用いた。
得られたガラス材を肉眼で観察したところ、内部にも表
面にも結晶の析出は認められなかった。実施例1と同様
にして透明体がガラス体であることを確認した。
Examples 19 to 22 In addition to BaCl2 of Example 1 as a glass forming aid, C
GdCl prepared by using aCl2 in a molar ratio shown in Table 1.
3 -BaCl2 -CaCl2 -ErCl3 mixed powder was treated in the same manner as in Example 1 to obtain a transparent glass material. As the raw materials BaCl2 and CaCl2 , high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used.
When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface. It was confirmed that the transparent body was a glass body in the same manner as in Example 1.

【0027】実施例23〜26 ガラス形成助剤として実施例1のBaCl2に代えてS
rCl2とCaCl2を用い、表1に示すモル比に調合
したGdCl3−SrCl2−CaCl2−ErCl3
混合粉末を実施例1と全く同様に処理して透明なガラス
材を得た。なお、原料のSrCl2およびCaCl2
320℃の乾燥容器中で2日間乾燥した高純度の無水結
晶を用いた。得られたガラス材を肉眼で観察したとこ
ろ、内部にも表面にも結晶の析出は認められなかった。
実施例1と同様にして透明体がガラス体であることを確
認した。
Examples 23 to 26 S as a glass forming aid instead of BaCl2 in Example 1
RCL2 and with CaCl2, GdCl was formulated in a molar ratio shown in Table 13 -SrCl2 -CaCl2 -ErCl3
The mixed powder was treated exactly as in Example 1 to obtain a transparent glass material. As the raw materials SrCl2 and CaCl2 , high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used. When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface.
It was confirmed that the transparent body was a glass body in the same manner as in Example 1.

【0028】実施例27〜32 ガラス形成助剤として実施例1のBaCl2に加えてS
rCl2とCaCl2を用い、表1に示すモル比に調合
したGdCl3−BaCl2−SrCl2−CaCl2
−ErCl3混合粉末を実施例1と全く同様に処理して
透明なガラス材を得た。なお、原料のBaCl2、Sr
Cl2およびCaCl2は320℃の乾燥容器中で2日
間乾燥した高純度の無水結晶を用いた。得られたガラス
材を肉眼で観察したところ、内部にも表面にも結晶の析
出は認められなかった。実施例1と同様にして透明体が
ガラス体であることを確認した。
Examples 27-32 In addition to BaCl2 from Example 1 as a glass forming aid, S
using RCL2 and CaCl2, GdCl3 was formulated in a molar ratio shown in Table 1 -BaCl2 -SrCl2 -CaCl2
The ErCl3 mixed powder was treated in exactly the same manner as in Example 1 to obtain a transparent glass material. The raw materials BaCl2 , Sr
For Cl2 and CaCl2 , high-purity anhydrous crystals dried in a drying container at 320 ° C. for 2 days were used. When the obtained glass material was observed with the naked eye, no precipitation of crystals was observed inside or on the surface. It was confirmed that the transparent body was a glass body in the same manner as in Example 1.

【0029】[0029]

【表1】[Table 1]

【0030】[0030]

【表2】[Table 2]

【0031】発光スペクトルの測定 実施例2で得られたガラス材を石英アンプルから取り出
して長さ約5mmの円柱状に切断し、切断部を面研磨して
長さ5mmにした後、波長810nmの半導体レーザ(30mW)
で励起して緑色発光スペクトルを測定した。比較のため
常法に従いフッ化物ガラス(47 ZrF4・22BaF2・4LaF
3・3AlF3・5NaF・16 YbF3・3ErF3)を用い同一形状
に作製し面研磨して得た試料について、発光強度を同様
に測定した。結果は図4に示す通りであり、実施例2
(実線)のガラス材は波長550nm付近の緑色強度がフ
ッ化物ガラス(波線)に比べて約20倍も高い。
Measurement of emission spectrum The glass material obtained in Example 2 was taken out from a quartz ampoule and cut into a cylinder having a length of about 5 mm, and the cut portion was surface-polished to have a length of 5 mm. Semiconductor laser (30mW)
And the green emission spectrum was measured. Fluoride glass (47 ZrF4・ 22BaF2・ 4LaF)
The emission intensity was similarly measured for a sample obtained by surface-polishing the same shape using3 / 3AlF3 / 5NaF / 16 YbF3 / 3ErF3 ). The results are shown in FIG.
The glass material of (solid line) has a green intensity around a wavelength of 550 nm which is about 20 times higher than that of fluoride glass (wavy line).

【0032】実施例2、7、11、15、19、23、
28並びに比較例1、2および3のガラス材(いずれも
サンプル形状等は上記と同じ。)についても、上記波長
の励起光を用いて、緑色発光強度(波長550nm )を測定
した。フッ化物ガラス(47ZrF4・22BaF2・4LaF3
3AlF3・5NaF・16 YbF3・3ErF3)による発光強度と比
較した概略値(比)を表3に纏めて示す。なお比較例1
〜3は、各々、ErCl3の調合量を0.1モル%とし
た他は実施例1、6、10に準じて表2のモル比で製造
したものである。
Examples 2, 7, 11, 15, 19, 23,
With respect to 28 and the glass materials of Comparative Examples 1, 2 and 3 (the sample shapes and the like are the same as above), the green emission intensity (wavelength 550 nm) was measured using the excitation light having the above wavelength. Fluoride glass (47ZrF4・ 22BaF2・ 4LaF3
3AlF 3 · 5NaF · 16 YbF 3 · 3ErF 3) approximate values compared to the emission intensity due to (ratio) are summarized in Table 3. Comparative Example 1
Nos.3 to 3 were produced in the molar ratios shown in Table 2 according to Examples 1, 6 and 10 except that the amount of ErCl3 was 0.1 mol%.

【0033】[0033]

【表3】[Table 3]

【0034】[0034]

【発明の効果】本発明の赤外可視波長変換材料はガラス
材であるので、結晶体の波長変換材料と比較して製造が
容易であり、ファイバー等の種々の形状の製品とするこ
とが可能である。また、結晶と比べて希土類イオンの吸
収がブロードであるために、励起光の波長ゆらぎがあっ
ても吸収効率の変動が小さく、よって発光効率の変動が
少ない。従って、温度や電流等の影響により出力波長が
変動しやすい半導体レ−ザーを励起光として用いた場合
でも、比較的安定した出力が得られる。また、本発明で
はガラス母材として塩化Gdおよびアルカリ土類金属の
塩化物を用いているためガラス転移点が200℃以上と
従来の塩化物ガラス(ガラス転移点が175℃程度)に
比べて格段に高いガラス転移点を有する。この結果、耐
熱性に優れた成品を得ることができる。さらに本発明の
波長変換ガラス材は、最大の特長として、従来のフッ化
物系波長変換ガラス材と比べて光変換効率が各段に優れ
ている利点を有する。このため、従来の赤外可視波長変
換材料と同様に赤外光検知体に使用できるばかりではな
く、ディスプレイやアップコンバージョン方式による緑
色レーザー等、幅広い分野への応用が可能である。
Since the infrared-visible wavelength conversion material of the present invention is a glass material, it is easier to manufacture as compared with the crystalline wavelength conversion material, and it is possible to make products of various shapes such as fibers. Is. Further, since the absorption of rare earth ions is broader than that of crystals, the fluctuation of the absorption efficiency is small even if there is wavelength fluctuation of the excitation light, and thus the fluctuation of the emission efficiency is small. Therefore, a relatively stable output can be obtained even when a semiconductor laser whose output wavelength is apt to change due to the influence of temperature or current is used as the excitation light. Further, in the present invention, since Gd chloride and a chloride of an alkaline earth metal are used as the glass base material, the glass transition point is 200 ° C. or higher, which is significantly higher than that of a conventional chloride glass (glass transition point is about 175 ° C.). It has a high glass transition point. As a result, a product having excellent heat resistance can be obtained. Furthermore, the wavelength conversion glass material of the present invention has the advantage that the light conversion efficiency is far superior to the conventional fluoride wavelength conversion glass material, as the greatest feature. Therefore, not only can it be used for infrared light detectors like the conventional infrared visible wavelength conversion material, but it can also be applied to a wide range of fields such as displays and green lasers by the up-conversion system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る塩化Gd2−塩化Ba−塩化Er
の3元系ガラス化範囲を示すグラフ。
FIG. 1 Gd2 chloride-Ba chloride-Er chloride according to the present invention
3 is a graph showing the ternary vitrification range.

【図2】実施例1のガラス材のX線回折チャート。FIG. 2 is an X-ray diffraction chart of the glass material of Example 1.

【図3】実施例1のガラス材の示差熱分析曲線を示すグ
ラフ。
FIG. 3 is a graph showing a differential thermal analysis curve of the glass material of Example 1.

【図4】実施例1のガラス材と従来のフッ化物ガラスの
発光強度を示すスペクトル図。
FIG. 4 is a spectrum diagram showing the emission intensity of the glass material of Example 1 and a conventional fluoride glass.

Claims (9)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】塩化ガドリニウムを主成分のガラス形成剤
とし、アルカリ土類塩化物をガラス形成助剤とする塩化
物ガラス母材に塩化エルビウムを含有させてなる赤外可
視波長変換ガラス材。
1. An infrared-visible wavelength conversion glass material, which comprises erbium chloride in a chloride glass base material containing gadolinium chloride as a main glass forming agent and alkaline earth chloride as a glass forming aid.
【請求項2】上記ガラス形成助剤が、塩化バリウム、塩
化ストロンチウム、塩化カルシウムまたはこれらの2種
以上の組合せである請求項1の赤外可視波長変換ガラス
材。
2. The infrared-visible wavelength conversion glass material according to claim 1, wherein the glass forming aid is barium chloride, strontium chloride, calcium chloride or a combination of two or more thereof.
【請求項3】塩化ガドリニウム35〜92モル%、塩化
バリウム7〜45モル%および塩化エルビウム0.15
〜33モル%からなる請求項2の赤外可視波長変換ガラ
ス材。
3. Gadolinium chloride 35 to 92 mol%, barium chloride 7 to 45 mol%, and erbium chloride 0.15.
The infrared-visible wavelength conversion glass material according to claim 2, which comprises ˜33 mol%.
【請求項4】塩化ガドリニウム54〜81モル%、塩化
ストロンチウム18〜43モル%および塩化エルビウム
0.15〜16モル%からなる請求項2の赤外可視波長
変換ガラス材。
4. The infrared-visible wavelength conversion glass material according to claim 2, comprising 54 to 81 mol% of gadolinium chloride, 18 to 43 mol% of strontium chloride and 0.15 to 16 mol% of erbium chloride.
【請求項5】塩化ガドリニウム54〜81モル%、塩化
カルシウム18〜41モル%および塩化エルビウム0.
15〜12モル%からなる請求項2の赤外可視波長変換
ガラス材。
5. Gadolinium chloride 54 to 81 mol%, calcium chloride 18 to 41 mol%, and erbium chloride 0.
The infrared-visible wavelength conversion glass material according to claim 2, which comprises 15 to 12 mol%.
【請求項6】塩化ガドリニウム35〜90モル%、塩化
バリウム1〜48モル%および塩化ストロンチウム1〜
42モル%であって塩化バリウムと塩化ストロンチウム
の合計量が6〜49モル%、塩化エルビウム0.15〜
30モル%からなる請求項2の赤外可視波長変換ガラス
材。
6. Gadolinium chloride 35 to 90 mol%, barium chloride 1 to 48 mol%, and strontium chloride 1 to
42 mol%, the total amount of barium chloride and strontium chloride is 6 to 49 mol%, and erbium chloride is 0.15 to
The infrared-visible wavelength conversion glass material according to claim 2, which comprises 30 mol%.
【請求項7】塩化ガドリニウム40〜90モル%、塩化
バリウム1〜48モル%および塩化カルシウム1〜40
モル%であって塩化バリウムと塩化カルシウムの合計量
が6〜49モル%、塩化エルビウム0.15〜30モル
%からなる請求項2の赤外可視波長変換ガラス材。
7. Gadolinium chloride 40 to 90 mol%, barium chloride 1 to 48 mol%, and calcium chloride 1 to 40.
The infrared-visible wavelength conversion glass material according to claim 2, wherein the total amount of barium chloride and calcium chloride is 6 to 49 mol% and erbium chloride is 0.15 to 30 mol%.
【請求項8】塩化ガドリニウム50〜81モル%、塩化
ストロンチウム1〜42モル%および塩化カルシウム1
〜40モル%であって塩化ストロンチウムと塩化カルシ
ウムの合計量が18〜43モル%、塩化エルビウム0.
15〜17モル%からなる請求項2の赤外可視波長変換
ガラス材。
8. Gadolinium chloride 50-81 mol%, strontium chloride 1-42 mol%, and calcium chloride 1
.About.40 mol%, the total amount of strontium chloride and calcium chloride is 18 to 43 mol%, erbium chloride.
The infrared-visible wavelength conversion glass material according to claim 2, which comprises 15 to 17 mol%.
【請求項9】塩化ガドリニウム35〜91モル%、塩化
バリウム1〜48モル%、塩化ストロンチウム1〜42
モル%および塩化カルシウム1〜40モル%であって塩
化バリウムと塩化ストロンチウムと塩化カルシウムの合
計量が7〜49モル%、塩化エルビウム0.15〜30
モル%からなる請求項2の赤外可視波長変換ガラス材。
9. Gadolinium chloride 35-91 mol%, barium chloride 1-48 mol%, strontium chloride 1-42
Mol% and calcium chloride 1 to 40 mol%, the total amount of barium chloride, strontium chloride and calcium chloride is 7 to 49 mol%, erbium chloride 0.15 to 30
The infrared-visible wavelength conversion glass material according to claim 2, which is composed of mol%.
JP21940594A1994-08-221994-08-22Infrared-visible wavelength converting glass materialWithdrawnJPH0859285A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP21940594AJPH0859285A (en)1994-08-221994-08-22Infrared-visible wavelength converting glass material

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP21940594AJPH0859285A (en)1994-08-221994-08-22Infrared-visible wavelength converting glass material

Publications (1)

Publication NumberPublication Date
JPH0859285Atrue JPH0859285A (en)1996-03-05

Family

ID=16734898

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP21940594AWithdrawnJPH0859285A (en)1994-08-221994-08-22Infrared-visible wavelength converting glass material

Country Status (1)

CountryLink
JP (1)JPH0859285A (en)

Similar Documents

PublicationPublication DateTitle
US5955388A (en)Transparent oxyflouride glass-ceramic composition and process of making
JP3158202B2 (en) Phosphate glass useful for high energy lasers
US3717583A (en)Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm.
US7637124B2 (en)Bismuth containing fluorophosphate glass and method for making thereof
US6410467B1 (en)Antimony oxide glass with optical activity
US6413891B1 (en)Glass material suitable for a waveguide of an optical amplifier
US5240885A (en)Rare earth-doped, stabilized cadmium halide glasses
EP0589198B1 (en)Rare earth-doped, stabilized cadmium halide glasses
US6444599B1 (en)Rare earth element-halide environments in oxyhalide glasses
US6344425B1 (en)Fluorotellurite, amplifier glasses
JPH0859285A (en)Infrared-visible wavelength converting glass material
JPH0986958A (en)Glass material for converting wavelength
US6797657B2 (en)Tm-doped fluorophosphate glasses for 14xx amplifiers and lasers
JPH0859286A (en)Blue light-emitting glass material
Chialanza et al.The effect of cation modifier on improving the luminescent properties of borate glasses doped with Yb3+ and Er3+
JPH10251041A (en)Wavelength converting glass material
JPH08217489A (en)Wavelength-changing glass material
RU2824890C1 (en)Luminescent lead oxyfluoride glass
JPH08217491A (en)Wavelength-changing glass material
JPH08217488A (en)Wavelength-changing glass material
JPH08217487A (en)Wavelength-changing glass material
JPH08217490A (en)Wavelength-changing glass material
JPH08208268A (en)Laser glass and optical fiber
JPH07133135A (en)Infrared-visible wavelength changing glass material
JPH08259942A (en)Infrared-excitable phosphor

Legal Events

DateCodeTitleDescription
A300Withdrawal of application because of no request for examination

Free format text:JAPANESE INTERMEDIATE CODE: A300

Effective date:20011106


[8]ページ先頭

©2009-2025 Movatter.jp