【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導電性アモルファスシリコンカーバイド層か
ら成る電子写真感光体に関し、特に正極性に帯電可能な
電子写真感光体に関するものである。TECHNICAL FIELD The present invention relates to an electrophotographic photosensitive member comprising a photoconductive amorphous silicon carbide layer, and more particularly to an electrophotographic photosensitive member which can be charged to a positive polarity.
近年、電子写真感光体の進歩は目覚ましく、感光体を搭
載する複写機やプリンター等の開発に伴って感光体自体
にも種々の特性が要求されている。この要求に対してア
モルファスシリコン層が耐熱性、耐摩耗性、無公害性並
びに光感度特性等に優れているという理由から注目され
ている。In recent years, the progress of electrophotographic photoconductors has been remarkable, and various properties have been required for the photoconductor itself with the development of copying machines, printers, etc. equipped with the photoconductor. In response to this requirement, the amorphous silicon layer is drawing attention because it is excellent in heat resistance, abrasion resistance, pollution-free property, photosensitivity and the like.
しかし乍ら、アモルファスシリコン(以下、a−Siと略
す)層は、それに何ら不純物元素をドーピングしないと
約109Ω・cmの暗抵抗率しか得られず、これを電子写真
用感光体に用いる場合には1012Ω・cm以上の暗抵抗率に
して電荷保持能力の高める必要がある。そのために酸素
や窒素などの元素を微少量ドーピングして高抵抗化にし
得るが、その反面、光導電性するという問題がある。ま
た、ホウ素などを添加しても高抵抗化が期待できるが、
十分に満足し得るような暗抵抗率が得られず約1011Ω・
cm程度にすぎない。However, an amorphous silicon (hereinafter abbreviated as a-Si) layer can obtain a dark resistivity of about 109 Ω · cm only if it is not doped with an impurity element, which is used for an electrophotographic photoreceptor. In this case, it is necessary to increase the charge retention ability by setting the dark resistivity to 1012 Ω · cm or more. Therefore, it is possible to dope a small amount of elements such as oxygen and nitrogen to increase the resistance, but on the other hand, there is a problem of photoconductivity. In addition, even if boron or the like is added, high resistance can be expected,
We could not obtain a sufficiently satisfactory dark resistivity, and about 1011 Ω ・
Only about cm.
一方、上記の如きドーピング剤の開発と共に、a−Si光
導電層に別の非光導電層を積層して成る積層型感光体が
提案されている。On the other hand, along with the development of the above-mentioned doping agents, there has been proposed a laminated-type photoconductor in which another non-photoconductive layer is laminated on the a-Si photoconductive layer.
例えば、第2図はこの積層型感光体であり、基板(1)
の上にキャリア注入阻止層(2)、a−Si光導電層
(3)及び表面保護層(4)が順次積層されている。For example, FIG. 2 shows this laminated type photoreceptor, which is a substrate (1).
A carrier injection blocking layer (2), an a-Si photoconductive layer (3), and a surface protection layer (4) are sequentially laminated on the above.
この積型層感光体によれば、キャリア注入阻止層(2)
は基板(1)からのキャリアの注入を阻止するものであ
り、表面保護層(4)はa−Si光導電層(3)を保護し
て耐湿性等を向上させるものであるが、両者の層(2)
及び(4)ともに感光体の暗抵抗率を大きくして帯電能
を高めることが目的であり、そのためにこれらの層を光
導電性にする必要はない。According to this laminated layer photoreceptor, the carrier injection blocking layer (2)
Is for preventing injection of carriers from the substrate (1), and the surface protective layer (4) is for protecting the a-Si photoconductive layer (3) to improve moisture resistance and the like. Layer (2)
In both (4) and (4), the purpose is to increase the dark resistivity of the photoconductor to improve the charging ability, and therefore it is not necessary to make these layers photoconductive.
このように従来周知のa−Si電子写真感光体は光キャリ
ア発生層をa−Si光導電層により形成させた点に大きな
特徴があり、これによって耐熱性、耐久性及び光感度特
性などに優れた長所を有している反面、暗抵抗率が不十
分であるためにドーピング剤を用いたり、更に積層型感
光体にすることで暗抵抗率を大きくしている。即ち、積
層型感光体に形成されるキャリア注入阻止層(2)及び
表面保護層(4)はa−Si光導電層自体が有する欠点を
補完するものであり、a−Si光導電層(3)と実質上区
別し得る層と言える。As described above, the conventionally known a-Si electrophotographic photosensitive member has a great feature in that the photocarrier generation layer is formed by the a-Si photoconductive layer, and thus it is excellent in heat resistance, durability and photosensitivity characteristics. On the other hand, on the other hand, the dark resistivity is insufficient, so that the dark resistivity is increased by using a doping agent or by using a laminated type photoreceptor. That is, the carrier injection blocking layer (2) and the surface protective layer (4) formed on the laminated type photoreceptor complement the defects of the a-Si photoconductive layer itself. ) Can be said to be a layer that can be substantially distinguished.
本発明者等は上記事情に鑑みて、既にアモルファスシリ
コンカーバイド(以下、a−SiCと略す)は光導電性を
有すると共に暗抵抗率がドーピング剤の有無と無関係に
容易に1013Ω・cm以上になり、更にドーピング剤の選択
によって正極性に帯電可能な電子写真感光体と成り得る
ことを見い出した。In view of the above circumstances, the present inventors have already found that amorphous silicon carbide (hereinafter abbreviated as a-SiC) has photoconductivity and has a dark resistivity of 1013 Ω · cm or more regardless of the presence or absence of a doping agent. Furthermore, it was found that an electrophotographic photosensitive member which can be charged to a positive polarity can be obtained by selecting a doping agent.
上記a−SiC層が電子写真感光体と成り得た理由は、そ
の層が大きなキャリア移動度をもち、更に10-13(Ω・c
m)-1の暗導電率であり、これによって大きな帯電能が
得られたためである。The reason why the a-SiC layer can be used as an electrophotographic photosensitive member is that the layer has a large carrier mobility and further 10−13 (Ω · c).
This is because the dark conductivity is m)-1 , and a large charging ability is obtained.
しかしながら、このように大きなキャリア移動度をもつ
a−SiC電子写真感光体であっても、感光体搭載用機器
の開発が進展するのに伴って更に一層優れた電子写真特
性が望まれており、例えば光感度特性が用途に対して十
分に満足し得ない場合であれば、画像のカブリが生じた
り、残留電位が大きくなったりするなどが生じ、その特
性の改善が望まれる。However, even with an a-SiC electrophotographic photosensitive member having such a large carrier mobility, further excellent electrophotographic characteristics are desired as the development of the device for mounting the photosensitive member progresses, For example, if the photosensitivity characteristics are not sufficiently satisfactory for the intended use, image fog or residual potential increase may occur, and improvements in these characteristics are desired.
従って本発明は叙上に鑑みて案出されたものであり、そ
の目的は表面保護層及びキャリア注入阻止層を実質上不
要とし、全層に亘って光導電性a−SiCと成し、且つ光
感度特性を改善して所要な電子写真特性を向上させるこ
とができた電子写真感光体を提供することにある。Therefore, the present invention has been devised in view of the above, and its purpose is to substantially eliminate the need for a surface protective layer and a carrier injection blocking layer, and to form photoconductive a-SiC over all layers, and An object of the present invention is to provide an electrophotographic photosensitive member which has improved photosensitivity characteristics and required electrophotographic characteristics.
本発明の他の目的は正極性に帯電可能な電子写真感光体
を提供することにある。Another object of the present invention is to provide an electrophotographic photosensitive member which can be positively charged.
本発明によれば、基板上に、5乃至50原子%の炭素と5
乃至50原子%の水素またはハロゲン元素と5×10-5乃至
1原子%の酸素と0.1乃至10,000ppmの周期律表第IIIa族
元素を含有し、暗抵抗率が1013Ω・cm以上であるととも
に明抵抗率に比べて1,000倍以上である光導電性アモル
ファスシリコンカーバイド層を形成して成り、該アモル
ファスシリコンカーバイド層は前記基板側より配置され
た第1の層領域、第2の層領域および第3の層領域を具
備し、かつ第3の層領域は第2の層領域よりも炭素を多
く含有するとともに第1の層領域は第2の層領域よりも
周期律表第IIIa族元素を多く含有していることを特徴と
する正極性に帯電可能な電子写真感光体が提供される。According to the invention, 5 to 50 atomic% carbon and 5 on the substrate
To 50 atomic% hydrogen or halogen element, 5 × 10-5 to 1 atomic% oxygen and 0.1 to 10,000 ppm Group IIIa element in the periodic table, and a dark resistivity of 1013 Ω · cm or more And a photoconductive amorphous silicon carbide layer having a light resistance of 1,000 times or more, the amorphous silicon carbide layer including a first layer region, a second layer region, and A third layer region, wherein the third layer region contains more carbon than the second layer region, and the first layer region contains more Group IIIa element of the periodic table than the second layer region. Provided is a positively chargeable electrophotographic photosensitive member characterized by containing a large amount.
以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
本発明の電子写真感光体は光導電性a−SiC層に所定の
範囲内で酸素を含有させることを特徴とするものであ
り、また、この光導電性a−SiC層についてはIIIa族元
素を含有させて正極性に帯電させた感光体と成り得るこ
とは既に本発明者等が提案した通りである。The electrophotographic photoreceptor of the present invention is characterized in that the photoconductive a-SiC layer contains oxygen within a predetermined range, and the photoconductive a-SiC layer contains a Group IIIa element. It has already been proposed by the present inventors that it can be incorporated into a photoreceptor charged with a positive polarity.
即ち、第1図によれば導電性基板(1)上に、例えばグ
ロー放電分解法によって光導電性a−SiC層(5)を形
成したものであり、この層厚方向に亘って炭素とIIIa族
元素をそれぞれ同一含有比率で含有させている。これに
よって暗抵抗率が1013Ω・cm以上となると共に明抵抗率
に比べて1000倍以上となることを見い出し、この知見に
基づく後述する実施例から明らかな通り、この単一組成
の層だけで十分に実用性のあるa−SiC感光体と成り得
たことは予想外の成果であった。That is, according to FIG. 1, a photoconductive a-SiC layer (5) is formed on the conductive substrate (1) by, for example, a glow discharge decomposition method, and carbon and IIIa are formed in the layer thickness direction. The group elements are contained in the same content ratio. As a result, it was found that the dark resistivity becomes 1013 Ωcm or more and 1000 times or more as compared with the bright resistivity, and as will be apparent from the examples described later based on this finding, only this single composition layer is formed. It was an unexpected result that it could be a sufficiently practical a-SiC photoreceptor.
更に本発明者等はこのa−SiC感光体を正極性又は負極
性に帯電させて両者の帯電性能を比較した場合、このa
−SiC層(5)にIIIa族元素を0.1乃至10,000ppmの範
囲、好適には0.1乃至1000ppmの範囲内でドーピングする
と正極性で有利に帯電能を高めることができる。Further, when the inventors of the present invention charge the a-SiC photoreceptor positively or negatively and compare the charging performances of the two,
When the —SiC layer (5) is doped with a Group IIIa element in the range of 0.1 to 10,000 ppm, preferably 0.1 to 1000 ppm, the positive polarity can be advantageously enhanced.
このようにIIIa族元素のドーピングによって正極性に帯
電し易くなる点については、未だ解明されておらず、推
論の域を脱し得ないが、a−SiC層が正電荷を保持する
のに十分に高い抵抗率をもち、また、基板からの負電荷
の注入を防ぐ効果にも優れ、更に正電荷に対する電荷移
動度が優れている等の理由によると考えられる。The fact that doping with a Group IIIa element facilitates charging to the positive polarity has not yet been elucidated and cannot be deduced, but it is sufficient for the a-SiC layer to hold a positive charge. It is considered that this is because it has a high resistivity, is excellent in the effect of preventing the injection of negative charges from the substrate, and has excellent charge mobility with respect to positive charges.
また、このIIIa族元素としてはB,Al,Ga,In等があるが、
就中、Bが共有結合性に優れて半導体特性を敏感に変え
得る点で望ましい。Further, as the group IIIa element, there are B, Al, Ga, In, etc.,
Above all, B is desirable because it has excellent covalent bondability and can sensitively change semiconductor characteristics.
本発明のa−SiC層が光導電性を有するようになった点
については、アモルファス化したケイ素と炭素を不可欠
な構成元素とし、更にそのダングリングボンドを終端さ
せるべく水素元素(H)やハロゲン元素を所要の範囲内
で含有させることによって光導電性が生じるものと考え
られる。本発明者等が炭素の含有比率を幾通りにも変え
て光導電性の有無を確かめる実験に行ったところ、a−
SiC層(5)中に炭素を1乃至90原子%、好適には5乃
至50原子%の範囲内で含有させるとよく、或いはこの範
囲内で層厚方向に亘って炭素含有量を変えてもよい。Regarding the point that the a-SiC layer of the present invention has photoconductivity, amorphous silicon and carbon are used as indispensable constituent elements, and hydrogen element (H) and halogen are used to terminate the dangling bond. It is considered that photoconductivity is caused by containing the element within the required range. The present inventors conducted an experiment to confirm the presence or absence of photoconductivity by changing the carbon content ratio in various ways.
Carbon may be contained in the SiC layer (5) in the range of 1 to 90 atom%, preferably 5 to 50 atom%, or the carbon content may be varied in the layer thickness direction within this range. Good.
また、水素元素(H)やハロゲン元素の含有量は5乃至
50原子%、好適には5乃至40原子%、最適には10乃至30
原子%がよく、通常、H元素が用いられている。このH
元素はダングリングボンドの終端部に取り込まれ易いの
でバンドギャップ中の局在準位密度を低減化させ、これ
により、優れた半導体特性が得られる。Further, the content of hydrogen element (H) or halogen element is 5 to
50 atom%, preferably 5 to 40 atom%, optimally 10 to 30
The atomic% is good, and H element is usually used. This H
Since the element is easily taken into the end portion of the dangling bond, the localized level density in the band gap is reduced, and thus excellent semiconductor characteristics can be obtained.
更にこのH元素の一部をハロゲン元素に置換してもよ
く、これにより、a−SiC層の局在準位密度を下げて光
導電性及び耐熱性(温度特性)を高めることができる。
その置換比率はダングリングボンド終端用全元素中0.01
乃至50原子%、好適には1乃至30原子%がよい。また、
ハロゲン元素にはF,Cl,Br,I,At等があるが、就中、Fを
用いるとその大きな電気陰性度によって原子間の結合が
大きくなり、これによって熱的安定性に優れるという点
で望ましい。Further, a part of the H element may be replaced with a halogen element, whereby the localized level density of the a-SiC layer can be lowered and photoconductivity and heat resistance (temperature characteristic) can be improved.
The substitution ratio is 0.01 out of all elements for dangling bond termination.
It is preferably 50 to 50 atomic%, preferably 1 to 30 atomic%. Also,
Halogen elements include F, Cl, Br, I, At, etc., but among them, when F is used, the bond between atoms becomes large due to its large electronegativity, which makes it excellent in thermal stability. desirable.
本発明によれば、上記のような光導電性a−SiC層に酸
素を5×10-5乃至1原子%含有された点に特徴があり、
この範囲内では電子写真特性全般に亘って特性の改善が
期待できるが、特に光感度特性に顕著な効果があること
を見い出した。The present invention is characterized in that the photoconductive a-SiC layer as described above contains 5 × 10−5 to 1 atom% of oxygen,
Within this range, improvement in properties can be expected over the electrophotographic properties in general, but it was found that the photosensitivity properties are particularly remarkable.
即ち、酸素をa−SiC層中に5×10-5乃至1原子%、好
適には5×10-5乃至0.1原子%、最適には5×10-4乃至
0.1原子%の範囲内で含有させた場合、光感度が向上し
ており、これによってこの感光体を搭載した機器を更に
広範な用途に適応し得るようになり、当然のことながら
光感度の低下に伴って生じていた画像のカブリや残留電
位が高くなるという問題が解決される。That is, oxygen is contained in the a-SiC layer at 5 × 10−5 to 1 atom%, preferably 5 × 10−5 to 0.1 atom%, and most preferably 5 × 10−4 to
When it is contained within the range of 0.1 atom%, the photosensitivity is improved, which makes it possible to apply the device equipped with this photoconductor to a wider range of applications, and of course, lower the photosensitivity. This solves the problem of image fogging and residual electric potential that are high.
このようにして解決し得た点について本発明者等は未だ
十分に解明していないが、酸素が上述したダングリング
ボンド終端用元素になっているものと考えられる。Although the present inventors have not fully clarified the points that can be solved in this way, it is considered that oxygen is the element for terminating the dangling bond.
光導電性のa−SiC層に酸素を含有させるに当たって
は、種々の薄膜生成方法の原料ガス中に酸素ガス
(O2)、CO、CO2、NO、N2O、NO2の等の酸素含有ガス
を含有すればよく、或いは上述の範囲内で膜中に含有さ
れるのであれば、不純物として不可避的に含有されたも
のであってもよい。When oxygen is contained in the photoconductive a-SiC layer, oxygen such as oxygen gas (O2 ), CO, CO2 , NO, N2 O and NO2 is added to the raw material gas of various thin film forming methods. As long as the contained gas is contained, or if it is contained in the film within the above range, it may be unavoidably contained as an impurity.
上記の如き光導電性a−SiC層(5)の厚みは、少なく
とも5μm以上あればよく、これによって表面電位が+
200V以上となり、更に画像の分解能及び画像流れが生じ
ない範囲内でその上限が適宜選ばれており、本発明者等
の実験によれば、5乃至100μm、好適には10乃至50μ
mの範囲内に設定するとよい。The thickness of the photoconductive a-SiC layer (5) as described above may be at least 5 μm or more, which allows the surface potential to be +.
The upper limit is appropriately selected within the range of 200 V or more and the resolution of the image and the image deletion do not occur. According to the experiments of the present inventors, it is 5 to 100 μm, preferably 10 to 50 μm.
It may be set within the range of m.
更に、このa−SiC層の暗減衰曲線及び光減衰曲線を求
めたところ、高い表面電位をもつと共に優れた光感度特
性を有し、また、残留電位が小さくなっていることを確
かめた。Further, the dark decay curve and the light decay curve of the a-SiC layer were obtained, and it was confirmed that the a-SiC layer had a high surface potential, excellent photosensitivity characteristics, and a small residual potential.
かくして層厚方向に亘って単一組成の光導電性a−SiC
層だけで十分に実用と成り得る電子写真感光体が提供さ
れる。Thus, a photoconductive a-SiC of a single composition is formed in the layer thickness direction.
An electrophotographic photosensitive member is provided in which the layers alone are sufficiently practical.
そこで、本発明者等は上記の結果を踏まえて、更に鋭意
研究に努めたところ、この単一組成の層内部に種々の層
領域を生成させることによって電子写真特性を更に向上
し得る。Therefore, the inventors of the present invention have made further intensive studies based on the above results, and by forming various layer regions inside the layer of this single composition, the electrophotographic characteristics can be further improved.
即ち、本発明の電子写真感光体においては、構成元素で
ある炭素又はIIIa族元素の含有比率を層厚方向に亘って
変化させ、これによって複数の層領域を生成させ、この
層領域の数に対応して下記の第1の態様乃至第4の態様
までの電子写真感光体が得られる。That is, in the electrophotographic photosensitive member of the present invention, the content ratio of the constituent element carbon or the group IIIa element is changed over the layer thickness direction, thereby generating a plurality of layer regions, and the number of the layer regions is increased. Correspondingly, electrophotographic photoreceptors of the following first to fourth aspects are obtained.
本発明に係る下記の態様のなかで、光導電性a−SiC層
に生成した層領域のいずれもが光キャリア発生機能が有
り、これにより、その層領域についても酸素を5×10-5
乃至1原子%、好適には5×10-5乃至0.1原子%、最適
には5×10-4乃至0.1原子%の範囲内で含有させること
ができ、その結果、光感度特性が顕著に向上する。In the following embodiments according to the present invention, each of the layer regions formed in the photoconductive a-SiC layer has a function of generating photocarriers, and therefore, the layer region also contains 5 × 10−5 of oxygen.
To 1 atom%, preferably 5 × 10−5 to 0.1 atom%, optimally 5 × 10−4 to 0.1 atom%, and as a result, the photosensitivity is remarkably improved. To do.
以下、本発明の各種態様について詳細に述べる。Hereinafter, various aspects of the present invention will be described in detail.
第1の態様 第1の態様によれば、基板上に光導電性a−SiC層を形
成した電子写真感光体であって、前記a−SiC層は少な
くとも第1の層領域及び第2の層領域を具備し、第1の
層領域は第2の層領域より基板側に配置され且つ第2の
層領域に比べてIIIa族元素が多く含まれていることを特
徴とする正極性に帯電可能な電子写真感光体が提供され
る。First Aspect According to the first aspect, there is provided an electrophotographic photoreceptor having a photoconductive a-SiC layer formed on a substrate, wherein the a-SiC layer is at least a first layer region and a second layer. Region, the first layer region is arranged closer to the substrate than the second layer region, and contains a larger amount of group IIIa element than the second layer region, and can be positively charged. An electrophotographic photosensitive member is provided.
即ち、この第1の態様によれば、第1図に示した単一組
成の光導電性a−SiC層に対してIIIa族元素を含有さ
せ、その含有比率を変えることにより少なくとも第1の
層領域及び第2の層領域を生成させるものであり、この
態様を第3図乃至第9図により説明する。That is, according to the first aspect, the group IIIa element is contained in the photoconductive a-SiC layer of the single composition shown in FIG. 1 and the content ratio is changed to at least the first layer. A region and a second layer region are generated, and this aspect will be described with reference to FIGS. 3 to 9.
第3図においては導電性基板(1)上に第1の層領域
(6)及び第2の層領域(7)を順次形成し、両者の層
領域が一体化した光導電性a−SiC層(5a)から成って
おり、そして、第1の層領域(6)には第2の層領域
(7)に比べてIIIa族元素が多く含まれていることが重
要である。In FIG. 3, a photoconductive a-SiC layer in which a first layer region (6) and a second layer region (7) are sequentially formed on a conductive substrate (1) and both layer regions are integrated. It is important that the first layer region (6) is composed of (5a) and contains a larger amount of Group IIIa element than the second layer region (7).
第2の層領域(7)はIIIa族元素の含有量が0.1乃至10,
000ppmの範囲内で、好適には0.1乃至1,000ppmの範囲内
で適宜決められ、これによって正極性に帯電すると共に
表面電位、光感度特性等の所要な電子写真特性が得られ
る。そして、この層領域よりもIIIa族元素を多く含有し
た第1の層領域(6)を形成すると光導電性a−SiC層
(5a)の基板側領域で導電率が大きくなり、これによ
り、基板側からのキャリアの注入が阻止されると共にa
−SiC層の全領域で発生した光キャリアが基板へ円滑に
流れ、その結果、表面電位が大きくなると共に光感度特
性が向上する。The second layer region (7) has a Group IIIa element content of 0.1 to 10,
It is appropriately determined within the range of 000 ppm, preferably within the range of 0.1 to 1,000 ppm, and thereby, the desired electrophotographic characteristics such as surface potential and photosensitivity characteristics can be obtained while being charged to the positive polarity. Then, when the first layer region (6) containing a larger group IIIa element than this layer region is formed, the conductivity becomes higher in the substrate-side region of the photoconductive a-SiC layer (5a), and thus the substrate Injection of carriers from the side is blocked and a
-The photocarriers generated in the entire region of the SiC layer smoothly flow to the substrate, and as a result, the surface potential increases and the photosensitivity characteristic improves.
この第1の態様によれば、炭素含有量を第4図乃至第9
図に示す通りに設定してもよい。これらの図において、
横軸は基板から感光体表面に至る層厚を示し、縦軸は炭
素含有量を示している。尚、この横軸において(6),
(7)に示すそれぞれの範囲は第1の層領域及び第2の
層領域を表している。According to this first aspect, the carbon content can be adjusted as shown in FIGS.
It may be set as shown in the figure. In these figures,
The horizontal axis represents the layer thickness from the substrate to the photoreceptor surface, and the vertical axis represents the carbon content. In addition, on this horizontal axis (6),
The respective ranges shown in (7) represent the first layer region and the second layer region.
即ち、第4図は炭素含有比率が全層に亘って一定であ
り、或いは第5図は第1の層領域で炭素含有量を少なく
しており、これに対して第6図乃至第9図は第1の層領
域が第2の層領域に比べて炭素が多く含有されているこ
とを示すものであり、これによって表面電位が一段と高
くなって光感度特性が向上する。また、第7図乃至第9
図のように炭素の含有量を層厚方向に亘って漸次変える
と表面電位及び光感度を一層高め且つ残留電位が小さく
なる。That is, FIG. 4 shows that the carbon content ratio is constant over the entire layer, or FIG. 5 shows that the carbon content is reduced in the first layer region, while FIG. Indicates that the first layer region contains a larger amount of carbon than the second layer region, whereby the surface potential is further increased and the photosensitivity characteristics are improved. Also, FIGS.
As shown in the figure, when the carbon content is gradually changed in the layer thickness direction, the surface potential and photosensitivity are further increased and the residual potential is reduced.
第2の態様 第2の態様によれば、基板上に光導電性a−SiC層を形
成した電子写真感光体であって、前記a−SiC層は少な
くとも第1の層領域、第2の層領域及び第3の層領域を
具備し、第1の層領域は第2の層領域より、第2の層領
域は第3の層領域よりそれぞれ基板側に配置され、且つ
第3の層領域は第2の層領域に比べて炭素が多く含まれ
ていると共に第2の層領域は0.1乃至10,000ppmのIIIa族
元素が含まれており、更に第1の層領域は第2の層領域
よりもIIIa族元素が多く含まれていることを特徴とする
正極性に帯電可能な電子写真感光体が提供される。Second Aspect According to the second aspect, there is provided an electrophotographic photoreceptor having a photoconductive a-SiC layer formed on a substrate, wherein the a-SiC layer is at least a first layer region and a second layer. An area and a third layer area, the first layer area is arranged on the substrate side of the second layer area, the second layer area is arranged on the substrate side of the third layer area, and the third layer area is The second layer region contains more carbon than the second layer region, the second layer region contains 0.1 to 10,000 ppm of a Group IIIa element, and the first layer region is more than the second layer region. There is provided a positively chargeable electrophotographic photosensitive member characterized by containing a large amount of Group IIIa elements.
即ち、この第2の態様によれば、第10図に示す通り、第
1の態様にて示した第2の層領域(7)の上に更に第3
の層領域(8)を形成し、第3の層領域(8)の炭素含
有量を第2の層領域(7)よりも多くし、そして、第1
の層領域(6)、第2の層領域(7)及び第3の層領域
(8)を実質上一体化して光導電性a−SiC層(5b)と
した。That is, according to this second aspect, as shown in FIG. 10, a third layer is formed on the second layer region (7) shown in the first aspect.
Layer region (8) of the third layer region (8) is formed, the carbon content of the third layer region (8) is higher than that of the second layer region (7), and
The layer region (6), the second layer region (7) and the third layer region (8) were substantially integrated into a photoconductive a-SiC layer (5b).
この第3の層領域(8)を形成すると、a−SiC層(5
b)の表面側の暗抵抗率が大きくなり、これに伴って感
光体の表面電位が顕著に向上する。When this third layer region (8) is formed, the a-SiC layer (5
The dark resistivity on the surface side of b) becomes large, and the surface potential of the photoconductor is remarkably improved accordingly.
即ち、第3の層領域(8)は光導電性a−SiC層(5b)
の表面側を高抵抗化させるために形成されており、第2
図にて述べた従来周知の表面保護層(4)とは全く区別
し得るものである。また、光キャリア発生層とキャリア
輸送層とに分けられた機能分離型感光体によれば、キャ
リア輸送層を1013Ω・cm以上に高抵抗化させるが、この
層に格別大きな光導電性が要求されておらず、通常、光
導電率の暗導電率に対する比率が1000倍未満の光導電性
に設定されているに過ぎない。これに対して、第3の層
領域(8)はこの比率が1000倍以上の光導電性を有して
おり、上記キャリア輸送層に対しても十分に区別し得
る。That is, the third layer region (8) is the photoconductive a-SiC layer (5b).
Is formed to increase the resistance of the surface side of the
This is completely distinguishable from the conventionally known surface protective layer (4) described in the drawing. Further, according to the function-separated type photoreceptor having the photocarrier generation layer and the carrier transport layer, the carrier transport layer has a high resistance of 1013 Ω · cm or more, but this layer has a particularly large photoconductivity. It is not required and is usually only set to a photoconductivity of less than 1000 times the photoconductivity to dark conductivity. On the other hand, the third layer region (8) has photoconductivity of 1000 times or more, and can be sufficiently distinguished from the carrier transport layer.
第3の層領域(8)の層厚は、第2の層領域(7)に比
べて1倍以下、好ましくは1/2倍以下、最適には1/4倍以
下がよく、これにより、表面電位が顕著に向上すると共
に光感度に優れ、且つ残留電位が小さくなり、望ましい
と言える。The layer thickness of the third layer region (8) is preferably 1 time or less, preferably 1/2 time or less, optimally 1/4 time or less, as compared with the second layer region (7). It can be said that it is desirable because the surface potential is remarkably improved, the photosensitivity is excellent, and the residual potential is small.
この第2の態様によれば、光導電性a−SiC層(5b)の
炭素含有分布は第11図乃至第16図に示す通りであり、横
軸は基板から感光体表面に至る層厚を示し、縦軸は炭素
含有量を示している。尚、この横軸において、(6)
(7)(8)に示すそれぞれの範囲は第1の層領域、第
2の層領域及び第3の層領域を表している。According to this second aspect, the carbon content distribution of the photoconductive a-SiC layer (5b) is as shown in FIGS. 11 to 16, and the horizontal axis represents the layer thickness from the substrate to the surface of the photoconductor. The vertical axis represents the carbon content. In addition, on this horizontal axis, (6)
The respective ranges shown in (7) and (8) represent the first layer region, the second layer region, and the third layer region.
第12図、第14図、第15図及び第16図によれば、層厚方向
に亘って炭素の含有量を漸次変えており、これにより、
表面電位が向上すると共に光感度に優れ、且つ残留電位
が小さくなる。According to FIG. 12, FIG. 14, FIG. 15 and FIG. 16, the content of carbon is gradually changed over the layer thickness direction, whereby
The surface potential is improved, the photosensitivity is excellent, and the residual potential is reduced.
第3の態様 第3の態様によれば、基板上に光導電性a−SiC層を形
成した電子写真感光体であって、前記a−SiC層は少な
くとも第1の層領域、第2の層領域、第3の層領域、第
4の層領域を基板側から感光体表面へ向けて順次具備し
且つ第3の層領域は第2の層領域に比べて、第4の層領
域は第3の層領域に比べてそれぞれ炭素が多く含まれて
いると共に第2の層領域は0.1乃至10,000ppmのIIIa族元
素が含まれており、更に第1の層領域は第2の層領域よ
りもIIIa族元素が多く含まれていることを特徴とする正
極性に帯電可能な電子写真感光体が提供される。Third Aspect According to the third aspect, there is provided an electrophotographic photoreceptor having a photoconductive a-SiC layer formed on a substrate, wherein the a-SiC layer is at least a first layer region and a second layer. Regions, a third layer region, and a fourth layer region are sequentially provided from the substrate side toward the photoreceptor surface, and the third layer region is the third layer region in comparison with the second layer region. The second layer region contains 0.1 to 10,000 ppm of the group IIIa element, and the first layer region contains IIIa more than the second layer region. Provided is an electrophotographic photosensitive member which is positively charged and is characterized by containing a large amount of group elements.
即ち、第3の態様によれば、第17図に示す通り、第2の
態様にて示した第3の層領域(8)の上に更に第4の層
領域(9)を形成し、第4の層領域(9)が第3の層領
域(8)に比べて炭素を多く含んでおり、そして、第1
の層領域(6)から第4の層領域(9)を実質上一体化
して光導電性a−SiC層(5c)とした。That is, according to the third mode, as shown in FIG. 17, a fourth layer region (9) is further formed on the third layer region (8) shown in the second mode, The fourth layer region (9) is richer in carbon than the third layer region (8), and the first
The layer region (6) to the fourth layer region (9) were substantially integrated into a photoconductive a-SiC layer (5c).
この第4の層領域(9)は第3の層領域(8)に比べて
炭素を多く含有させて高抵抗化させ、これより、帯電能
を高めて表面電位を向上させることができ、その結果、
耐電圧が高くて長寿命の感光体を得ることができる。Compared to the third layer region (8), the fourth layer region (9) contains a larger amount of carbon to increase the resistance, and thus the charging ability can be increased and the surface potential can be improved. result,
A photoreceptor having a high withstand voltage and a long life can be obtained.
更に第3の態様によれば、光導電性a−SiC層(5c)の
炭素含有分布は第18図乃至第21図に示す通りであり、横
軸は基板から感光体表面に至る層厚を示し、縦軸は炭素
含有量を示している。尚、この横軸において、(6)
(7)(8)(9)に示すそれぞれの範囲は第1の層領
域、第2の層領域、第3の層領域及び第4の層領域を表
している。Furthermore, according to the third aspect, the carbon content distribution of the photoconductive a-SiC layer (5c) is as shown in FIGS. 18 to 21, and the horizontal axis represents the layer thickness from the substrate to the surface of the photoreceptor. The vertical axis represents the carbon content. In addition, on this horizontal axis, (6)
The respective ranges shown in (7), (8) and (9) represent the first layer region, the second layer region, the third layer region and the fourth layer region.
第19図及び第21図によれば、層厚方向に亘って炭素の含
有量を漸次変えており、これにより、表面電位及び光感
度が向上し、且つ残留電位が小さくなる。According to FIG. 19 and FIG. 21, the carbon content is gradually changed over the layer thickness direction, which improves the surface potential and the photosensitivity and reduces the residual potential.
第4の態様 第4の態様によれば、基板上に光導電性a−SiC層及び
a−SiC表面保護層を順次形成した電子写真感光体であ
って、前記光導電性a−SiC層は少なくとも第1の層領
域、第2の層領域及び第3の層領域を具備し、第1の層
領域は第2の層領域より基板側に、第2の層領域は第3
の層領域より基板側にそれぞれ配置され、且つ第3の層
領域は第2の層領域に比べて炭素が多く含まれていると
共に第2の層領域は0.1乃至10,000ppmのIIIa族元素が含
まれており、更に第1の層領域は第2の層領域よりもII
Ia族元素が多く含まれていることを特徴とする正極性に
帯電可能な電子写真感光体が提供れさる。Fourth Aspect According to a fourth aspect, there is provided an electrophotographic photoreceptor in which a photoconductive a-SiC layer and an a-SiC surface protective layer are sequentially formed on a substrate, wherein the photoconductive a-SiC layer is At least a first layer region, a second layer region and a third layer region are provided, the first layer region is closer to the substrate than the second layer region, and the second layer region is the third layer region.
Of each of the layers are disposed closer to the substrate than the layer region, and the third layer region contains more carbon than the second layer region, and the second layer region contains Group IIIa element of 0.1 to 10,000 ppm. And the first layer area is more II than the second layer area.
There is provided a positively chargeable electrophotographic photoreceptor characterized by containing a large amount of Group Ia element.
即ち、この第4の態様によれば、第22図に示す通り、第
2の態様にて示した第3の層領域(8)の上に更にa−
SiC表面保護層(10)を形成したものであり、このa−S
iC表面保護層(10)は光導電性a−SiC層(5b)の表面
をオーバーコートして保護するために形成される。That is, according to the fourth aspect, as shown in FIG. 22, a- is further formed on the third layer region (8) shown in the second aspect.
The SiC surface protective layer (10) is formed.
The iC surface protective layer (10) is formed for overcoating and protecting the surface of the photoconductive a-SiC layer (5b).
a−SiC表面保護層(10)はa−SiCから成るという点で
は光導電性a−SiC層(5b)と同じであるが、炭素の含
有量を多くして高硬度とし、これによって表面保護作用
をもたらす。The a-SiC surface protective layer (10) is the same as the photoconductive a-SiC layer (5b) in that it is made of a-SiC, but it has a high carbon content to provide high hardness, and thus the surface protection is achieved. Bring about action.
このa−SiC表面保護層(10)は、その構成元素の組成
比を変えて光導電性又は非光導電性とすることができ、
炭素の含有量を多くすると非光導電性になる傾向があ
り、これに伴って高硬度特性が得られ、高硬度a−SiC
表面保護層となる。The a-SiC surface protective layer (10) can be made photoconductive or non-photoconductive by changing the composition ratio of its constituent elements,
Increasing the carbon content tends to result in non-photoconductive properties, which results in high hardness characteristics and high hardness a-SiC.
It becomes a surface protection layer.
更に第4の態様によれば、炭素含有分布は第23図及び第
24図に示す通りであり、横軸は基板から感光体表面に至
る層厚を示し、縦軸は炭素含有量を示している。尚、こ
の横軸において(6)(7)(8)(10)に示すそれぞ
れの範囲は第1の層領域、第2の層領域、第3の層領域
及びa−SiC表面保護層を表している。Further, according to the fourth aspect, the carbon content distribution is shown in FIG.
As shown in FIG. 24, the horizontal axis represents the layer thickness from the substrate to the photoreceptor surface, and the vertical axis represents the carbon content. In addition, on the abscissa, respective ranges (6), (7), (8), and (10) represent the first layer region, the second layer region, the third layer region, and the a-SiC surface protective layer. ing.
かくして、第1の態様乃至第4の態様によれば、第1図
に示した単一組成のa−SiC感光体に比べて格段に高性
能は電子写真感光体が提供される。Thus, according to the first to fourth aspects, an electrophotographic photosensitive member having significantly higher performance than the single composition a-SiC photosensitive member shown in FIG. 1 is provided.
また、本発明によれば、単一組成のa−SiC層並びに第
1乃至第3の態様のa−SiC層は、いずれも光導電性a
−SiC層から成り、これによって十分実用的な電子写真
特性が得られるが、これらのa−SiC層の表面上に従来
周知の表面保護層を形成してもよい。Further, according to the present invention, the a-SiC layer having a single composition and the a-SiC layers of the first to third aspects are all photoconductive a.
-SiC layer, which provides sufficiently practical electrophotographic properties, a conventionally known surface protective layer may be formed on the surface of these a-SiC layers.
この表面保護層はそれ自体高絶縁性、高耐食性及び高硬
度特性を有するものであれば種々の材料を用いることが
でき、例えばポリイミド樹脂などの有機材料,a−SiC,Si
O2,SiO,Al2O3,SiC,Si3N4,a−Si,a−Si:H,a−Si:F,a−
SiC:H,a−SiC:Fなどの無機材料を用いることができる。As the surface protective layer, various materials can be used as long as they have high insulation properties, high corrosion resistance and high hardness characteristics, such as organic materials such as polyimide resin, a-SiC and Si.
O 2, SiO, Al 2 O 3, SiC, Si 3 N 4, a-Si, a-Si: H, a-Si: F, a-
Inorganic materials such as SiC: H, a-SiC: F can be used.
次に本発明の電子写真感光体の製法を述べる。Next, a method for producing the electrophotographic photosensitive member of the present invention will be described.
本発明に係るa−SiC層を形成するに当たってグロー放
電分解法、イオンプレーティング法、反応性スパッタリ
ング法、真空蒸着法、CVD法などの薄膜生成技術を用い
ることができ、また、これに用いられる原料には固体、
液体、気体のいずれでもよい。例えばグロー放電分解法
に用いられる気体原料としてSiH4,Si2H6,Si3H8などの
Si系ガス、CH4,C2H2,C2H4,C2H6,C3H8などのC系ガ
スがあり、そして、Heガス、H2ガス等をキャリアガス
として用いればよい。In forming the a-SiC layer according to the present invention, a thin film forming technique such as a glow discharge decomposition method, an ion plating method, a reactive sputtering method, a vacuum vapor deposition method, a CVD method can be used, and is also used. Raw material is solid,
Either liquid or gas may be used. For example, SiH4 , Si2 H6 , Si3 H8 etc. are used as gas raw materials for the glow discharge decomposition method.
There are Si-based gas, C-based gas such as CH4 , C2 H2 , C2 H4 , C2 H6 , and C3 H8 , and He gas, H2 gas, etc. may be used as carrier gas. .
本発明の電子写真感光体を製作するに当たっては、グロ
ー放電分解によってケイ素(Si)含有ガス及びアセチレ
ン(C2H2)ガスの混合ガスよりa−SiC層を形成させ
た場合、著しく大きな高速成膜性が達成できる点で望ま
しい。本発明者等が繰り返し行った実験によれば、この
Si含有ガスとして前述した種々のSi系ガスを用いること
ができるが、例えばSiH4ガス及びC2H2ガスを用いた場
合、5乃至20μm/時の成膜速度が得られた。因にSiH4ガ
スとCH4ガスを用いてa−SiC膜を生成した場合、その成
膜速度は約0.3乃至1μm/時である。In producing the electrophotographic photoreceptor of the present invention, when an a-SiC layer is formed from a mixed gas of a silicon (Si) -containing gas and an acetylene (C2 H2 ) gas by glow discharge decomposition, a significantly large high-speed formation is achieved. It is desirable in that the film property can be achieved. According to experiments conducted by the present inventors repeatedly, this
Although various Si-based gases described above can be used as the Si-containing gas, for example, when SiH4 gas and C2 H2 gas were used, a film forming rate of 5 to 20 μm / hour was obtained. When an a-SiC film is formed by using SiH4 gas and CH4 gas, the film forming rate is about 0.3 to 1 μm / hour.
次に本発明の実施例に用いられる容量結合型グロー放電
分解装置を第25図により説明する。Next, a capacitively coupled glow discharge decomposition apparatus used in the embodiment of the present invention will be described with reference to FIG.
図中、第1,第2,第3,第4,第5,第6タンク(11)(12)
(13)(14)(15)(16)には、それぞれSiH4,C2H2,B
2H6(H2ガス希釈で0.2%含有),B2H6(H2ガス希釈
で38ppm含有),H2,NOガスが密封されており、H2はキャ
リアーガスとしても用いられる。これらのガスは対応す
る第1,第2,第3,第4,第5,第6調整弁(17)(18)(19)
(20)(21)(22)を開放することにより放出され、そ
の流量がマスフローコントローラ(23)(24)(25)
(26)(27)(28)により制御され、第1,第2,第3,第4,
第5タンク(11)(12)(13)(14)(15)からのガス
は第1主管(29)へ、第6タンク(16)からのNOガスは
第2主管(30)へ送られる。尚、(31)(32)は止め弁
である。第1主管(29)及び第2主管(30)を通じて流
れるガスは反応管(33)へと送り込まれるが、この反応
管(33)の内部には容量結合型放電用電極(34)が設置
されており、それに印加される高周波電力は50W乃至3kW
が、また周波数は1MHz乃至50MHzが適当である。反応管
(33)の内部には、アルミニウムから成る筒状の成膜用
基板(35)が試料保持台(36)の上に載置されており、
この保持台(36)はモーター(37)により回転駆動され
るようになっており、そして、基板(35)は適当な加熱
手段により、約200乃至400℃好ましくは約200乃至350℃
の温度に均一に加熱される。更に、反応管(33)の内部
はa−SiC膜形成時に高度の真空状態(放電圧0.1乃至2.
0Torr)を必要とすることにより回転ポンプ(38)と拡
散ポンプ(39)に連結されている。In the figure, the 1st, 2nd, 3rd, 4th, 5th, 6th tanks (11) (12)
(13) (14) (15) (16) contain SiH4 , C2 H2 , and B, respectively.
2 H6 (containing 0.2% when diluted with H2 gas), B2 H6 (containing 38 ppm when diluted with H2 gas), H2 and NO gas are sealed, and H2 is also used as a carrier gas. These gases correspond to the corresponding 1st, 2nd, 3rd, 4th, 5th, 6th regulating valves (17) (18) (19).
It is released by opening (20) (21) (22), and its flow rate is mass flow controller (23) (24) (25).
Controlled by (26) (27) (28), the 1st, 2nd, 3rd, 4th,
Gas from the fifth tank (11) (12) (13) (14) (15) is sent to the first main pipe (29) and NO gas from the sixth tank (16) is sent to the second main pipe (30). . Incidentally, (31) and (32) are stop valves. The gas flowing through the first main pipe (29) and the second main pipe (30) is sent to the reaction pipe (33), and the capacitive coupling type discharge electrode (34) is installed inside the reaction pipe (33). And the high frequency power applied to it is 50W to 3kW
However, the proper frequency is 1 MHz to 50 MHz. Inside the reaction tube (33), a cylindrical film forming substrate (35) made of aluminum is placed on the sample holder (36),
The holder (36) is driven to rotate by a motor (37), and the substrate (35) is heated to about 200 to 400 ° C, preferably about 200 to 350 ° C by a suitable heating means.
Is uniformly heated to the temperature of. Further, the inside of the reaction tube (33) is in a high vacuum state (discharge voltage 0.1 to 2.
It is connected to the rotary pump (38) and the diffusion pump (39) by requiring 0 Torr.
以上のように構成されたグロー放電分解装置において、
例えば、a−SiC膜(酸素,Bを含有する)を基板(35)
に形成する場合には、第1,第2,第3,第4,第5,調整弁(1
7)(18)(19)(21)を開いてそれぞれよりSiH4,C2H
2,B2H6,H2ガスを放出するし、且つ第6調整弁(22)を
開いてNOガスを放出する。放出量はマスフローコントロ
ーラ(23)(24)(25)(27)(28)により制御され、
SiH4,C2H2,B2H6,H2の混合ガスは第1主管(29)を介
して、NOガスは第2主管(30)を介して反応管(33)へ
と流し込まれる。そして、反応管(33)の内部が0.1乃
至2.0Torr程度の真空状態、基板温度が200乃至400℃、
容量型放電用電極(34)の高周波電力が50w乃至3kW、ま
たは周波数が1MHz乃至50MHzに設定されていることに相
俟ってグロー放電が起こり、ガスが分解して酸素及びB
を含有したa−SiC膜が基板上に高速で形成される。In the glow discharge decomposition apparatus configured as described above,
For example, an a-SiC film (containing oxygen and B) is used as a substrate (35).
If it is formed in the first, second, third, fourth, fifth, adjusting valve (1
7) (18) (19) (21) open and SiH4 , C2 H
2 , B2 H6 , H2 gas is released, and the sixth adjusting valve (22) is opened to release NO gas. The release amount is controlled by the mass flow controller (23) (24) (25) (27) (28),
A mixed gas of SiH4 , C2 H2 , B2 H6 and H2 is flown into the reaction tube (33) through the first main pipe (29) and NO gas is passed through the second main pipe (30). . Then, the inside of the reaction tube (33) is in a vacuum state of about 0.1 to 2.0 Torr, the substrate temperature is 200 to 400 ° C.,
Along with the high frequency power of the capacitive discharge electrode (34) being set to 50w to 3kW or the frequency being 1MHz to 50MHz, glow discharge occurs, gas is decomposed and oxygen and B
An a-SiC film containing is formed at high speed on the substrate.
次に本発明の実施例を詳細に説明する。 Next, examples of the present invention will be described in detail.
(例1) 本例においては、層厚方向に亘って均一な単一組成の光
導電性a−SiC層をアルミニウム製成膜用基板(35)に
生成し、電子写真特性を測定した。(Example 1) In this example, a photoconductive a-SiC layer having a uniform single composition along the layer thickness direction was formed on an aluminum film-forming substrate (35), and electrophotographic characteristics were measured.
即ち、第25図に示した容量結合型グロー放電分解装置を
用いて第1タンク(11)よりSiH4ガスを150sccmの流量
で、第2タンク(12)よりC2H2ガスを10sccmの流量
で、第4タンク(14)よりB2H6ガスを90sccmの流量
で、第5タンク(15)よりH2ガスを100sccmの流量で、
第6タンク(16)よりNOガスを0.1sccmの流量で放出
し、グロー放電分解法に基いて約30μmの厚みのa−Si
C膜を製作した。尚、製造条件として基板温度を300℃、
ガス圧を0.5Torr、高周波電力を180Wに設定した。That is, using the capacitively coupled glow discharge decomposition apparatus shown in FIG. 25, SiH4 gas from the first tank (11) at a flow rate of 150 sccm and C2 H2 gas from the second tank (12) at a flow rate of 10 sccm. B2 H6 gas from the fourth tank (14) at a flow rate of 90 sccm, and H2 gas from the fifth tank (15) at a flow rate of 100 sccm,
NO gas was released from the sixth tank (16) at a flow rate of 0.1 sccm, and a-Si having a thickness of about 30 μm was obtained based on the glow discharge decomposition method.
A C film was manufactured. As a manufacturing condition, the substrate temperature is 300 ° C,
The gas pressure was set to 0.5 Torr and the high frequency power was set to 180W.
かくして得られた感光体に対して、表面電位、及び光感
度及び残留電位を測定したところ、下記の通りの結果が
得られた。この測定は+5.6KVのコロナチャージャで帯
電させ、次いで分光された単色光(650nm)を感光体表
面に照射して求めた。The surface potential, the photosensitivity, and the residual potential of the thus obtained photoreceptor were measured, and the following results were obtained. This measurement was performed by charging with a +5.6 KV corona charger, and then irradiating the surface of the photoconductor with monochromatic light (650 nm) that was dispersed.
尚、残留電位は露光開始の5秒後の値である。The residual potential is a value 5 seconds after the start of exposure.
表面電位・・・680V 光感度 ・・・0.40cm2erg-1 残留電位・・・+30V これに対して第6調整弁を(22)を閉じてNOガスの放出
を止めた場合、 表面電位・・・+620V 光感度 ・・・0.36cm2erg-1 残留電位・・・+30V となった。Surface potential ・ ・ ・ 680V Photosensitivity ・ ・ ・ 0.40cm2 erg-1 Residual potential ・ ・ ・ + 30V On the other hand, when the sixth regulating valve (22) is closed to stop NO gas release, surface potential ・・ ・ + 620V Photosensitivity ・ ・ ・ 0.36cm2 erg-1 Residual potential ・ ・ ・ + 30V
(例2) 本例においては、第1の態様の感光体を第1表に示す条
件で製作し、これによって下記の電子写真特性が得られ
た。(Example 2) In this example, the photoreceptor of the first aspect was manufactured under the conditions shown in Table 1, and the following electrophotographic characteristics were obtained.
尚、電子写真特性は(例1)と同じであり、本実施例の
すべてに共通とする。Note that the electrophotographic characteristics are the same as in (Example 1) and are common to all of the present examples.
表面電位・・・+780V 光感度 ・・・0.45cm2erg-1 残留電位・・・+35V(例3) 本例においては、第2の態様の感光体を第2表に示す条
件で製作し、これによって下記の電子写真特性が得られ
た。Surface potential ・ ・ ・ + 780V Photosensitivity ・ ・ ・ 0.45cm2 erg-1 Residual potential ・ ・ ・ + 35V (Example 3) In this example, the photoconductor of the second aspect was manufactured under the conditions shown in Table 2 and the following electrophotographic characteristics were obtained.
表面電位・・・+850V 光感度 ・・・0.44cm2erg-1 残留電位・・・+40V(例4) 本例においては、第3の態様の感光体を第3表に示す条
件で製作し、これによって下記の電子写真特性が得られ
た。Surface potential ・ ・ ・ + 850V Photosensitivity ・ ・ ・ 0.44cm2 erg-1 Residual potential ・ ・ ・ + 40V (Example 4) In this example, a photoconductor of the third aspect was manufactured under the conditions shown in Table 3, and the following electrophotographic characteristics were obtained.
表面電位・・・+960V 光感度 ・・・0.45cm2erg-1 残留電位・・・+40V〔発明の効果〕 以上の通り、本発明の電子写真感光体によれば、全層に
亘って光導電性を有するa−SiCが高い暗抵抗率とな
り、且つ光感度特性にも優れていることによって実質上
表面保護層及びキャリア注入阻止層を不要とすることが
でき、その結果、光導電性a−SiC層だけから成る電子
写真感光体が提供できた。Surface potential ・ ・ ・ + 960V Photosensitivity ・ ・ ・ 0.45cm2 erg-1 Residual potential ・ ・ ・ + 40V [Advantages of the Invention] As described above, according to the electrophotographic photosensitive member of the present invention, a-SiC having photoconductivity over all layers has a high dark resistivity and is also excellent in photosensitivity characteristics. Thus, the surface protective layer and the carrier injection blocking layer can be substantially eliminated, and as a result, an electrophotographic photoreceptor including only the photoconductive a-SiC layer can be provided.
また本発明の電子写真感光体によれば、酸素を膜中に所
定量含有させることによって光感度が向上し、更に電子
写真特性全般に亘って改善され、その結果、一段と高性
能な電子写真感光体が提供できる。Further, according to the electrophotographic photosensitive member of the present invention, by containing a predetermined amount of oxygen in the film, the photosensitivity is improved, and further, the electrophotographic characteristics are improved in general. The body can provide.
更に本発明の電子写真感光体によれば、層厚方向に亘っ
て炭素及びIIIa族元素の含有量を変えることによって表
面電位を向上させると共に光感度特性を高め、且つ残留
電位を顕著に小さくすることができる。特に、炭素の含
有量を層厚方向に亘って変えると、抵抗率が制御されて
所要の層領域が得られ、その結果、格段に高性能な電子
写真感光体が提供できる。Further, according to the electrophotographic photosensitive member of the present invention, the surface potential is improved and the photosensitivity characteristics are improved and the residual potential is remarkably reduced by changing the contents of carbon and the group IIIa element in the layer thickness direction. be able to. In particular, when the carbon content is changed in the layer thickness direction, the resistivity is controlled and the required layer region is obtained, and as a result, a significantly high performance electrophotographic photoreceptor can be provided.
また、本発明によれば、正極性に有利に帯電することが
できる正極性用電子写真感光体が提供される。Further, according to the present invention, there is provided an electrophotographic photosensitive member for positive polarity which can be charged positively.
本発明の電子写真感光体によれば、それ自体で帯電能及
び耐環境性に優れていることから、特に保護層を設ける
必要がなく、例えばコロナ放電による被曝或いは現像剤
の樹脂成分の感光体表面へのフィルミング等によって表
面が劣化した場合、その劣化した表面を研摩剤等で研摩
再生を繰り返し行ってもその研摩量において制限を受け
ずに感光体の初期特性を維持することができ、それによ
って初期における良好な画像を長期に亘り安定して供給
することが可能となる。According to the electrophotographic photosensitive member of the present invention, since it is excellent in charging ability and environment resistance by itself, it is not necessary to provide a protective layer, and the photosensitive member is exposed to corona discharge or is a resin component of a developer, for example. When the surface is deteriorated by filming on the surface, even if the deteriorated surface is repeatedly subjected to polishing and regeneration with an abrasive or the like, the initial characteristics of the photoconductor can be maintained without being limited in the polishing amount. As a result, a good image in the initial stage can be stably supplied over a long period of time.
更に、従来のa−Si感光体を長期間に亘って使用した場
合にはコロナ放電に伴って感光体表面の局所的な放電破
壊が発生し易くなり、これに起因して画像に斑点が生じ
るという問題があったが、本発明によれば、a−Siの比
誘電率がε=12であるのに対してa−SiCはε=7と約
半分程度であるために帯電能に優れており、これによ
り、表面電位を高くしても何ら上記の放電破壊が発生し
なくなり、その結果、高品質且つ高信頼性の電子写真感
光体が提供される。Furthermore, when the conventional a-Si photoconductor is used for a long period of time, local discharge breakdown of the photoconductor surface is likely to occur due to corona discharge, which causes spots on the image. However, according to the present invention, the relative permittivity of a-Si is ε = 12, whereas that of a-SiC is ε = 7, which is about half, so that the charging ability is excellent. Therefore, even if the surface potential is increased, the above discharge breakdown does not occur, and as a result, a high quality and highly reliable electrophotographic photoreceptor is provided.
更に本発明の電子写真感光体を従来のa−Si感光体と比
較した場合、このa−Si感光体の問題点として耐湿性に
劣っているので画像流れが生じ易く、また、帯電能に劣
っているゴースト現象が発生するが、これを解決するた
めにa−Si感光体の使用時にヒータを用いてその感光体
を加熱し、その発生を防止している。これに対して本発
明の電子写真感光体は耐湿性且つ帯電能に優れているた
めに上記のようにヒータを用いて使用する必要はないと
いう利点がある。Further, when the electrophotographic photosensitive member of the present invention is compared with a conventional a-Si photosensitive member, a problem with this a-Si photosensitive member is that it is inferior in moisture resistance, so that image deletion easily occurs, and the charging ability is inferior. The ghost phenomenon occurs, but in order to solve this, the a-Si photoconductor is heated with a heater when the photoconductor is used to prevent the a-Si photoconductor from occurring. On the other hand, the electrophotographic photosensitive member of the present invention has an advantage that it is not necessary to use a heater as described above because it has excellent moisture resistance and charging ability.
また、本発明の天使写真感光体はa−Si感光体と比べて
炭素の含有量を変えるだけで幅広い分光感度特性(ピー
ク600〜700nm)が得られると共に光感度自体を増大させ
ることができ、更に必要に応じて不純物元素をドーピン
グすれば長波長側の増感も可能になるという利点があ
る。Further, the angel photographic photoreceptor of the present invention can obtain a wide range of spectral sensitivity characteristics (peak 600 to 700 nm) and increase the photosensitivity itself simply by changing the carbon content as compared with the a-Si photoreceptor. Further, if an impurity element is doped as necessary, there is an advantage that sensitization on the long wavelength side can be performed.
第1図は本発明の電子写真感光体の層構成を示す説明
図、第2図は従来の電子写真感光体の層構造を示す説明
図、第3図は本発明に係る第1の態様の感光体の層領域
を示す説明図、第4図、第5図、第6図、第7図、第8
図及び第9図はそれぞれ本発明に係る第1の態様の感光
体の炭素含有量を示す説明図、第10図は本発明に係る第
2の態様の感光体の層領域を示す説明図、第11図、第12
図、第13図、第14図、第15図及び第16図はそれぞれ本発
明に係る第2の態様の感光体の炭素含有量を示す説明
図、第17図は本発明に係る第3の態様の感光体の層領域
を示す説明図、第18図、第19図、第20図及び第21図はそ
れぞれ本発明に係る第3の態様の感光体の炭素含有量を
示す説明図、第22図は本発明に係る第4の態様の感光体
の層領域を示す説明図、第23図及び第24図は本発明に係
る第4の態様の感光体の炭素含有量を示す説明図、第25
図は本発明の実施例に用いられる容量結合型グロー放電
分解装置の説明図である。 1……基板 5,5a,5b,5c……光導電性アモルファスシリコンカーバイ
ド層 6……第1の層領域 7……第2の層領域 8……第3の層領域 9……第4の層領域 10……アモルファスシリコンカーバイド表面保護層FIG. 1 is an explanatory diagram showing a layer structure of an electrophotographic photosensitive member of the present invention, FIG. 2 is an explanatory diagram showing a layer structure of a conventional electrophotographic photosensitive member, and FIG. 3 is a first embodiment of the present invention. Explanatory views showing layer regions of the photoconductor, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG.
FIG. 9 and FIG. 9 are explanatory views showing the carbon content of the photoconductor of the first aspect according to the present invention, and FIG. 10 is an explanatory view showing the layer regions of the photoconductor of the second aspect according to the present invention, 11 and 12
FIG. 13, FIG. 14, FIG. 14, FIG. 15 and FIG. 16 are explanatory views showing the carbon content of the photoconductor of the second aspect of the present invention, and FIG. 17 is the third diagram of the present invention. Explanatory drawing showing the layer region of the photoconductor of the aspect, FIG. 18, FIG. 19, FIG. 20 and FIG. 21 are explanatory diagrams showing the carbon content of the photoconductor of the third aspect of the present invention, respectively. FIG. 22 is an explanatory view showing a layer region of a photoreceptor of a fourth aspect according to the present invention, FIGS. 23 and 24 are explanatory views showing carbon content of the photoreceptor of the fourth aspect according to the present invention, 25th
The figure is an illustration of a capacitively coupled glow discharge decomposition apparatus used in an embodiment of the present invention. 1 ... Substrate 5,5a, 5b, 5c ... Photoconductive amorphous silicon carbide layer 6 ... First layer region 7 ... Second layer region 8 ... Third layer region 9 ... Fourth Layer area 10: Amorphous silicon carbide surface protection layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 仁志 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 (72)発明者 渡辺 暁 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 (72)発明者 石櫃 鴻吉 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 (56)参考文献 特開 昭61−100759(JP,A) 特開 昭57−119358(JP,A) 特開 昭59−87461(JP,A) 特開 昭60−112047(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Takemura 6 1166, Haseno, Jamizo-cho, Yokaichi-shi, Shiga Prefecture Kyocera Corporation Shiga Yokaichi factory (72) Inventor Akira Watanabe 1166, Haseno, Namizo-cho, Yokaichi-shi, Shiga Prefecture No. 6 Kyocera Co., Ltd. Shiga Yokaichi Factory (72) Inventor Kokichi Ishikura 6166, Kyocera Co., Ltd. Shiga Yokaichi Factory, No. 1166, Haseno, Jamizocho, Yokaichi City, Yokaichi City, Shiga Prefecture (56) Reference JP-A-61-100759 (JP) , A) JP 57-119358 (JP, A) JP 59-87461 (JP, A) JP 60-112047 (JP, A)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61254261AJPH0789234B2 (en) | 1986-10-24 | 1986-10-24 | Electrophotographic photoreceptor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61254261AJPH0789234B2 (en) | 1986-10-24 | 1986-10-24 | Electrophotographic photoreceptor |
| Publication Number | Publication Date |
|---|---|
| JPS63108346A JPS63108346A (en) | 1988-05-13 |
| JPH0789234B2true JPH0789234B2 (en) | 1995-09-27 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61254261AExpired - LifetimeJPH0789234B2 (en) | 1986-10-24 | 1986-10-24 | Electrophotographic photoreceptor |
| Country | Link |
|---|---|
| JP (1) | JPH0789234B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57119356A (en)* | 1981-01-16 | 1982-07-24 | Canon Inc | Photoconductive member |
| JPS57119358A (en)* | 1981-01-16 | 1982-07-24 | Canon Inc | Photoconductive member |
| JPS57119357A (en)* | 1981-01-16 | 1982-07-24 | Canon Inc | Photoconductive member |
| AU549925B2 (en)* | 1983-11-28 | 1986-02-20 | Nitsuko Ltd. | Automatic telephone hold releasing circuit |
| JPS60185956A (en)* | 1984-03-05 | 1985-09-21 | Canon Inc | light receiving member |
| JPS60177357A (en)* | 1984-02-24 | 1985-09-11 | Canon Inc | light receiving member |
| Publication number | Publication date |
|---|---|
| JPS63108346A (en) | 1988-05-13 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0789234B2 (en) | Electrophotographic photoreceptor | |
| JPH0789233B2 (en) | Electrophotographic photoreceptor | |
| JP2657491B2 (en) | Electrophotographic photoreceptor | |
| JP2657490B2 (en) | Electrophotographic photoreceptor | |
| JP2756570B2 (en) | Electrophotographic photoreceptor | |
| JP2756569B2 (en) | Electrophotographic photoreceptor | |
| JPH0820744B2 (en) | Electrophotographic photoreceptor | |
| JP2668241B2 (en) | Electrophotographic photoreceptor | |
| JP2565314B2 (en) | Electrophotographic photoreceptor | |
| JP2789100B2 (en) | Electrophotographic photoreceptor | |
| JPH0820743B2 (en) | Electrophotographic photoreceptor | |
| JPS6382417A (en) | Manufacturing method of electrophotographic photoreceptor | |
| JPS6381440A (en) | electrophotographic photoreceptor | |
| JPH01274156A (en) | electrophotographic photoreceptor | |
| JPS6381444A (en) | Electrophotographic sensitive body | |
| JPS6382419A (en) | Production of electrophotographic sensitive body | |
| JPH01274155A (en) | electrophotographic photoreceptor | |
| JP2572600B2 (en) | Electrophotographic photoreceptor | |
| JPS6382416A (en) | Electrophotographic sensitive body | |
| JPS63104063A (en) | Electrophotographic sensitive body | |
| JPH01271761A (en) | electrophotographic photoreceptor | |
| JPS6381442A (en) | electrophotographic photoreceptor | |
| JPS6381439A (en) | Electrophotographic sensitive body | |
| JP2657490C (en) | ||
| JPH01277246A (en) | Electrophotographic sensitive body |
| Date | Code | Title | Description |
|---|---|---|---|
| EXPY | Cancellation because of completion of term |