Movatterモバイル変換


[0]ホーム

URL:


JPH08504559A - Motor system with individually controlled redundant windings - Google Patents

Motor system with individually controlled redundant windings

Info

Publication number
JPH08504559A
JPH08504559AJP6514388AJP51438894AJPH08504559AJP H08504559 AJPH08504559 AJP H08504559AJP 6514388 AJP6514388 AJP 6514388AJP 51438894 AJP51438894 AJP 51438894AJP H08504559 AJPH08504559 AJP H08504559A
Authority
JP
Japan
Prior art keywords
windings
winding
motor
rotate
rotational position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6514388A
Other languages
Japanese (ja)
Inventor
ホエル,ロバート・エイチ
ザブコウ,ジグムント
Original Assignee
ハネウエル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハネウエル・インコーポレーテッドfiledCriticalハネウエル・インコーポレーテッド
Publication of JPH08504559ApublicationCriticalpatent/JPH08504559A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】故障許容ブラシレスDCモータは複数の並列な巻線を含み、各巻線は対応する1つの制御モジュールにより個別に制御される。少なくとも3つの巻線は、巻線の中の1つに短絡があった場合に、永久磁石が取付けられているモータの軸を回転させるためにその他の2つの巻線が磁界を発生し続けるように設けられている。単一の短絡の場合に、残る2つの巻線のうち一方が短絡した巻線により発生された抗力を無効にし、残る他方の巻線はモータの軸を回転させるのに十分な磁界を発生するように、少なくとも3つの巻線が設けられているのが好ましい。このモータシステムはロケットノズルのベクトル制御の分野に特に適用される。好ましい構成においては、システムは8つの巻線を含む。(57) [Summary] A fault-tolerant brushless DC motor includes a plurality of parallel windings, and each winding is individually controlled by one corresponding control module. At least three windings ensure that, in the event of a short circuit in one of the windings, the other two windings continue to generate a magnetic field to rotate the shaft of the motor to which the permanent magnet is mounted. It is provided in. In the case of a single short circuit, one of the two remaining windings negates the drag force generated by the shorted winding and the other winding produces a magnetic field sufficient to rotate the motor shaft. Thus, at least three windings are preferably provided. This motor system has particular application in the field of rocket nozzle vector control. In the preferred configuration, the system includes eight windings.

Description

Translated fromJapanese

【発明の詳細な説明】 個別に制御される冗長巻線を有するモータシステム発明の分野 本発明は、一般に、ブラシレスDCモータシステムに関する。特定すれば、本発明は、ロケットエンジンのスラストベクトル制御における場合のように冗長性が不可欠である信頼性の高い用途で使用するのに特に適合するブラシレスDCモータシステムに関する。発明の背景 ロケットエンジンのスラストベクトル制御はこれまでは主に油圧アクチュエータの使用によって実現されていた。油圧ポンプを採用する油圧アクチュエータは一般に使用されてはいるが、要求する保守コストが高く且つ信頼性に欠けるところがあるという欠点を有する。さらに特定すれば、油圧ポンプは典型的には全速力で動作するために、ロケットエンジンを制御する油圧系統は絶えず最大動力で動作しなければならないのである。その他にも、ヒドラジンなどの危険な材料を使用しなければならず、また、各部品にわたって作動油が存在するために、通常非常に汚れているといった欠点がある。 油圧アクチュエータを目指す代替方式は電磁アクチュエータの使用に関わるものであった。油圧系統と比べて、電磁アクチュエータシステムが使用するエネルギーははるかに少なく、ミッション中、典型的な油圧アクチュエータシステムはそれに匹敵する電磁アクチュエータシステムの34倍ものエネルギーを使用するのである。電磁アクチュエータシステムの使用によって得られる別の利点は、システムが非常に頑丈であり且つ必要とされる保守は少ないということである。さらに、そのような装置の設置は非常に簡単であり、ロケットの発射に先立って外部バッテリ又は内部バッテリいずれかのパワーを使用してそのようなシステムの試験を実行することができる。この点に関して、ロケットノズル制御に使用される電磁アクチュエータシステムの中のモータ用として従来より3つの基本方式が考えられてきた。特定していえば、これまでに考えられていたシステムは「磁気抵抗切替え」、「AC誘導」及び「DCブラシレスモータ」である。 DCブラシレスモータは、ステッピングモータと呼ばれる開ループ制御多重歯推進駆動装置から内部永久磁石回転子閉ループ機械及び外部永久磁石回転子閉ループ機械に至るまで、いくつかの構成で利用できる。性能や運動制御能力が多岐にわたるため、そのようなモータは理論上はロケットのベクトル制御などの用途、たとえば、ロケットモータノズルの向きの方向を制御するときに使用するのに特に望ましい。ところが、モータの巻線に短絡が生じた場合、1つの巻線の短絡で動作不能となってしまうDCブラシレスモータはもはや動かすことができないという事態になって、システムがきわめて重大な障害を受けることがありうると考えられるので、そのようなモータはロケットノズル制御の分野では広くは使用されていない。理解できるであろうが、モータにおけるそのような故障は、結果として、ロケットミッションの徹底的、破滅的な障害を引起こす。 以上述べた油圧系統に代わるものとして、今日までにAC誘導モータの使用が提案されてきた。そのようなシステムは、巻線の短絡時にAC誘導モータは通常は不動の状態にならないという点で望ましいのであるが、AC誘導モータの電子制御回路がきわめて複雑であり且つそのようなモータのトルク/回転数特性は大きく変動し、ロケットノズルについて望まれる精密な制御を実行しないという欠点を有する。 従って、本発明によれば、先に認めた重大な故障を引起こす可能性を克服しつつ、油圧系統及びACモータシステムの欠点をいずれももたないDCブラシレスモータシステムが提案されている。さらに特定すれば、ここでは、動作中の巻線短絡に対して故障許容性をもつDCブラシレスモータシステムを開示する。発明の概要 本発明の1つの面に従えば、永久磁石モータシステムが提供される。永久磁石モータシステムは複数個の永久磁石が取付けられている軸を有し、その軸はその中心軸に対して回転自在に取付けられている。永久磁石は軸の所定の長さに沿って、その周囲をほぼ巡るように取付けられて、永久磁石に誘導力が加えられる結果として軸を回転させる。永久磁石の周囲には、それぞれが互いに電気的に絶縁された少なくとも3つの巻線が配置されており、各々の巻線は個別に電気的に励磁されて、誘導磁界を発生する。発生した磁界は、発生した磁界と永久磁石との相互作用の結果として軸を回転させる。個別の巻線制御装置、たとえば、パルス幅変調制御装置チップは、万一、巻線の1つに短絡があった場合に、(1)軸を回転運動させつつ駆動し続け且つ(2)短絡した巻線により発生する抗力を克服するために必要な磁界を他の2つの巻線が発生し続けるように、各々の巻線を個別に制御する。すなわち、このモータシステムは、DCブラシレスモータ構成で起こりうる1つの巻線の短絡を考慮に入れた故障許容システムなのである。 巻線は、巻線の脚部の各々がその他の脚部と平行になるようにY字巻線構成を成して配列されているのが好ましい。そのような構成は従来通りのものであり、当業者には良く知られている。巻線制御装置は絶縁ゲートバイポーラトランジスタパワーモジュールであるのが好ましい。好ましい構成では、巻線は少なくとも3つの巻線、さらに好ましくは少なくとも8つの巻線から構成されている。理解できるであろうが、8つの巻線を有する場合、万一、1つの巻線が短絡したならば、短絡による1つの巻線の損失のためにモータはその動力の3/4を依然として保持し、別の巻線は短絡を起こした巻線の抗力を克服するのに専念する。巻線3つの構成で1つの巻線が短絡した場合には、1/3の動力が保持される。 本発明のより特定の面においては、軸の回転位置を検出する1つ又は複数のセンサが配置されている。センサはモータ制御装置に信号を供給し、モータ制御装置は巻線の絶縁ゲートバイポーラトランジスタパワーモジュールを制御して、軸を所望の位置まで回転させるように巻線を励磁するための制御信号をパワーモジュールに対し発生する。 添付の図面を参照して、本発明の以下の詳細な説明を読めば、本発明のこれらの特徴及び利点並びにその他の特徴及び利点はさらに容易に明白になるであろう。図面の簡単な説明 図1は、本発明に従ったDCブラシレスモータシステムの制御回路アーキテクチャ及び巻線配列の概略図である。 図2は、モータ制御装置に接続し、且つモータ軸に位置センサが設置されている構成の制御モジュールを示す第2の概略図である。詳細な説明 図1を参照すると、本発明に従った故障許容巻線制御システムはその全体を図中符号11により指示されている。単一の共通軸13が示されており、その軸の周囲には、関連する冗長巻線17がY字構成を成して配列している。軸13はその長さに沿って、軸13の周囲を囲んだ複数個の永久磁石15を含む。巻線17は、個々別々に電気的に励起されて、磁石と相互に作用して軸13を回転させる磁界を発生するように接続されている。各々の巻線17は3本の脚部19a,19b及び19cを有し、それらの脚部は従来の周知のY字構成を成して配列されている。 図1では、各巻線17は個別に対応する制御モジュール21によって制御されるものとして示されている。それらのモジュール21は、たとえば、絶縁ゲートバイポーラトランジスタパワーモジュールである。すなわち、万一、1つの巻線17が短絡した場合でも、それぞれ個別にパワーモジュール21により絶縁ゲートバイポーラトランジスタ23a,23b及び23cを介して制御されるその他の冗長巻線17がモータの軸13を駆動し続けるのである。 理解できるであろうが、故障許容動作を実現するためには、少なくとも3つの巻線17、好ましくは(通常は、軸13の延長を示す太線の矢印により指示するように)8つの巻線が存在すべきである。すなわち、巻線が3つの場合、短絡によって1つの巻線17が失われると、その結果、モータは元来の駆動動力の少なくとも1/3を得るのであるが、巻線が8つある場合には、失われるのはその動力のわずか1/4である。 モジュール21に関していえば、それらは従来通りのものであり、当業者には良く知られている。そのような市販のモジュールの例としては、PWR−82331高電流三相ブリッジパワーハイブリッドがある。そのようなモジュールの詳細は、ILC Data Device Corporationによる刊行物PWR−28331 Smart Power Three−Phase Bridge(1989年刊)の中に開示されており、その開示内容は参考として本明細書の中にも取入れられている。 パワーモジュール21を制御するために、モータ制御装置27が採用され、個々の巻線17が発生する磁界により磁石が確実に同期して作用を受けるようにそのパワーモジュールが同時される。そのような制御装置27は従来通りのもので、良く知られており、たとえば、プログラム可能論理アレイ(PLA)の形態をとることができる。 図2に示すように、モータのより精密な動作を確保するために、モータ制御装置27によって軸13を位置させるべきであると指令されていた位置に対する軸13の位置を検出するように位置センサ29を軸13に取付けることができる。そのような場合、位置検出センサ29は位置信号をモータ制御装置27に供給し、そこで位置信号は基準と比較され、その結果、誤差信号を得る。次に、誤差信号は制御装置27により処理されて、発生する誤差信号が零に等しくなるまで誤差を修正しつつ軸19を所望の位置へ回転させるための信号を制御モジュール21に対し発生する。 以上の教示に照らせば、本発明の変形や変更が可能である。従って、添付の請求の範囲の範囲内で、特定して説明したもの以外の形でも本発明を実施しうることが理解される。BACKGROUND OF THE INVENTIONField of the InventionThe motor systeminvention having redundant windings are individually controlled generally relates brushless DC motor system. In particular, the present invention relates to a brushless DC motor system that is particularly suited for use in reliable applications where redundancy is essential, such as in thrust vector control of rocket engines.Background of the Invention Thrust vector control of rocket engines has heretofore been achieved primarily through the use of hydraulic actuators. Although hydraulic actuators that employ hydraulic pumps are commonly used, they have the drawbacks of high maintenance costs and lack of reliability. More specifically, since hydraulic pumps typically operate at full speed, the hydraulic system that controls the rocket engine must constantly operate at maximum power. Another disadvantage is that dangerous materials such as hydrazine must be used, and because of the presence of hydraulic oil across each part, they are usually very dirty. An alternative approach aimed at hydraulic actuators involved the use of electromagnetic actuators. Compared to hydraulic systems, electromagnetic actuator systems use much less energy, and during a mission, a typical hydraulic actuator system uses 34 times as much energy as a comparable electromagnetic actuator system. Another advantage obtained by using an electromagnetic actuator system is that the system is very robust and requires little maintenance. Furthermore, the installation of such a device is very simple and the test of such a system can be performed using the power of either an external battery or an internal battery prior to launching the rocket. In this regard, three basic methods have been conventionally considered for motors in electromagnetic actuator systems used for rocket nozzle control. In particular, the systems previously considered are "magnetoresistance switching", "AC induction" and "DC brushless motors". DC brushless motors are available in several configurations, from open loop controlled multi-tooth propulsion drives called stepper motors to internal permanent magnet rotor closed loop machines and external permanent magnet rotor closed loop machines. Due to the wide variety of performance and motion control capabilities, such motors are theoretically particularly desirable for use in applications such as rocket vector control, for example when controlling the orientation of a rocket motor nozzle. However, if a short circuit occurs in the winding of the motor, the DC brushless motor, which becomes inoperable due to the short circuit of one winding, can no longer be operated, and the system will be seriously damaged. Such motors are not widely used in the field of rocket nozzle control, as they are believed to be possible. As can be appreciated, such a failure in the motor results in a catastrophic failure of the rocket mission. The use of AC induction motors has been proposed to date as an alternative to the hydraulic systems described above. While such a system is desirable in that an AC induction motor will not normally be immobile upon winding short circuit, the electronic control circuitry of the AC induction motor is very complex and the torque / torque of such a motor is The speed characteristics are highly variable and have the drawback of not implementing the precise control desired for rocket nozzles. Therefore, according to the present invention, a DC brushless motor system is proposed which overcomes the previously recognized potential for serious failure, while avoiding the drawbacks of both hydraulic and AC motor systems. More particularly, here is disclosed a DC brushless motor system that is fault tolerant to operating winding shorts.SUMMARY OF THE INVENTION According to one aspect of the invention, a permanent magnet motor system is provided. The permanent magnet motor system has a shaft on which a plurality of permanent magnets are mounted, the shaft being rotatably mounted about its central axis. Permanent magnets are mounted about a predetermined length of the shaft, about the circumference thereof, causing the shaft to rotate as a result of the inductive force applied to the permanent magnet. At least three windings, which are electrically insulated from each other, are arranged around the permanent magnet, and each winding is individually electrically excited to generate an induced magnetic field. The generated magnetic field causes the shaft to rotate as a result of the interaction between the generated magnetic field and the permanent magnet. An individual winding controller, for example a pulse width modulation controller chip, should continue to drive while (1) rotating the axis and (2) short circuit should one of the windings be shorted. Each winding is individually controlled so that the other two windings continue to generate the magnetic field required to overcome the drag created by the windings. That is, this motor system is a fault tolerant system that takes into account one winding short that may occur in a DC brushless motor configuration. The windings are preferably arranged in a Y winding configuration such that each leg of the winding is parallel to the other leg. Such configurations are conventional and well known to those skilled in the art. The winding controller is preferably an insulated gate bipolar transistor power module. In a preferred arrangement, the windings consist of at least 3 windings, more preferably at least 8 windings. As you can see, with eight windings, if one winding were shorted, the motor would still hold 3/4 of its power due to the loss of one winding due to the short circuit. However, another winding is dedicated to overcoming the drag of the shorted winding. When one winding is short-circuited in the configuration of three windings, 1/3 of power is retained. In a more particular aspect of the invention, one or more sensors are arranged for detecting the rotational position of the shaft. The sensor provides a signal to the motor controller, which controls the insulated gate bipolar transistor power module of the winding to power the control signal to excite the winding to rotate the shaft to the desired position. Fires for a module. These and other features and advantages of the present invention will become more readily apparent upon reading the following detailed description of the invention with reference to the accompanying drawings.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of the control circuit architecture and winding arrangement of a DC brushless motor system according to the present invention. FIG. 2 is a second schematic diagram showing a control module which is connected to the motor control device and in which a position sensor is installed on the motor shaft.DETAILED DESCRIPTION Referring to FIG. 1, a fault tolerant winding control system according to the present invention is generally indicated by reference numeral 11. A single common axis 13 is shown, around which axis associated redundant windings 17 are arranged in a Y configuration. Shaft 13 includes along its length a plurality of permanent magnets 15 surrounding shaft 13. The windings 17 are individually electrically excited and are connected to generate a magnetic field that interacts with the magnets to rotate the shaft 13. Each winding 17 has three legs 19a, 19b and 19c, which are arranged in a conventional, well-known Y configuration. In FIG. 1, each winding 17 is shown as being individually controlled by a corresponding control module 21. The modules 21 are, for example, insulated gate bipolar transistor power modules. That is, even if one winding 17 is short-circuited, the other redundant winding 17 controlled individually by the power module 21 via the insulated gate bipolar transistors 23a, 23b, and 23c can drive the shaft 13 of the motor. It continues to drive. As will be appreciated, in order to achieve fault tolerant operation, at least three windings 17, preferably eight windings (usually as indicated by the thick arrows indicating extension of shaft 13), are required. Should exist That is, in the case of three windings, the loss of one winding 17 due to a short circuit results in the motor obtaining at least one-third of its original drive power, but with eight windings. Loses only 1/4 of its power. With respect to modules 21, they are conventional and well known to those skilled in the art. An example of such a commercially available module is the PWR-82331 high current three phase bridge power hybrid. Details of such modules are disclosed in the publicationPWR-28331 Smart Power Three-PhaseBridge (published 1989) by ILC Data Device Corporation, the disclosure of which is alsoincorporated herein by reference. It has been incorporated. In order to control the power module 21, a motor controller 27 is employed, which power modules are synchronized so that the magnets produced by the individual windings 17 act in a reliable and synchronous manner. Such controllers 27 are conventional and well known and may, for example, take the form of programmable logic arrays (PLA). As shown in FIG. 2, a position sensor is provided to detect the position of the shaft 13 relative to the position commanded by the motor controller 27 to position the shaft 13 in order to ensure more precise operation of the motor. 29 can be mounted on the shaft 13. In such a case, the position detection sensor 29 supplies a position signal to the motor controller 27, where the position signal is compared with a reference, resulting in an error signal. The error signal is then processed by the controller 27 to generate a signal to the control module 21 to rotate the shaft 19 to the desired position while correcting the error until the error signal generated is equal to zero. . Modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.

Claims (1)

Translated fromJapanese
【特許請求の範囲】 1.中心軸に関して回転するように取付けられた単一の軸と、 前記単一の軸の長さに沿って、その軸の周囲をほぼ巡るように取付けられた複数個の永久磁石と; それぞれが個別にその他の巻線から電気的に絶縁されており、前記複数個の永久磁石と相互に作用して、前記単一の軸を前記中心軸に関して回転させるための誘導磁界を発生する少なくとも3つの個別に電気的に励起可能な巻線と、 それぞれが前記少なくとも3つの個別に電気的に励起可能な巻線のうちの対応する1つの巻線に接続しており、各々の対応する巻線が同期して誘導磁界を発生するように前記対応する巻線を同期して個別に制御する少なくとも3つの同期される個別の制御手段とを具備するブラシレスDCモータシステム。 2.前記少なくとも3つの個別に電気的に励起可能な巻線の各々はY字構成で配列され、且つ前記少なくとも3つの同期される個別の制御手段の各々は少なくとも3つの絶縁ゲートバイポーラトランジスタパワーモジュールを含む請求項1記載のシステム。 3.前記少なくとも3つの個別の電気的に励起可能な巻線は8組の巻線を含み、各組はY字構成で配列されており、且つ前記少なくとも3つの同期される制御手段は8つの絶縁ゲートバイポーラトランジスタパワーモジュールを含む請求項1記載のシステム。 4.前記単一の軸の回転位置を検出し且つ前記回転位置を指示する信号を発生する位置検出手段と、 前記回転位置を指示する前記信号を受信し且つ前記少なくとも3つの巻線を励起して前記単一の軸を所望の回転位置まで回転させるために制御信号を前記少なくとも3つの同期される個別の制御手段に対し発生するモータ制御装置手段とをさらに具備する請求項1記載のシステム。[Claims]  1. A single axis mounted to rotate about a central axis,  A compound mounted along the length of the single shaft approximately around the axis.Several permanent magnets;  Each is individually electrically isolated from the other windings, andFor interacting with a permanent magnet to rotate the single axis about the central axisAt least three individually electrically excitable windings for generating an induced magnetic field;  Corresponding of each of said at least three individually electrically excitable windingsConnected to one winding, and each corresponding winding generates an induction magnetic field in synchronizationTo synchronously and individually control the corresponding windings so thatAnd a brushless DC motor system.  2. Each of the at least three individually electrically excitable windings is in a Y configuration.At least three individual control means arranged and synchronized are less4. Including three insulated gate bipolar transistor power modules together.The system described.  3. The at least three separate electrically excitable windings include eight sets of windings., Each set is arranged in a Y configuration and said at least three synchronized controlsThe means include eight insulated gate bipolar transistor power modules.The system according to 1.  4. Detects the rotational position of the single axis and generates a signal indicating the rotational positionPosition detecting means,  Receiving the signal indicating the rotational position and energizing the at least three windings;Control signal to rotate the single shaft to a desired rotational position.A motor controller means for generating at least three synchronized individual control means;The system of claim 1, further comprising:
JP6514388A1992-12-141993-12-09 Motor system with individually controlled redundant windingsPendingJPH08504559A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US99224292A1992-12-141992-12-14
US07/992,2421992-12-14
PCT/US1993/011956WO1994014226A1 (en)1992-12-141993-12-09Motor system with individually controlled redundant windings

Publications (1)

Publication NumberPublication Date
JPH08504559Atrue JPH08504559A (en)1996-05-14

Family

ID=25538089

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP6514388APendingJPH08504559A (en)1992-12-141993-12-09 Motor system with individually controlled redundant windings

Country Status (4)

CountryLink
EP (1)EP0673559A1 (en)
JP (1)JPH08504559A (en)
RU (1)RU95114435A (en)
WO (1)WO1994014226A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2011501630A (en)*2007-10-102011-01-06エムティーユー エアロ エンジンズ ゲーエムベーハー Electric drive, in particular an electric drive for a fuel metering unit of an aircraft engine
CN104617827A (en)*2015-02-022015-05-13东南大学Method for controlling fault tolerance of axial magnetic field flux-switching permanent motor of electric vehicle

Families Citing this family (199)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5929549A (en)*1998-04-021999-07-27Pacific Scientific CompanyFault tolerant electric machine
US6437529B1 (en)1998-05-042002-08-20Comair Rotron, Inc.Multi-stator motor with independent stator circuits
DE19856647B4 (en)*1998-12-092007-03-01Canders, Wolf-R., Prof. Dr.-Ing. Electric high-torque motor
DE60231675D1 (en)*2001-06-012009-05-07Ihi Aerospace Co Ltd Electromotive actuator and method of controlling the same
EP1296443B1 (en)*2001-09-192006-10-04Parker Hannifin CorporationMotor driver and system
US6700266B2 (en)*2002-01-022004-03-02Intel CorporationMultiple fault redundant motor
US6819017B2 (en)2002-01-022004-11-16Intel CorporationMethod and apparatus for fan redundancy
US6791209B2 (en)2002-01-022004-09-14Intel CorporationPower and control for power supply fans
US6724183B2 (en)2002-01-022004-04-20Intel CorporationMethod and apparatus for detecting bearing failure
US7583063B2 (en)2003-05-272009-09-01Pratt & Whitney Canada Corp.Architecture for electric machine
ES2471978T3 (en)2006-05-052014-06-27Isis Pharmaceuticals, Inc. Compounds and procedures to modulate ApoB expression
EP2505647A1 (en)2006-05-052012-10-03Isis Pharmaceuticals, Inc.Compounds and methods for modulating expression of DGAT2
US7443642B2 (en)2006-05-262008-10-28Pratt & Whitney Canada Corp.Electric motor control
GB0613941D0 (en)2006-07-132006-08-23Pml Flightlink LtdElectronically controlled motors
ATE540118T1 (en)2006-10-182012-01-15Isis Pharmaceuticals Inc ANTISENSE COMPOUNDS
US7605503B2 (en)2007-03-282009-10-20General Electric CompanyFault-tolerant permanent magnet machine with reconfigurable stator core slot opening and back iron flux paths
US7605504B2 (en)2007-03-282009-10-20General Electric CompanyFault-tolerant permanent magnet machine with reconfigurable stator core slot flux paths
US7541705B2 (en)2007-03-282009-06-02General Electric CompanyFault-tolerant permanent magnet machine with reconfigurable flux paths in stator back iron
CA2726052A1 (en)2008-06-042009-12-10The Board Of Regents Of The University Of Texas SystemModulation of gene expression through endogenous small rna targeting of gene promoters
US8901095B2 (en)2008-07-292014-12-02The Board Of Regents Of The University Of Texas SystemSelective inhibition of polyglutamine protein expression
WO2010048585A2 (en)2008-10-242010-04-29Isis Pharmaceuticals, Inc.Oligomeric compounds and methods
US8476798B2 (en)2008-11-282013-07-02Pratt & Whitney Canada Corp.Tandem electric machine arrangement
US20120021515A1 (en)2009-02-062012-01-26Swayze Eric EOligomeric compounds and methods
US8815586B2 (en)2009-04-242014-08-26The Board Of Regents Of The University Of Texas SystemModulation of gene expression using oligomers that target gene regions downstream of 3′ untranslated regions
GB2462940B8 (en)*2009-09-032012-03-28Protean Holdings CorpElectric motor and electric generator.
US8749192B2 (en)2009-09-032014-06-10Protean Electric LimitedElectric motor and electric generator
US20110110860A1 (en)2009-11-022011-05-12The Board Of Regents Of The University Of Texas SystemModulation of ldl receptor gene expression with double-stranded rnas targeting the ldl receptor gene promoter
US8653047B2 (en)2010-01-082014-02-18Isis Pharmaceuticals, Inc.Modulation of angiopoietin-like 3 expression
US9574191B2 (en)2010-02-032017-02-21The Board Of Regents Of The University Of Texas SystemSelective inhibition of polyglutamine protein expression
CA2789038A1 (en)2010-02-082011-08-11Isis Pharmaceuticals, Inc.Selective reduction of allelic variants
ES2733708T3 (en)2010-02-082019-12-02Ionis Pharmaceuticals Inc Selective reduction of allelic variants
EP2601204B1 (en)2010-04-282016-09-07Ionis Pharmaceuticals, Inc.Modified nucleosides and oligomeric compounds prepared therefrom
EP2606057B1 (en)2010-04-282016-06-15Ionis Pharmaceuticals, Inc.Modified 5' diphosphate nucleosides and oligomeric compounds prepared therefrom
WO2011139699A2 (en)2010-04-282011-11-10Isis Pharmaceuticals, Inc.5' modified nucleosides and oligomeric compounds prepared therefrom
WO2011139911A2 (en)2010-04-292011-11-10Isis Pharmaceuticals, Inc.Lipid formulated single stranded rna
SI2563920T1 (en)2010-04-292017-05-31Ionis Pharmaceuticals, Inc.Modulation of transthyretin expression
US8957200B2 (en)2010-06-072015-02-17Isis Pharmaceuticals, Inc.Bicyclic nucleosides and oligomeric compounds prepared therefrom
US8846637B2 (en)2010-06-082014-09-30Isis Pharmaceuticals, Inc.Substituted 2′-amino and 2′-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
US20130237585A1 (en)2010-07-192013-09-12University Of RochesterModulation of dystrophia myotonica-protein kinase (dmpk) expression
JP5577506B2 (en)2010-09-142014-08-27ソーラテック コーポレイション Centrifugal pump device
FR2967310B1 (en)2010-11-042013-08-02Xap ELECTROMAGNETIC MOTOR WITHOUT BRUSH
CA2817960C (en)2010-11-172020-06-09Isis Pharmaceuticals, Inc.Modulation of alpha synuclein expression
US10017764B2 (en)2011-02-082018-07-10Ionis Pharmaceuticals, Inc.Oligomeric compounds comprising bicyclic nucleotides and uses thereof
EP2693609B1 (en)2011-03-282017-05-03Thoratec CorporationRotation and drive device and centrifugal pump device using same
CN103562215B (en)2011-04-012017-04-26埃西斯药品公司 Regulation of Signal Transducer and Activator of Transcription 3 (STAT3) Expression
DE102011016336A1 (en)2011-04-072012-10-11Airbus Operations Gmbh High-lift system for an aircraft
CA2832972C (en)2011-04-132019-04-30Isis Pharmaceuticals, Inc.Antisense modulation of ptp1b expression
SI3505528T1 (en)2011-04-212021-04-30Glaxo Group LimitedModulation of hepatitis b virus (hbv) expression
CN103547271A (en)2011-04-272014-01-29Isis制药公司 Regulation of Apolipoprotein CIII (APOCIII) Expression
WO2012170347A1 (en)2011-06-092012-12-13Isis Pharmaceuticals, Inc.Bicyclic nucleosides and oligomeric compounds prepared therefrom
EP2717923B1 (en)2011-06-102017-09-27Ionis Pharmaceuticals, Inc.Methods for modulating kallikrein (klkb1) expression
EP2721156B1 (en)2011-06-162016-12-21Ionis Pharmaceuticals, Inc.Antisense modulation of fibroblast growth factor receptor 4 expression
AU2012275096B2 (en)2011-06-292016-02-04Ionis Pharmaceuticals, Inc.Methods for modulating kallikrein (KLKB1) expression
US20150051389A1 (en)2011-08-112015-02-19Isis Pharmaceuticals, Inc.Selective antisense compounds and uses thereof
EP3640332A1 (en)2011-08-292020-04-22Ionis Pharmaceuticals, Inc.Oligomer-conjugate complexes and their use
WO2013043817A1 (en)2011-09-202013-03-28Isis Phamaceuticals, Inc.Antisense modulation of gcgr expression
AU2012328680A1 (en)2011-10-252014-05-01Ionis Pharmaceuticals, Inc.Antisense modulation of GCCR expression
HRP20191883T1 (en)2011-11-072019-12-27Ionis Pharmaceuticals, Inc.Modulation of tmprss6 expression
WO2013096837A1 (en)2011-12-222013-06-27Isis Pharmaceuticals, Inc.Methods for modulating metastasis-associated-in-lung-adenocarcinoma-transcript-1(malat-1) expression
WO2013106770A1 (en)2012-01-112013-07-18Isis Pharmaceuticals, Inc.Compositions and methods for modulation of ikbkap splicing
US20140378533A1 (en)2012-02-082014-12-25Isis Pharmaceuticals, Inc.Modulation of rna by repeat targeting
US8837096B2 (en)2012-03-132014-09-16Thoratec CorporationFault monitor for fault tolerant implantable pump
WO2013154799A1 (en)2012-04-092013-10-17Isis Pharmaceuticals, Inc.Tricyclic nucleosides and oligomeric compounds prepared therefrom
EP2850092B1 (en)2012-04-092017-03-01Ionis Pharmaceuticals, Inc.Tricyclic nucleic acid analogs
EP3336189A1 (en)2012-04-202018-06-20Ionis Pharmaceuticals, Inc.Oligomeric compounds comprising bicyclic nucleotides and uses thereof
EP2852606B1 (en)2012-05-222019-08-07Ionis Pharmaceuticals, Inc.Modulation of enhancer rna mediated gene expression
KR20170142997A (en)2012-05-242017-12-28아이오니스 파마수티컬즈, 인코포레이티드Methods and compositions for modulating apolipoprotein (a) expression
SI3461895T1 (en)2012-06-252020-10-30Ionis Pharmaceuticals, Inc.Modulation of ube3a-ats expression
EP3693460A1 (en)2012-07-272020-08-12Ionis Pharmaceuticals, Inc.Modulation of renin-angiotensin system (ras) related diseases by angiotensinogen
KR102237882B1 (en)2012-08-152021-04-07아이오니스 파마수티컬즈, 인코포레이티드Method of preparing oligomeric compounds using modified capping protocols
WO2014045126A2 (en)2012-09-182014-03-27Uti Limited PartnershipTreatment of pain by inhibition of usp5 de-ubiquitinase
US9175291B2 (en)2012-10-112015-11-03Isis Pharmaceuticals Inc.Modulation of androgen receptor expression
EP2906225B1 (en)2012-10-112021-12-22Ionis Pharmaceuticals, Inc.A modified antisense compound for use in treating kennedy's disease
US20160138014A1 (en)2012-10-122016-05-19Isis Pharmaceuticals, Inc.Antisense compounds and uses thereof
EP4086347A3 (en)2012-10-122023-01-11Ionis Pharmaceuticals, Inc.Selective antisense compounds and uses thereof
FI2906696T4 (en)2012-10-152023-03-18Methods for modulating c9orf72 expression
SMT201900105T1 (en)2012-10-312019-02-28Ionis Pharmaceuticals IncCancer treatment
JP2016503300A (en)2012-11-152016-02-04ロシュ・イノベーション・センター・コペンハーゲン・アクティーゼルスカブRoche Innovation Center Copenhagen A/S Anti-ApoB antisense complex compound
RU2015120645A (en)2012-11-262017-01-10Рош Инновейшен Сентер Копенгаген А/С COMPOSITIONS AND METHODS OF MODULATION OF EXPRESSION OF RECEPTOR OF FACTOR OF GROWTH FIBROBLAST 3 TYPE (FGFR3)
US8968174B2 (en)2013-01-162015-03-03Thoratec CorporationMotor fault monitor for implantable blood pump
US9371826B2 (en)2013-01-242016-06-21Thoratec CorporationImpeller position compensation using field oriented control
WO2014118267A1 (en)2013-01-302014-08-07Santaris Pharma A/SLna oligonucleotide carbohydrate conjugates
WO2014118272A1 (en)2013-01-302014-08-07Santaris Pharma A/SAntimir-122 oligonucleotide carbohydrate conjugates
ES2817050T3 (en)2013-02-042021-04-06Ionis Pharmaceuticals Inc Selective antisense compounds and uses thereof
CN108743943A (en)2013-02-142018-11-06Ionis制药公司Lack the adjusting of apoC-III (APOCIII) expression in group to lipoprotein lipase
US9556873B2 (en)2013-02-272017-01-31Tc1 LlcStartup sequence for centrifugal pump with levitated impeller
CN105143470B (en)2013-02-282020-06-09德克萨斯大学系统董事会Methods for classifying cancer as susceptible to TMEPAI-directed therapy and treating the cancer
DE102013102194A1 (en)*2013-03-062014-09-11Werner Eck Drive device for a moving in a fluid vehicle
MX2015012621A (en)2013-03-142016-05-31Ionis Pharmaceuticals IncCompositions and methods for modulating tau expression.
US10052420B2 (en)2013-04-302018-08-21Tc1 LlcHeart beat identification and pump speed synchronization
BR112015027321A8 (en)2013-05-012018-01-02Isis Pharmaceuticals Inc COMPOUNDS AND COMPOSITIONS FOR MODULING APOLIPOPROTEIN(A) EXPRESSION AND THEIR USES
EP3011026B1 (en)2013-06-212019-12-18Ionis Pharmaceuticals, Inc.Compounds and methods for modulating apolipoprotein c-iii expression for improving a diabetic profile
EP3730619A1 (en)2013-06-212020-10-28Ionis Pharmaceuticals, Inc.Compositions and methods for modulation of target nucleic acids
AU2014300981B2 (en)2013-06-272017-08-10Roche Innovation Center Copenhagen A/SAntisense oligomers and conjugates targeting PCSK9
BR112015033069A2 (en)2013-07-022017-11-07Ionis Pharmaceuticals Inc growth hormone receptor modulators
TWI702046B (en)2013-07-192020-08-21美商Ionis製藥公司Compositions for modulating tau expression
US10435430B2 (en)2013-07-312019-10-08Ionis Pharmaceuticals, Inc.Methods and compounds useful in conditions related to repeat expansion
DK3041854T3 (en)2013-08-082020-03-02Scripps Research Inst A PROCEDURE FOR LOCAL SPECIFIC ENZYMATIC LABELING OF NUCLEIC ACIDS IN VITRO THROUGH INCORPORATION OF UNNATURAL NUCLEOTIDES
TW201536329A (en)2013-08-092015-10-01Isis Pharmaceuticals Inc Compound and method for regulating the manifestation of dystrophic myotonic protein kinase (DMPK)
EP3715457A3 (en)2013-08-282020-12-16Ionis Pharmaceuticals, Inc.Modulation of prekallikrein (pkk) expression
SG10201806787VA (en)2013-09-132018-09-27Ionis Pharmaceuticals IncModulators of complement factor b
WO2015042447A1 (en)2013-09-202015-03-26Isis Pharmaceuticals, Inc.Targeted therapeutic nucleosides and their use
CA2926408A1 (en)2013-10-112015-04-16Ionis Pharmaceuticals, Inc.Compositions for modulating c9orf72 expression
US9239345B2 (en)2013-11-202016-01-19Woodward, Inc.Controlling a motor with two or more Hall sensors
ES2797679T3 (en)2013-12-022020-12-03Ionis Pharmaceuticals Inc Antisense compounds and their uses
EP3770259A1 (en)2013-12-242021-01-27Ionis Pharmaceuticals, Inc.Modulation of angiopoietin-like 3 expression
US10988030B2 (en)2014-09-262021-04-27Francis Xavier GentileElectric motor, generator and battery combination
DK3119888T3 (en)2014-03-192021-09-06Ionis Pharmaceuticals Inc COMPOSITIONS FOR MODULATING ATAXIN-2 EXPRESSION
JP6622214B2 (en)2014-04-012019-12-18バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Composition for modulating SOD-1 expression
ES2891738T3 (en)2014-04-092022-01-31Scripps Research Inst Incorporation of unnatural or modified nucleoside triphosphates into cells via nucleic acid triphosphate transporters
WO2015164693A1 (en)2014-04-242015-10-29Isis Pharmaceuticals, Inc.Oligomeric compounds comprising alpha-beta-constrained nucleic acid
EP3647318B1 (en)2014-04-282021-06-30Ionis Pharmaceuticals, Inc.Linkage modified oligomeric compounds
KR102366078B1 (en)2014-05-012022-02-21아이오니스 파마수티컬즈, 인코포레이티드Compositions and methods for modulating pkk expression
WO2015168514A1 (en)2014-05-012015-11-05Isis Pharmaceuticals, Inc.Method for synthesis of reactive conjugate clusters
WO2015179693A1 (en)2014-05-222015-11-26Isis Pharmaceuticals, Inc.Conjugated antisense compounds and their use
US9623161B2 (en)2014-08-262017-04-18Tc1 LlcBlood pump and method of suction detection
WO2016077704A1 (en)2014-11-142016-05-19The Regents Of The University Of CaliforniaModulation of agpat5 expression
CN105634225B (en)*2014-11-262020-10-09德昌电机(深圳)有限公司Brushless DC motor and electric power steering system using the same
EP4088741A1 (en)2014-12-082022-11-16The Board of Regents of the University of Texas SystemLipocationic polymers and uses thereof
EP3234141A4 (en)2014-12-182018-06-20Alnylam Pharmaceuticals, Inc.Reversir tm compounds
EP3256183B1 (en)2015-02-112025-08-13Tc1 LlcHeart beat identification and pump speed synchronization
EP3256185B1 (en)2015-02-122019-10-30Tc1 LlcSystem and method for controlling the position of a levitated rotor
US10371152B2 (en)2015-02-122019-08-06Tc1 LlcAlternating pump gaps
EP3256184B1 (en)2015-02-132020-04-08Tc1 LlcImpeller suspension mechanism for heart pump
CA2977965C (en)2015-02-262021-12-21Ionis Pharmaceuticals, Inc.Allele specific modulators of p23h rhodopsin
EP3265564B1 (en)2015-03-032022-01-26Ionis Pharmaceuticals, Inc.Methods for modulating mecp2 expression
EP3265098B1 (en)2015-03-032025-03-26Ionis Pharmaceuticals, Inc.Compositions for modulating mecp2 expression
EP3313989B1 (en)2015-06-292024-12-25Ionis Pharmaceuticals, Inc.Modified crispr rna and modified single crispr rna and uses thereof
KR102640776B1 (en)2015-07-102024-02-23아이오니스 파마수티컬즈, 인코포레이티드 Diacylglycerol acyltransferase 2 (DGAT2) regulator
DK3324980T3 (en)2015-07-172022-02-14Alnylam Pharmaceuticals Inc MULTI-TARGETED SIMPLICITY CONJUGATES
KR102764250B1 (en)2015-09-142025-02-07더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템Lipocationic dendrimers and uses thereof
EP3353328A4 (en)2015-09-242019-06-12Ionis Pharmaceuticals, Inc. MODULATORS OF KRAS EXPRESSION
US10117983B2 (en)2015-11-162018-11-06Tc1 LlcPressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US11761007B2 (en)2015-12-182023-09-19The Scripps Research InstituteProduction of unnatural nucleotides using a CRISPR/Cas9 system
JP7080826B2 (en)2016-05-162022-06-06ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Cationic sulfonamide aminolipids and amphoteric zwitterionic aminolipids
ES2929047T3 (en)2016-06-242022-11-24Scripps Research Inst Novel nucleoside triphosphate transporter and uses thereof
US11063323B2 (en)2019-01-232021-07-13H55 SaBattery module for electrically-driven aircraft
US11148819B2 (en)2019-01-232021-10-19H55 SaBattery module for electrically-driven aircraft
US11065979B1 (en)2017-04-052021-07-20H55 SaAircraft monitoring system and method for electric or hybrid aircrafts
US12409756B2 (en)2017-04-052025-09-09H55 SaAircraft monitoring system and method for electric or hybrid aircrafts
US10479223B2 (en)2018-01-252019-11-19H55 SaConstruction and operation of electric or hybrid aircraft
US10807729B2 (en)*2017-05-172020-10-20General Electric CompanyPropulsion system for an aircraft
CN111183149A (en)2017-08-032020-05-19辛索克斯公司 Cytokine conjugates for the treatment of autoimmune diseases
IL276827B2 (en)2018-02-262025-05-01Synthorx IncIl-15 conjugates and uses thereof
KR20210018267A (en)2018-05-072021-02-17알닐람 파마슈티칼스 인코포레이티드 Extrahepatic delivery
AU2019350765A1 (en)2018-09-282021-05-27Alnylam Pharmaceuticals, Inc.Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated ocular diseases
WO2020163532A1 (en)2019-02-062020-08-13Synthorx, Inc.Il-2 conjugates and methods of use thereof
TW202104595A (en)2019-03-292021-02-01日商田邊三菱製藥股份有限公司Compound, method and pharmaceutical composition for dux4 expression adjustment
WO2020208527A1 (en)2019-04-082020-10-15H55 SaPower supply storage and fire management in electrically-driven aircraft
CA3138915A1 (en)2019-05-172020-11-26Alnylam Pharmaceuticals, Inc.Oral delivery of oligonucleotides
TWI873169B (en)2019-08-152025-02-21美商欣爍克斯公司Immuno oncology combination therapies with il-2 conjugates
MX2022002053A (en)2019-08-232022-03-17Synthorx Inc IL-15 CONJUGATES AND THEIR USES.
TW202124385A (en)2019-09-102021-07-01美商欣爍克斯公司Il-2 conjugates and methods of use to treat autoimmune diseases
AU2020380275A1 (en)2019-11-042022-04-14Synthorx, Inc.Interleukin 10 conjugates and uses thereof
JP2023500681A (en)2019-11-062023-01-10アルニラム ファーマスーティカルズ インコーポレイテッド extrahepatic delivery
EP4055165A1 (en)2019-11-062022-09-14Alnylam Pharmaceuticals, Inc.Transthyretin (ttr) irna compositions and methods of use thereof for treating or preventing ttr-associated ocular diseases
EP4151237A4 (en)2020-05-122024-08-14Mitsubishi Tanabe Pharma Corporation COMPOUND, METHOD AND PHARMACEUTICAL COMPOSITION FOR REGULATING ATAXY-3 EXPRESSION
CA3183834A1 (en)2020-06-252021-12-30Giovanni AbbadessaImmuno oncology combination therapy with il-2 conjugates and anti-egfr antibodies
WO2022011214A1 (en)2020-07-102022-01-13Alnylam Pharmaceuticals, Inc.Circular sirnas
JP2023546010A (en)2020-10-092023-11-01シンソークス, インコーポレイテッド Immuno-oncology therapy using IL-2 conjugates
AU2021356693A1 (en)2020-10-092023-06-15Synthorx, Inc.Immuno oncology combination therapy with il-2 conjugates and pembrolizumab
CA3196205A1 (en)2020-10-232022-04-28Floyd E. RomesbergReverse transcription of polynucleotides comprising unnatural nucleotides
CR20230308A (en)2020-12-112023-09-08Civi Biopharma Inc ORAL DELIVERY OF ANTISENSE CONJUGATES TARGETTING PCSK9
US20240336914A1 (en)2020-12-312024-10-10Alnylam Pharmaceuticals, Inc.2'-modified nucleoside based oligonucleotide prodrugs
JP2024501857A (en)2020-12-312024-01-16アルナイラム ファーマシューティカルズ, インコーポレイテッド Cyclic disulfide-modified phosphate-based oligonucleotide prodrugs
TW202245843A (en)2021-02-122022-12-01美商欣爍克斯公司Skin cancer combination therapy with il-2 conjugates and cemiplimab
WO2022174102A1 (en)2021-02-122022-08-18Synthorx, Inc.Lung cancer combination therapy with il-2 conjugates and an anti-pd-1 antibody or antigen-binding fragment thereof
KR20240009393A (en)2021-03-312024-01-22엔트라다 테라퓨틱스, 인크. Cyclic cell penetrating peptide
US20250051393A1 (en)2021-05-102025-02-13Entrada Therapeutics, Inc.Compositions and methods for modulating interferon regulatory factor-5 (irf-5) activity
JP2024518476A (en)2021-05-102024-05-01エントラーダ セラピューティクス,インコーポレイティド Compositions and methods for modulating mRNA splicing
MX2023013352A (en)2021-05-102024-01-31Entrada Therapeutics IncCompositions and methods for modulating tissue distribution of intracellular therapeutics.
US11682997B2 (en)2021-05-172023-06-20Hitachi Astemo Americas, Inc.Rotary electric machine with selectable coil control
WO2022256534A1 (en)2021-06-032022-12-08Synthorx, Inc.Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
AU2022298774A1 (en)2021-06-232023-12-14Entrada Therapeutics, Inc.Antisense compounds and methods for targeting cug repeats
JP2024527584A (en)2021-07-092024-07-25アルナイラム ファーマシューティカルズ, インコーポレイテッド Bis-RNAi Compounds for CNS Delivery
TW202421169A (en)2021-07-212024-06-01美商艾拉倫製藥股份有限公司Metabolic disorder-associated target gene irna compositions and methods of use thereof
WO2023034817A1 (en)2021-09-012023-03-09Entrada Therapeutics, Inc.Compounds and methods for skipping exon 44 in duchenne muscular dystrophy
WO2023064530A1 (en)2021-10-152023-04-20Alnylam Pharmaceuticals, Inc.Extra-hepatic delivery irna compositions and methods of use thereof
WO2023086295A2 (en)2021-11-102023-05-19University Of RochesterAntisense oligonucleotides for modifying protein expression
CA3237769A1 (en)2021-11-102023-05-19University Of RochesterGata4-targeted therapeutics for treatment of cardiac hypertrophy
EP4441224A1 (en)2021-12-032024-10-09Quralis CorporationGapmer antisense oligonucleotides with modified backbone chemistries
WO2023122573A1 (en)2021-12-202023-06-29Synthorx, Inc.Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2023122750A1 (en)2021-12-232023-06-29Synthorx, Inc.Cancer combination therapy with il-2 conjugates and cetuximab
EP4522742A2 (en)2022-05-132025-03-19Alnylam Pharmaceuticals, Inc.Single-stranded loop oligonucleotides
JP2025522880A (en)2022-06-302025-07-17アルナイラム ファーマシューティカルズ, インコーポレイテッド Cyclic disulfide-modified phosphate-based oligonucleotide prodrugs
CN120077130A (en)2022-08-182025-05-30阿尔尼拉姆医药品有限公司Universal non-targeted SIRNA compositions and methods of use thereof
EP4581143A1 (en)2022-08-292025-07-09University of RochesterAntisense oligonucleotide-based anti-fibrotic therapeutics
EP4594492A1 (en)2022-09-302025-08-06Alnylam Pharmaceuticals, Inc.Modified double-stranded rna agents
WO2024136899A1 (en)2022-12-212024-06-27Synthorx, Inc.Cancer therapy with il-2 conjugates and chimeric antigen receptor therapies
AU2024217843A1 (en)2023-02-092025-07-31Alnylam Pharmaceuticals, Inc.Reversir molecules and methods of use thereof
WO2024196937A1 (en)2023-03-202024-09-26Synthorx, Inc.Cancer therapy with il-2 peg conjugates
WO2024216155A1 (en)2023-04-122024-10-17Alnylam Pharmaceuticals, Inc.Extrahepatic delivery of double-stranded rna agents
WO2024238385A2 (en)2023-05-122024-11-21Alnylam Pharmaceuticals, Inc.Single-stranded loop oligonucleotides
WO2025064660A2 (en)2023-09-212025-03-27Alnylam Pharmaceuticals, Inc.Activin a receptor type 1c (acvr1c) irna compositions and methods of use thereof
WO2025080939A1 (en)2023-10-132025-04-17Ultragenyx Pharmaceutical, Inc.Compositions and methods for treating conditions associated with cartilage oligomeric matrix protein (comp) mutations
WO2025128853A2 (en)2023-12-132025-06-19Ultragenyx Pharmaceutical Inc.Compositions and methods for treating conditions associated with ube3a overexpression
WO2025158385A1 (en)2024-01-252025-07-31Genzyme CorporationPegylated il-2 for suppressing adaptive immune response to gene therapy
WO2025207517A2 (en)2024-03-252025-10-02Synthorx, Inc.Synthetic trna synthetases and cells comprising synthetic molecules for production of polypeptides
GB202404290D0 (en)2024-03-262024-05-08Senisca LtdNovel oligoncleotides

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3809990A (en)*1972-07-271974-05-07Warner Electric Brake & ClutchElectric motor adapted for both stepping and continuous operation
US4434389A (en)*1980-10-281984-02-28Kollmorgen Technologies CorporationMotor with redundant windings
FR2541529A1 (en)*1983-02-181984-08-24Sundstrand Corp MULTI-CHANNEL ELECTROMOTOR MACHINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2011501630A (en)*2007-10-102011-01-06エムティーユー エアロ エンジンズ ゲーエムベーハー Electric drive, in particular an electric drive for a fuel metering unit of an aircraft engine
CN104617827A (en)*2015-02-022015-05-13东南大学Method for controlling fault tolerance of axial magnetic field flux-switching permanent motor of electric vehicle

Also Published As

Publication numberPublication date
EP0673559A1 (en)1995-09-27
WO1994014226A1 (en)1994-06-23
RU95114435A (en)1997-05-20

Similar Documents

PublicationPublication DateTitle
JPH08504559A (en) Motor system with individually controlled redundant windings
US5990643A (en)Sensorless commutation position detection for brushless D.C. motors
KR100420714B1 (en) Transition magnetoresistive drive system, position transducer for 2-phase switching magnetoresistance machine and output control method of 2-phase switching magnetoresistance machine
US7800327B2 (en)Sensorless control in a permanent magnet machine
US5422525A (en)Switched reluctance machine having unbalance forces compensation coils
KR101290888B1 (en)Power supply device for an electric motor method for operation of an electric motor
US7723931B2 (en)Starting a gas turbine engine using a sensorless, brushless motor
JPH0989590A (en) Position encoder with fault indicator
US20050275224A1 (en)Fluid actuated rotating device including a low power generator
JPH0749779B2 (en) Throttle actuator controller
JP6778854B2 (en) Motor control device
JP2004194490A (en)Brushless motor controlling method
WO2008103630A1 (en)Adjusting commutation of a brusheless dc motor to increase motor speed
US20060067022A1 (en)Fail-safe system for electric power steering in vehicles
EP3726727B1 (en)Method and apparatus for over voltage protection of a power system
TWI818738B (en)Motor with a plurality of stator modules and driving method thereof
CN112534708B (en) Method for operating an electric motor, controller and electric motor
JP2000023489A (en)Sr motor for shutting railroad crossing gate
CN119948752A (en) Motor control device, motor, generator control device, generator and wind turbine
JPH04331488A (en)Encoder for ac synchronous motor and starting method for ac synchronous motor by use of said encoder
JPS61199490A (en) Motor drive circuit
JP2007097243A (en)Controller for motor
JPS61135383A (en)Brushless motor drive device
JP2000125592A (en)Drive for motor and radiator cooling system
JPH06169591A (en)Starting method for sensorless multiphase dc motor

[8]ページ先頭

©2009-2025 Movatter.jp