【0001】[0001]
【産業上の利用分野】本発明は、光通信分野、光情報処
理分野において使用される光デバイスを構成する導波路
型光学素子等における光導波路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide in a waveguide type optical element or the like which constitutes an optical device used in the fields of optical communication and optical information processing.
【0002】[0002]
【従来の技術】従来より、この種の導波路型光学素子
は、材料としては石英ガラス、誘電体結晶LiNbO3
等を用い、その作製法としてはLSIプロセスでよく用
いられるフォトリソグラフィ、ドライエッチングプロセ
スの組み合せにより微細加工を施し、高性能な導波路型
光素子を作製していた(例えば文献 河内正夫 Opt
ical and Quantum Electron
ics 22巻 391ページ(1990年))。2. Description of the Related Art Heretofore, a waveguide type optical element of this kind has been made of quartz glass as a material and a dielectric crystal LiNbO3 as a material.
As a method of manufacturing the same, microfabrication was performed by a combination of photolithography and dry etching processes often used in the LSI process to manufacture a high-performance waveguide type optical element (for example, Masao Kawachi Opt.
ical and Quantum Electron
ics, vol. 22, page 391 (1990)).
【0003】しかし、このような方法では、製造プロセ
スが繁雑なこと、作製装置が高価なことから、大量生産
には適していないこと、あるいは安価に素子を作製でき
ないという欠点があった。However, such a method has drawbacks in that it is not suitable for mass production or the element cannot be manufactured at low cost because the manufacturing process is complicated and the manufacturing apparatus is expensive.
【0004】また、素子を作製しても、その後、光ファ
イバ等の他の光部品との光結合に精密な調整が必要なた
め、大量生産には適していないという問題もある。Further, there is also a problem that even after the device is manufactured, it is not suitable for mass production because precise adjustment is required thereafter for optical coupling with other optical components such as an optical fiber.
【0005】一方、より安価な材料、高分子材料を用い
て導波路素子を作製することも行われているが(文献
今村他 Electronics Letters 2
7巻1342ページ(1991年))、ガラス導波路と
同様な導波路作製法では基板1枚ごとに同じパターニン
グ工程を繰り返す必要があることや、エッチング装置が
高価なこと等のため、材料的には安価であっても素子作
製ではガラス導波路と同様なコストがかかり安価とはな
らないという欠点がある。On the other hand, it has been attempted to manufacture a waveguide element by using a cheaper material or a polymer material (Reference:
Imamura et al. Electronics Letters 2
Vol. 7, p. 1342 (1991)), the same patterning process needs to be repeated for each substrate in a waveguide manufacturing method similar to that of a glass waveguide, and the etching apparatus is expensive. However, even if it is cheap, there is a drawback in that it is not cheap because the cost for manufacturing the element is similar to that of the glass waveguide.
【0006】また、先の作製法と同様に素子を作製して
も、その後、光ファイバ等の他の光部品との光結合に精
密な調整が必要なため、大量生産には適していないとい
う問題もある。Further, even if a device is manufactured in the same manner as in the above manufacturing method, it is not suitable for mass production because thereafter, precise adjustment is required for optical coupling with other optical components such as an optical fiber. There are also problems.
【0007】従来の作製法における欠点を解消する目的
で、金型の転写による射出成形等の大量生産に適した高
分子成形法により高分子導波路を作製する方法も提案さ
れている。この作製法によれば、従来よりもプロセスコ
ストを下げ、あるいは光結合の繁雑さを避けることは可
能である。しかし、数μmオーダの加工精度が必要な単
一モード導波路の作製に上記作製法を適用する場合に
は、十分な光学特性を有する導波路が実現できない欠点
があった。これは主に成形時に用いる金型寸法と成形後
高分子(以下、高分子成形体という)の転写寸法が大き
く異なることに起因すると考えられる。For the purpose of eliminating the drawbacks of the conventional manufacturing method, a method of manufacturing a polymer waveguide by a polymer molding method suitable for mass production such as injection molding by transferring a mold has been proposed. According to this manufacturing method, it is possible to reduce the process cost more than before or to avoid the complexity of optical coupling. However, when the above-mentioned manufacturing method is applied to manufacturing a single mode waveguide which requires a processing accuracy of the order of several μm, there is a drawback that a waveguide having sufficient optical characteristics cannot be realized. It is considered that this is mainly due to a large difference in the size of the mold used during molding and the transfer size of the polymer after molding (hereinafter referred to as polymer molded body).
【0008】また、この成形法によりSi基板にV溝加
工を基にして作製した金型を用いて、光結合を容易にす
るV溝を高分子導波路と一体化して作製する方法も提案
されている。この作製法によれば、光ファイバとの結合
を簡便にして導波路素子に係るコストを下げることは可
能である。しかし、特に単一モード導波路と単一モード
光ファイバとの結合では数μmオーダ以下の位置合わせ
精度が必要なため、十分に低い結合損失を有する導波路
は作製できない欠点があった。これも主に成形時に用い
る金型寸法と高分子成形体との転写寸法が大きく異なる
ことに起因すると考えられる。Further, a method has been proposed in which a V groove for facilitating optical coupling is integrated with a polymer waveguide by using a mold manufactured on the Si substrate based on the V groove processing by this molding method. ing. According to this manufacturing method, it is possible to simplify the coupling with the optical fiber and reduce the cost of the waveguide element. However, in particular, the coupling between the single-mode waveguide and the single-mode optical fiber requires a positioning accuracy of the order of several μm or less, so that a waveguide having a sufficiently low coupling loss cannot be manufactured. It is considered that this is also mainly due to a large difference in the size of the mold used during molding and the size of transfer between the polymer molded body.
【0009】[0009]
【発明が解決しようとする課題】本発明は上記欠点を解
決するためになされたもので、その目的とするところは
安価でしかも高性能な導波路型光素子、特に単一モード
用の光導波路であって、他の光部品と光結合する際、繁
雑な位置合わせ等の作業が不要となるV溝等と一体化し
て作製され得る光導波路を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide an inexpensive and high-performance waveguide type optical element, particularly an optical waveguide for a single mode. It is another object of the present invention to provide an optical waveguide that can be manufactured integrally with a V groove or the like that does not require complicated positioning and the like when optically coupling with other optical components.
【0010】[0010]
【課題を解決するための手段】本発明において上記課題
を解決するための要因について簡単に説明する。The factors for solving the above problems in the present invention will be briefly described.
【0011】(1)素子を作製する導波路作製プロセス
においては大規模な装置を用いず、大量生産に適した加
工法を用いること、(2)材料的にコストが低く、加工
が容易な高分子材料をクラッドとして用いること、
(3)コアとしては加工が容易でしかも光学的に低損失
な高分子材料を用いること、(4)導波路を作製する
際、光ファイバ等の他の光部品との位置合わせを考慮し
た金型を用い、作製後の光結合のための作業をできるだ
け簡略化すること等が挙げられる。(1) A large-scale apparatus is not used in the process of producing a waveguide for producing an element, and a processing method suitable for mass production is used. (2) A material is low in cost and easy to process. Using molecular materials as cladding,
(3) A polymer material that is easy to process and has low optical loss is used for the core, and (4) Gold that considers alignment with other optical components such as optical fibers when manufacturing a waveguide. It is possible to use a mold to simplify the work for optical coupling after fabrication as much as possible.
【0012】本発明の光導波路では、安価な材料である
高分子材料を用い、大量生産に適した加工法である金型
のパターンを転写する成形加工により導波路を作製する
ことを基本としている。この際の問題は成形時に用いる
金型寸法と高分子成形体との転写寸法差が大きいという
点にある。これは例えば射出成形等では高分子を成形す
るのに高温下で非常に大きな圧力をかけ成形し、その後
室温まで冷却するといった方法をとっているため、ガラ
ス等に比較すると熱膨張係数が1桁以上大きな高分子材
料では成形時に用いる金型寸法と高分子成形体との転写
寸法差を小さくすることは困難であることが多い。The optical waveguide of the present invention is based on the fact that a polymer material which is an inexpensive material is used and the waveguide is produced by a molding process for transferring a pattern of a mold which is a processing method suitable for mass production. . The problem in this case is that there is a large difference in the transfer dimension between the mold used for molding and the polymer molded body. This is because, for example, in injection molding, a polymer is molded by applying a very large pressure at a high temperature and then cooling it to room temperature. It is often difficult to reduce the difference in the transfer dimension between the die size used for molding and the polymer molded body with a large polymer material.
【0013】そこで、上記目的を達成するために、請求
項1記載の発明は、コアと、該コアを囲み該コアよりも
低屈折率のクラッドとを少なくとも有する光導波路にお
いて、前記クラッドは、エポキシ環を有するモノマある
いはオリゴマと重合開始剤との混合物を光硬化または熱
硬化したものであることを特徴とする。Therefore, in order to achieve the above object, the invention according to claim 1 is an optical waveguide having at least a core and a clad surrounding the core and having a refractive index lower than that of the core. A mixture of a ring-containing monomer or oligomer and a polymerization initiator is photo-cured or heat-cured.
【0014】請求項2記載の発明は、コアと、該コアを
囲み該コアよりも低屈折率のクラッドとを少なくとも有
する光導波路において、前記クラッドは、不飽和基を有
するモノマあるいはオリゴマと重合開始剤との混合物を
光硬化または熱硬化したものであることを特徴とする。According to a second aspect of the present invention, in an optical waveguide having at least a core and a clad surrounding the core and having a refractive index lower than that of the core, the clad initiates polymerization with a monomer or oligomer having an unsaturated group. It is characterized in that the mixture with the agent is photo-cured or heat-cured.
【0015】請求項3記載の発明は、コアと、該コアを
囲み該コアよりも低屈折率のクラッドとを少なくとも有
する光導波路において、前記クラッドは、シロキサン結
合を有するモノマあるいはオリゴマと重合開始剤との混
合物を光硬化または熱硬化したものであることを特徴と
する。According to a third aspect of the present invention, in an optical waveguide having at least a core and a clad surrounding the core and having a refractive index lower than that of the core, the clad has a monomer or oligomer having a siloxane bond and a polymerization initiator. It is characterized in that it is a mixture obtained by photocuring or heat curing.
【0016】請求項4記載の発明は、請求項1〜3のい
ずれかの項に記載の光導波路において、前記コアが下記
式(I)According to a fourth aspect of the invention, in the optical waveguide according to any one of the first to third aspects, the core has the following formula (I):
【0017】[0017]
【化3】Embedded image
【0018】に示す化学構造を有する材料からなるもの
であることを特徴とする。It is characterized by being made of a material having the chemical structure shown in:
【0019】請求項5記載の発明は、請求項1〜3のい
ずれかの項に記載の光導波路において、前記コアが下記
式(II)または(III )According to a fifth aspect of the invention, in the optical waveguide according to any one of the first to third aspects, the core has the following formula (II) or (III):
【0020】[0020]
【化4】[Chemical 4]
【0021】[式中、R1 ,R2 は同一または異なり、
Cn Y2n-1(Yは水素、重水素もしくはハロゲン、nは
5以上の正の整数を表す)で表されるアルキル基、重水
素化アルキル基またはハロゲン化アルキル基、あるいは
C6 Y5 (Yは水素、重水素もしくはハロゲンを表す)
で表されるフェニル基、重水素化フェニル基またはハロ
ゲン化フェニル基で表される]繰り返し単位を有するポ
リシロキサン、あるいは式(II)または(III )で表さ
れる繰り返し単位の共重合体であるポリシロキサン、お
よびこれらの混合物からなる群より選択されたポリマで
あることを特徴とする。[Wherein R1 and R2 are the same or different,
An alkyl group represented by Cn Y2n-1 (Y represents hydrogen, deuterium or halogen, n represents a positive integer of 5 or more), a deuterated alkyl group or a halogenated alkyl group, or C6 Y5 (Y represents hydrogen, deuterium or halogen)
A polysiloxane having a repeating unit represented by a phenyl group, a deuterated phenyl group or a halogenated phenyl group represented by or a copolymer of repeating units represented by the formula (II) or (III). It is characterized by being a polymer selected from the group consisting of polysiloxanes and mixtures thereof.
【0022】[0022]
【作用】本発明の光導波路では、光あるいは熱により硬
化し、大きな圧力をかけなくても簡単に金型の転写レプ
リカが得られるタイプの高分子材料を用い、構造もエポ
キシ環、不飽和基、シリコーン等を有し硬化収縮が少な
い構造としている。また、材料に熱をかける場合でもそ
れほど高温を必要としない。これにより、成形時に用い
る金型寸法と高分子成形体との転写寸法差をできるだけ
小さくすることができる。コアに用いる高分子材料とし
ては重水素化PMMA(ポリメチルメタクリレート)あ
るいはシリコーン材料を用いるため、近赤外域で低損失
等の高性能な導波特性が得られる。In the optical waveguide of the present invention, a polymer material of a type that can be easily cured by light or heat to obtain a transfer replica of a mold without applying a large pressure is used, and the structure is an epoxy ring or an unsaturated group. It has a structure with little curing shrinkage, including silicone. Further, even when heat is applied to the material, it does not require a high temperature. This makes it possible to minimize the difference in the transfer dimension between the mold used for molding and the polymer molded body. Since deuterated PMMA (polymethylmethacrylate) or silicone material is used as the polymer material used for the core, high-performance waveguide characteristics such as low loss in the near infrared region can be obtained.
【0023】さらに、本発明では用いる金型の構造を工
夫することにより導波路と光ファイバをのせるためのV
溝等を一体で簡単に作製することができるため導波路と
光ファイバとの光結合が精度よく簡便にできる。Further, in the present invention, a V for mounting the waveguide and the optical fiber is devised by devising the structure of the mold used.
Since the groove and the like can be easily manufactured integrally, optical coupling between the waveguide and the optical fiber can be accurately and easily performed.
【0024】[0024]
【実施例】以下、図1(a)〜(e)を参照して本発明
の光導波路を作製する方法の一例を概略説明する。EXAMPLES An example of a method for producing the optical waveguide of the present invention will be outlined below with reference to FIGS. 1 (a) to 1 (e).
【0025】図1の(a)に示すように、所望の形状に
加工された基板1上にスピンコート、ディッピング等の
手段により塗布層2を設ける。この塗布層2を形成する
材料としては、室温で流動性を示し、かつ、後述の例え
ば光照射等により硬化し、しかも硬化収縮の比較的小さ
い性質を有するモノマあるいはオリゴマを用いることが
できる。As shown in FIG. 1A, a coating layer 2 is provided on a substrate 1 processed into a desired shape by means such as spin coating or dipping. As a material for forming the coating layer 2, a monomer or an oligomer that exhibits fluidity at room temperature and that is cured by, for example, light irradiation described later and has a relatively small curing shrinkage can be used.
【0026】次に、(b)に示すように、塗布層2の上
に、所望の形状の長尺凸部3aを有する成形用の型3を
被せる。この型3は、本実施例では上記塗布層2を硬化
させるのに利用される波長光(紫外線)を少なくとも透
過する材料から形成されている。この型3の上方から上
記透過波長の光4を照射して塗布層2を硬化させ、型3
の樹脂レプリカである硬化膜5aを形成する。この硬化
膜5aは、目的の光導波路の下部クラッドとなる。な
お、塗布層2の硬化を、光照射に代えて所定温度での加
熱硬化により行ってもよい。Next, as shown in (b), the coating layer 2 is covered with a molding die 3 having a long convex portion 3a having a desired shape. In this embodiment, the mold 3 is made of a material that transmits at least the wavelength light (ultraviolet ray) used to cure the coating layer 2. The coating layer 2 is cured by irradiating the mold 3 with light 4 having the transmission wavelength from above.
A cured film 5a which is a resin replica of is formed. The cured film 5a becomes the lower clad of the target optical waveguide. The coating layer 2 may be cured by heat curing at a predetermined temperature instead of light irradiation.
【0027】次に、型3を除去すると、硬化膜5aの上
部には型3の長尺凸部3aも対応した形状、寸法の溝が
露出する。(c)に示すように、この溝内に上記硬化膜
5aの屈折率よりも高い屈折率を有する高分子材料溶液
6を流し込む。Next, when the mold 3 is removed, a groove having a shape and size corresponding to the long convex portion 3a of the mold 3 is exposed above the cured film 5a. As shown in (c), a polymer material solution 6 having a refractive index higher than that of the cured film 5a is poured into the groove.
【0028】次に、(d)に示すように、樹脂レプリカ
のうち、上記溝から硬化膜5a上にはみ出した余剰部分
がある場合には、溶媒乾燥後、余剰部分7をドライエッ
チング等により除去し、上記溝内にコア8を作製する。
なお、余剰部分7の除去には、ドライエッチングに代え
て、研磨加工、ブレード、あるいはウエットエッチング
等の技術を用いることができる。Next, as shown in (d), if there is a surplus portion of the resin replica protruding from the groove above the cured film 5a, after the solvent is dried, the surplus portion 7 is removed by dry etching or the like. Then, the core 8 is produced in the groove.
In addition, in order to remove the excess portion 7, a technique such as polishing, blade, or wet etching can be used instead of dry etching.
【0029】次に、(e)に示すように、硬化膜5aお
よびコア8上に上記硬化膜5aと同様の材料を塗布し、
光硬化させて上部クラッドとなる硬化膜5bを形成し、
コア8と、下部クラッド5aおよび上部クラッド5bを
含むクラッド5とからなる導波路素子9を得る。Next, as shown in (e), the same material as the above-mentioned cured film 5a is applied on the cured film 5a and the core 8,
Forming a cured film 5b which becomes an upper clad by photo-curing,
A waveguide element 9 including the core 8 and the clad 5 including the lower clad 5a and the upper clad 5b is obtained.
【0030】以下、具体的な例を挙げて本発明を詳細に
説明する。The present invention will be described in detail below with reference to specific examples.
【0031】(実施例1)図2の(a)〜(g)を参照
して本発明の光導波路を作製する方法の一例を説明す
る。Example 1 An example of a method for producing the optical waveguide of the present invention will be described with reference to FIGS.
【0032】まず、(a)に示すように、基板21を用
意し、この上にスピンコート法により下記式(IV)に示
す化学構造を有するエポキシ系UVモノマ(粘度100
0cp)を塗布し、塗布層22を形成した。First, as shown in (a), a substrate 21 is prepared, and an epoxy UV monomer (with a viscosity of 100) having a chemical structure represented by the following formula (IV) is prepared thereon by a spin coating method.
0 cp) was applied to form a coating layer 22.
【0033】[0033]
【化5】Embedded image
【0034】一方、(b)に示すように、幅7μm、高
さ7μm、長さ50mmの凸部24aを有するガラス性
の金型24を用意し、これを(c)に示すように塗布層
22上に被せ、金型24を介してUV光源25を用いて
露光し、塗布層22を光硬化させ、目的の光導波路の下
部クラッド23aを得た(n=1.47、波長1.31
μm)。この際、塗布層22を構成するUV樹脂は金型
形状に沿って硬化し、金型24の凸部24aに対応した
形状の溝が形成される。On the other hand, as shown in (b), a glass mold 24 having a convex portion 24a having a width of 7 μm, a height of 7 μm and a length of 50 mm is prepared, and this is coated with a coating layer as shown in (c). 22 and exposed through a mold 24 with a UV light source 25 to photo-cure the coating layer 22 to obtain a lower clad 23a of the target optical waveguide (n = 1.47, wavelength 1.31).
μm). At this time, the UV resin forming the coating layer 22 is cured along the shape of the mold, and a groove having a shape corresponding to the convex portion 24 a of the mold 24 is formed.
【0035】次に、(d)に示すように、コアとなる高
分子材料溶液26(構造は下記の式(I)参照、屈折率
n=1.48、波長1.31μm)を溝内に流し込ん
だ。Next, as shown in (d), a polymer material solution 26 serving as a core (see the following formula (I) for the structure, refractive index n = 1.48, wavelength 1.31 μm) is placed in the groove. Poured.
【0036】[0036]
【化6】[Chemical 6]
【0037】次に、(e)に示すように、高分子溶液2
6の溶媒を90℃で30分乾燥後、酸素ガスによるドラ
イエッチング27で、上記溝からはみ出した余剰部分2
8を除去した。この操作により、(f)に示すように、
溝内のみに幅7μm、高さ7μmのコア29を作製でき
た(n=1.48、波長1.31μm)。Next, as shown in (e), the polymer solution 2
After the solvent of No. 6 was dried at 90 ° C. for 30 minutes, the excess portion 2 protruding from the groove was dry-etched with oxygen gas 27.
8 was removed. By this operation, as shown in (f),
A core 29 having a width of 7 μm and a height of 7 μm could be produced only in the groove (n = 1.48, wavelength 1.31 μm).
【0038】次に、(g)に示すように、コア29およ
び下部クラッド23aの上に、再びエポキシ系UVモノ
マを塗布し、硬化させて上部クラッド23bを形成して
導波路200を作製した。LD光源(波長1.31μ
m)を用いて導波路損失を測定したところ、導波路損失
は0.1dB/cmであった。Next, as shown in (g), the epoxy UV monomer was applied again on the core 29 and the lower clad 23a and cured to form the upper clad 23b, whereby the waveguide 200 was manufactured. LD light source (wavelength 1.31μ
When the waveguide loss was measured using m), the waveguide loss was 0.1 dB / cm.
【0039】(実施例2)クラッド材料の主成分として
下記式(Va)または(Vb)に示す化学構造の不飽和基を
有するモノマを用い、かつ、実施例1と同一のコア材料
を用いた以外は、実施例1と同様の操作により、目的の
光導波路(クラッド屈折率n=1.47、コア屈折率n
=1.48、コア幅7μm、高さ7μm)を作製したと
ころ、導波路損失は0.1dB/cmであった。Example 2 A monomer having an unsaturated group having a chemical structure represented by the following formula (Va) or (Vb) was used as the main component of the cladding material, and the same core material as in Example 1 was used. Other than the above, the same operation as in Example 1 was performed to obtain the target optical waveguide (clad refractive index n = 1.47, core refractive index n
= 1.48, core width 7 μm, height 7 μm), the waveguide loss was 0.1 dB / cm.
【0040】[0040]
【化7】[Chemical 7]
【0041】(実施例3)クラッド材料の主成分として
下記式(VIa ),(VIb ),(VIc )に示す化学構造の
シロキサン結合を有するオリゴマを用い、かつ、コア材
料として下記式(II),(III )に示す化学構造の材料
を用いた以外は、実施例1と同様の操作により目的の光
導波路(クラッド屈折率n=1.52、コア屈折率n=
1.53、コア幅7μm、高さ7μm)を作製したとこ
ろ、導波路損失は0.1dB/cm(波長1.3μ
m)、0.5dB/cm(波長1.55μm)であっ
た。Example 3 An oligomer having a siloxane bond having a chemical structure represented by the following formulas (VIa), (VIb) and (VIc) was used as the main component of the cladding material, and the following formula (II) was used as the core material. , (III) except that the material having the chemical structure shown in (III) was used, the same operation as in Example 1 was carried out so that the target optical waveguide (clad refractive index n = 1.52, core refractive index n =
1.53, core width 7 μm, height 7 μm), the waveguide loss was 0.1 dB / cm (wavelength 1.3 μm).
m) and 0.5 dB / cm (wavelength 1.55 μm).
【0042】[0042]
【化8】Embedded image
【0043】(実施例4〜6)表1に示した材料をコア
成分およびクラッド成分として用いた以外は、実施例1
と同様な操作により目的の光導波路を作製し、その導波
路損失値を測定し、表1に示した。(Examples 4 to 6) Example 1 was repeated except that the materials shown in Table 1 were used as the core component and the clad component.
The target optical waveguide was prepared by the same operation as in (1), and the waveguide loss value was measured and shown in Table 1.
【0044】[0044]
【表1】[Table 1]
【0045】(実施例7)図3の(a)〜(i)を参照
して本発明の光導波路のうち、V溝付の導波路を作製す
る方法の一例を説明する。(Embodiment 7) With reference to FIGS. 3A to 3I, an example of a method for producing a waveguide having a V groove in the optical waveguide of the present invention will be described.
【0046】まず、(a)に示すように、基板30を用
意し、この上にエポキシ系UVモノマを流し、塗布層3
1を形成した。First, as shown in (a), a substrate 30 is prepared, an epoxy UV monomer is flown on the substrate 30, and the coating layer 3 is formed.
1 was formed.
【0047】一方、(b)に示すようなガラス金型32
を用意した。このガラス金型32は、その下側に断面V
字形状の凸部33(開き角60度、高さ150μm、幅
170μm、長さ20mm)と、この凸部33に連続し
て形成された断面矩形状の凸部34(高さ10μm、幅
10μm、長さ40mm)を有するものである。On the other hand, a glass mold 32 as shown in FIG.
Prepared. The glass mold 32 has a cross section V on the lower side thereof.
V-shaped convex portion 33 (opening angle 60 degrees, height 150 μm, width 170 μm, length 20 mm) and convex portion 34 having a rectangular cross section formed continuously with the convex portion 33 (height 10 μm, width 10 μm , 40 mm in length).
【0048】次に、(c)に示すように、ガラス金型3
2を塗布層31上に被せ、ガラス金型32を介してUV
光源35で露光し、塗布層31を光硬化させ、下部クラ
ッドとしての硬化膜36(n=1.47、波長1.31
μm)を形成した。この際、塗布層31は金型形状に沿
って硬化し、(d)に示すように、ガラス金型32の凸
部33に対応するV溝部(開き角60度、高さ150μ
m、長さ20mm)37、凸部34に対応する細溝部
(深さ10μm、幅10μm、長さ40mm)38が硬
化膜36の表面上に形成された。これらV溝部37と細
溝部38とは連通して形成されている。Next, as shown in (c), the glass mold 3
2 onto the coating layer 31 and UV through the glass mold 32.
The coating layer 31 is photo-cured by exposure with a light source 35, and a cured film 36 (n = 1.47, wavelength 1.31 as a lower clad is formed.
μm). At this time, the coating layer 31 hardens along the shape of the mold, and as shown in (d), the V groove portion (opening angle 60 degrees, height 150 μm) corresponding to the convex portion 33 of the glass mold 32.
m, length 20 mm) 37, and narrow groove portions (depth 10 μm, width 10 μm, length 40 mm) 38 corresponding to the convex portions 34 were formed on the surface of the cured film 36. The V groove portion 37 and the narrow groove portion 38 are formed so as to communicate with each other.
【0049】次に、(e)に示すように、硬化膜36上
の細溝部38に上述の式(I )に示す化学構造を有する
コア高分子材料溶液39を流し込んだ。この際、予めV
溝部37には、金型32のV字形状凸部と同様の形状を
持つ金型300を挿入しておいた。これは、細溝部38
と連通したV溝部37にコア高分子材料溶液39が入ら
ぬようにするためである。Next, as shown in (e), the core polymer material solution 39 having the chemical structure represented by the above formula (I) was poured into the narrow groove portion 38 on the cured film 36. At this time, V
A mold 300 having the same shape as the V-shaped convex portion of the mold 32 was inserted into the groove 37. This is the narrow groove 38
This is to prevent the core polymer material solution 39 from entering the V groove portion 37 communicating with.
【0050】次に、(f)に示すように、コア高分子材
料溶液39の溶媒乾燥後、細溝部38からはみ出した余
剰部分301をドライエッチングにより除去した。この
操作により、(g)に示すように、コア部分のうち、余
剰部分301が除去され、V溝部37に対して位置合わ
せされた細溝部38内にコア302(幅10μm、高さ
10μm)を形成した。Next, as shown in (f), after the solvent of the core polymer material solution 39 was dried, the surplus portion 301 protruding from the narrow groove portion 38 was removed by dry etching. By this operation, as shown in (g), the surplus portion 301 of the core portion is removed, and the core 302 (width 10 μm, height 10 μm) is placed in the narrow groove portion 38 aligned with the V groove portion 37. Formed.
【0051】次に、(h)に示すように、コア302お
よび下部クラッドとしての硬化膜36の上に、再びエポ
キシ系UVモノマを被せ、光硬化して上部クラッド30
3を作製し、目的のV溝付導波路304を作製した。で
きた導波路304の外観を(図3(i))に示す。この
V溝部37に光ファイバを固定し、LD光源(波長1.
31μm)を用いて導波路損失を測定したところ、ファ
イバとの接続損失は0.2dB、導波路損失は0.1d
B/cmであった。Next, as shown in (h), the core 302 and the cured film 36 as the lower clad are covered with an epoxy UV monomer again and photocured to form the upper clad 30.
3 was manufactured, and the target V-groove 304 was manufactured. The appearance of the completed waveguide 304 is shown in FIG. 3 (i). An optical fiber is fixed to the V groove portion 37, and an LD light source (wavelength 1.
31 μm) was used to measure the waveguide loss, and the fiber connection loss was 0.2 dB and the waveguide loss was 0.1 d.
It was B / cm.
【0052】上記各実施例では、光硬化剤を用いて本発
明の光導波路の作製例を示したが、熱により重合させて
もよく、その場合は重合開始剤の種類を変えることによ
り同様な作製が行える。また、実施例7において光ファ
イバを挿入する溝形状としてV溝を用いたが、光ファイ
バが挿入できる形状であればV溝でなくても構わない。In each of the above-mentioned examples, an example of producing the optical waveguide of the present invention was shown using a photo-curing agent, but it may be polymerized by heat. In that case, the same can be achieved by changing the type of the polymerization initiator. Can be manufactured. Further, although the V-shaped groove is used as the groove shape for inserting the optical fiber in the seventh embodiment, the groove may not be the V-shaped groove as long as the shape allows the optical fiber to be inserted.
【0053】[0053]
【発明の効果】以上説明したように、本発明によれば、
クラッドを硬化収縮の少ない特定の材料で形成したの
で、成形硬化後の寸法と金型寸法との転写寸法差を極め
て小さくすることができるため、導波路損失の小さな高
性能光導波路を得ることができる。As described above, according to the present invention,
Since the clad is made of a specific material with low curing shrinkage, the transfer dimension difference between the dimension after molding and curing and the die dimension can be made extremely small, so a high-performance optical waveguide with low waveguide loss can be obtained. it can.
【0054】また、光ファイバ等を固定するための溝を
一体に形成した溝付導波路では、導波路と溝とを精度よ
く形成できるので、溝に固定した光ファイバ等と光導波
路とを簡便に低損失で光結合できる効果を奏する。Further, in the grooved waveguide in which the groove for fixing the optical fiber or the like is integrally formed, the waveguide and the groove can be accurately formed, so that the optical fiber and the optical waveguide fixed in the groove can be simply formed. In addition, it is possible to achieve optical coupling with low loss.
【図1】(a)〜(e)は、それぞれ本発明の光導波路
の一実施例を作製する場合の各工程を示す断面図であ
る。FIG. 1A to FIG. 1E are cross-sectional views showing respective steps in manufacturing an example of an optical waveguide of the present invention.
【図2】(a)〜(g)は、それぞれ本発明の光導波路
の他の実施例を作製する場合の各工程を示す図であっ
て、(a)は断面図であり、(b)〜(g)は斜視図で
ある。2 (a) to 2 (g) are diagrams showing respective steps in the case of manufacturing another embodiment of the optical waveguide of the present invention, (a) is a sectional view, and (b) is a sectional view. (G) is a perspective view.
【図3】(a)〜(i)は、それぞれ本発明の光導波路
のさらに他の実施例(V溝付導波路)を作製する場合の
各工程を示す図であって、(a)および(c)〜(e)
は断面図であり、(b)および(f)〜(i)は斜視図
である。3 (a) to 3 (i) are diagrams showing respective steps in the case of producing still another embodiment (waveguide with V groove) of the optical waveguide of the present invention, respectively. (C) to (e)
Is a cross-sectional view, and (b) and (f) to (i) are perspective views.
1 所望の形状に加工された基板 2 室温で流動性を示すモノマあるいはオリゴマからな
る塗布層 3 所望の形状を有する型 4 光照射あるいは加熱 5 クラッド 5a 下部クラッド(硬化膜) 5b 上部クラッド(硬化膜) 6 クラッドより屈折率が高い高分子材料溶液 7 溝部からはみ出した余剰部分 8 コア 9 コアクラッドからなる導波路素子 21 基板 22 エポキシ系UVモノマからなる塗布層 23 導波路のクラッド 23a 下部クラッド 23b 上部クラッド 24 ガラス性金型 24a 凸部 25 UV光源 26 コアとなる高分子材料の溶液 27 酸素ガスによるドライエッチング 28 余剰部分 29 コア 30 基板 31 エポキシ系UVモノマからなる塗布層 32 ガラス金型 33 V字形状凸部 34 細溝部 35 UV光源 36 下部クラッド(硬化膜) 37 V溝部 38 細溝部 39 コア高分子材料溶液 200 導波路 300 V字形状凸部を持つ金型 301 余剰部分 302 コア 303 上部クラッド 304 V溝付導波路1 substrate processed into desired shape 2 coating layer made of monomer or oligomer showing fluidity at room temperature 3 mold having desired shape 4 light irradiation or heating 5 clad 5a lower clad (cured film) 5b upper clad (cured film) ) 6 Polymer material solution having a refractive index higher than that of the clad 7 Excessive portion protruding from the groove 8 Core 9 Waveguide element made of core clad 21 Substrate 22 Epoxy UV monomer coating layer 23 Waveguide clad 23a Lower clad 23b Upper part Clad 24 Glass mold 24a Convex portion 25 UV light source 26 Polymer material solution to be the core 27 Dry etching with oxygen gas 28 Excessive portion 29 Core 30 Substrate 31 Epoxy UV monomer coating layer 32 Glass mold 33 V-shape Shape Convex part 34 Narrow groove part 35 UV light source 36 Lower part Head (cured film) 37 V grooves 38 narrow groove 39 core polymeric material solution 200 waveguide 300 V-shaped protrusions mold 301 excess portion 302 core 303 upper cladding 304 V grooved waveguides with
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大庭 直樹 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoki Ohba 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13061495AJPH08327842A (en) | 1995-05-29 | 1995-05-29 | Optical waveguide |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13061495AJPH08327842A (en) | 1995-05-29 | 1995-05-29 | Optical waveguide |
| Publication Number | Publication Date |
|---|---|
| JPH08327842Atrue JPH08327842A (en) | 1996-12-13 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13061495APendingJPH08327842A (en) | 1995-05-29 | 1995-05-29 | Optical waveguide |
| Country | Link |
|---|---|
| JP (1) | JPH08327842A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001037049A1 (en)* | 1999-11-12 | 2001-05-25 | Nippon Sheet Glass Co., Ltd. | Photosensitive composition, and optical waveguide element and process for producing the same |
| JP2002286961A (en)* | 2001-03-23 | 2002-10-03 | Toppan Printing Co Ltd | Processing method of optical wiring layer and optical wiring layer |
| US6537723B1 (en) | 1998-10-05 | 2003-03-25 | Nippon Telegraph And Telephone Corporation | Photosensitive composition for manufacturing optical waveguide, production method thereof and polymer optical waveguide pattern formation method using the same |
| US6731857B2 (en) | 2001-03-29 | 2004-05-04 | Shipley Company, L.L.C. | Photodefinable composition, method of manufacturing an optical waveguide with the photodefinable composition, and optical waveguide formed therefrom |
| US6842577B2 (en) | 2002-12-02 | 2005-01-11 | Shipley Company L.L.C. | Photoimageable waveguide composition and waveguide formed therefrom |
| US7024093B2 (en) | 2002-12-02 | 2006-04-04 | Shipley Company, Llc | Methods of forming waveguides and waveguides formed therefrom |
| US7072565B2 (en) | 2004-04-14 | 2006-07-04 | Rohm And Haas Electronic Materials Llc | Waveguide compositions and waveguides formed therefrom |
| US7072563B2 (en) | 2003-11-25 | 2006-07-04 | Rohm And Haas Electronic Materials Llc | Waveguide compositions and waveguides formed therefrom |
| US7072564B2 (en) | 2003-11-25 | 2006-07-04 | Rohm And Haas Electronic Materials Llc | Waveguide compositions and waveguides formed therefrom |
| JP2007010760A (en)* | 2005-06-28 | 2007-01-18 | Sumitomo Electric Ind Ltd | Method for forming resin body, method for forming structure for optical waveguide, and method for forming optical component |
| WO2008010415A1 (en)* | 2006-07-21 | 2008-01-24 | Tokyo Ohka Kogyo Co., Ltd. | High refractive index material |
| JP2010015135A (en)* | 2008-06-03 | 2010-01-21 | Hitachi Cable Ltd | Optical waveguide substrate with optical fiber fixation groove, process for its production, stamp for use in this production process, and opto-electronic hybrid integrated module including the optical waveguide substrate |
| JP2012168267A (en)* | 2011-02-10 | 2012-09-06 | Hitachi Chem Co Ltd | Optical fiber connector and manufacturing method for the same |
| CN114578486A (en)* | 2020-11-30 | 2022-06-03 | 深南电路股份有限公司 | Waveguide-optical fiber coupling device, manufacturing method thereof and optical transmission system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7358036B2 (en) | 1998-10-05 | 2008-04-15 | Nippon Telegraph And Telephone Corporation | Photosensitive composition for manufacturing optical waveguide, production method thereof and polymer optical waveguide pattern formation method using the same |
| US6537723B1 (en) | 1998-10-05 | 2003-03-25 | Nippon Telegraph And Telephone Corporation | Photosensitive composition for manufacturing optical waveguide, production method thereof and polymer optical waveguide pattern formation method using the same |
| US6806040B2 (en) | 1998-10-05 | 2004-10-19 | Nippon Telegraph And Telephone Corporation | Photosensitive composition for manufacturing optical waveguide, production method thereof and polymer optical waveguide pattern formation method using the same |
| US6933097B2 (en) | 1998-10-05 | 2005-08-23 | Nippon Telegraph And Telephone Corporation | Photosensitive composition for manufacturing optical waveguide, production method thereof and polymer optical waveguide pattern formation method using the same |
| US6632585B1 (en) | 1999-11-12 | 2003-10-14 | Nippon Sheet Glass Co., Ltd. | Photosensitive composition, and optical waveguide element and process for producing the same |
| WO2001037049A1 (en)* | 1999-11-12 | 2001-05-25 | Nippon Sheet Glass Co., Ltd. | Photosensitive composition, and optical waveguide element and process for producing the same |
| JP2002286961A (en)* | 2001-03-23 | 2002-10-03 | Toppan Printing Co Ltd | Processing method of optical wiring layer and optical wiring layer |
| US6731857B2 (en) | 2001-03-29 | 2004-05-04 | Shipley Company, L.L.C. | Photodefinable composition, method of manufacturing an optical waveguide with the photodefinable composition, and optical waveguide formed therefrom |
| US6842577B2 (en) | 2002-12-02 | 2005-01-11 | Shipley Company L.L.C. | Photoimageable waveguide composition and waveguide formed therefrom |
| US7024093B2 (en) | 2002-12-02 | 2006-04-04 | Shipley Company, Llc | Methods of forming waveguides and waveguides formed therefrom |
| US7072564B2 (en) | 2003-11-25 | 2006-07-04 | Rohm And Haas Electronic Materials Llc | Waveguide compositions and waveguides formed therefrom |
| US7072563B2 (en) | 2003-11-25 | 2006-07-04 | Rohm And Haas Electronic Materials Llc | Waveguide compositions and waveguides formed therefrom |
| US7072565B2 (en) | 2004-04-14 | 2006-07-04 | Rohm And Haas Electronic Materials Llc | Waveguide compositions and waveguides formed therefrom |
| JP2007010760A (en)* | 2005-06-28 | 2007-01-18 | Sumitomo Electric Ind Ltd | Method for forming resin body, method for forming structure for optical waveguide, and method for forming optical component |
| WO2008010415A1 (en)* | 2006-07-21 | 2008-01-24 | Tokyo Ohka Kogyo Co., Ltd. | High refractive index material |
| JP2008024832A (en)* | 2006-07-21 | 2008-02-07 | Tokyo Ohka Kogyo Co Ltd | High refractive index material |
| KR101102798B1 (en)* | 2006-07-21 | 2012-01-05 | 도오꾜오까고오교 가부시끼가이샤 | High refractive index material |
| TWI420133B (en)* | 2006-07-21 | 2013-12-21 | Tokyo Ohka Kogyo Co Ltd | High refractive index member and image sensor |
| US8760763B2 (en) | 2006-07-21 | 2014-06-24 | Tokyo Ohka Kogyo Co., Ltd. | High refractive index material |
| JP2010015135A (en)* | 2008-06-03 | 2010-01-21 | Hitachi Cable Ltd | Optical waveguide substrate with optical fiber fixation groove, process for its production, stamp for use in this production process, and opto-electronic hybrid integrated module including the optical waveguide substrate |
| JP2012168267A (en)* | 2011-02-10 | 2012-09-06 | Hitachi Chem Co Ltd | Optical fiber connector and manufacturing method for the same |
| CN114578486A (en)* | 2020-11-30 | 2022-06-03 | 深南电路股份有限公司 | Waveguide-optical fiber coupling device, manufacturing method thereof and optical transmission system |
| Publication | Publication Date | Title |
|---|---|---|
| US5343544A (en) | Integrated optical fiber coupler and method of making same | |
| US6488414B1 (en) | Optical fiber component with shaped optical element and method of making same | |
| JPH08327842A (en) | Optical waveguide | |
| US20040021237A1 (en) | Process for producing polymer optical waveguide | |
| KR20040048312A (en) | Methods of forming waveguides and waveguides formed therefrom | |
| JP2004144987A (en) | Manufacturing method of polymeric optical waveguide | |
| JP2000180643A (en) | Photosensitive composition for optical waveguide, method for producing the same, and method for forming polymer optical waveguide pattern | |
| JP3456685B2 (en) | Fabrication method of waveguide type optical element | |
| JP4265293B2 (en) | Method of manufacturing polymer optical waveguide integrated with mold and connector | |
| Kim et al. | Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials | |
| WO2003046626A1 (en) | Alignment apparatus and methods for transverse optical coupling | |
| JP3571482B2 (en) | Method for forming polymer optical waveguide pattern for aperture conversion | |
| JP2599497B2 (en) | Flat plastic optical waveguide | |
| JPH10148729A (en) | Method for forming ridge pattern of polymer optical waveguide core | |
| JPH08271746A (en) | Optical waveguide and manufacturing method thereof | |
| US20040101268A1 (en) | Optical device structures based on photo-definable polymerizable composites | |
| JP2007517253A (en) | Production of polymer optical waveguides using molds | |
| JP2004069955A (en) | Method for manufacturing macromolecular optical waveguide | |
| US20080128929A1 (en) | Method for Manufacturing Optical Devices | |
| JPH08327844A (en) | Optical waveguide fabrication method | |
| US20050018990A1 (en) | Polymeric optical waveguide-forming master plate, method for producing polymer optical waveguide, and aperture changeable polymeric optical waveguide | |
| JPH10268152A (en) | Method for forming optical waveguide of polymer material | |
| JPH1123886A (en) | Optical element manufacturing method | |
| JP3343849B2 (en) | Polymer optical waveguide and manufacturing method thereof | |
| Bauer et al. | Manufacturing microcomponents for optical information technology using the LIGA technique |