【0001】[0001]
【産業上の利用分野】この発明はバッテリーを電源とし
て自立移動しながら作業を行ない、自動で電力を供給す
るために自らを充電器へ誘導し、充電器から充電を行う
移動ロボットに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile robot that works independently while using a battery as a power source, guides itself to a charger to automatically supply power, and charges from the charger. .
【0002】[0002]
【従来の技術】従来、無経路で動く移動作業用ロボット
のバッテリーに電力を供給するためには、作業終了後に
充電器の位置まで本体を操作者が動かして充電コ−ドを
機械的に接続するものであった。そこで特開平4−54
804号公報に開示するような非対称交番磁界を用いた
移動ロボットの誘導装置と誘導充電装置を提案した。こ
の方式で、原理的に自動充電が可能な移動ロボットが実
現できる。2. Description of the Related Art Conventionally, in order to supply electric power to a battery of a mobile work robot that moves without a path, an operator moves a main body to a position of a charger after the work is completed to mechanically connect a charging cord. It was something to do. Then, JP-A-4-54
We have proposed an induction device and an induction charging device for a mobile robot using an asymmetric alternating magnetic field as disclosed in Japanese Patent No. 804. With this method, a mobile robot capable of automatically charging can be realized in principle.
【0003】[0003]
【発明が解決しようとする課題】しかしながら非対称交
番磁界を用いた制御は、微弱電力で誘導磁界を発生させ
ることが困難であり、このため移動ロボット本体の誘導
用の磁界を強く送出することになり、安全性に欠けるも
のであった。移動作業用ロボットは、自動機器として使
用するものであるにもかかわらず、充電作業だけが全自
動化の妨げになっており、自動充電に対する確実で安全
な方式が望まれている。However, in the control using the asymmetrical alternating magnetic field, it is difficult to generate the induction magnetic field with weak electric power, and therefore the magnetic field for guiding the mobile robot body is strongly transmitted. It was unsafe. Although the mobile work robot is used as an automatic device, only the charging work is an obstacle to full automation, and a reliable and safe system for automatic charging is desired.
【0004】本発明は上記問題を解決するもので、正負
対称な交番磁界を用いて本体を充電器に誘導させること
をを可能とする移動ロボットを提供することを第一の目
的とする。The present invention solves the above problems, and a first object of the present invention is to provide a mobile robot capable of guiding a main body to a charger by using a positive and negative symmetrical alternating magnetic field.
【0005】第二の目的は誘導磁界と充電磁界を切り換
えて用い、誘導磁界を一定の強さに抑え、安全且つ確実
に誘導可能とする移動ロボットを提供することである。A second object of the present invention is to provide a mobile robot in which the induction magnetic field and the charging magnetic field are switched and used, and the induction magnetic field is suppressed to a constant strength so that the robot can be safely and reliably guided.
【0006】第三の目的は、充電状態を充電器側にフィ
ードバックすることにより、電力制御を充電器側1カ所
で行なう制御箇所の少ない簡易な構成の移動ロボットを
提供するものである。A third object of the present invention is to provide a mobile robot having a simple structure in which the charging state is fed back to the charger side to control the electric power at one place on the charger side with a small number of control points.
【0007】第四の目的は、フィードバックの手段に赤
外光を用い、電流と電圧の信号を遮蔽手段を用いて分離
し、且つ磁界の影響を受けずに確実に充電状態を伝達す
る移動ロボットを提供するものである。A fourth object is to use infrared light as the feedback means, separate the current and voltage signals by using the shielding means, and reliably transmit the charged state without being affected by the magnetic field. Is provided.
【0008】第五の目的は、本体を充電器に誘導する際
に移動の切り返し動作を行なわせ確実に充電器への誘導
を行なう移動ロボットを提供するものである。A fifth object of the present invention is to provide a mobile robot which surely guides the charger by performing a movement switching operation when guiding the main body to the charger.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明による第一の技術的手段は、移動ロボット
を、電源であるバッテリーと、外部から電力を受ける受
電手段と、本体後部に設けた左右独立駆動輪構成の操舵
兼駆動手段と、本体後部左右に設けた姿勢検出手段と、
この操舵兼駆動手段の上部に設けた垂直磁界検出コイル
並びに本体の前後進方向に配置した第一の水平磁界検出
コイルとで構成される磁界方向検出手段と、前記垂直磁
界検出コイル並びに本体の前後進方向と直角に配置した
第二の水平磁界検出コイルとで構成される磁界位置検出
手段とを備えて、前記磁界方向検出手段の出力により操
舵兼駆動手段を制御するロボット本体と、この本体の外
部に設置され、本体を誘導する第一の交番磁界発生手段
および電力を外部から本体へ供給する給電手段とを備え
る充電器とで構成したものである。In order to achieve the above object, the first technical means according to the present invention comprises a mobile robot, a battery as a power source, a power receiving means for receiving power from the outside, and a rear portion of the main body. Steering and driving means of left and right independent drive wheels configuration, attitude detection means provided on the left and right rear of the main body,
A magnetic field direction detecting means composed of a vertical magnetic field detecting coil provided on the steering and driving means and a first horizontal magnetic field detecting coil arranged in the forward and backward direction of the main body, and the vertical magnetic field detecting coil and the front and rear of the main body. A robot main body having magnetic field position detecting means composed of a second horizontal magnetic field detecting coil arranged at right angles to the advancing direction, and controlling the steering and driving means by the output of the magnetic field direction detecting means; The charger is provided outside and is provided with a first alternating magnetic field generating means for guiding the main body and a power feeding means for supplying electric power to the main body from the outside.
【0010】また第二の技術的手段は、第一の技術的手
段による移動ロボットにおいて、前記給電手段を第二の
交番磁界発生手段とし、前記第一の交番磁界発生手段と
交互に切り換えて駆動する磁界切換手段と、この磁界切
換手段の出力で第一の交番磁界発生手段駆動時に磁界強
度を一定に制御する磁界強度制御手段とを前記充電器に
設け、前記第二の交番磁界発生手段と水平に対向する位
置に誘導電力を受給しバッテリーを充電する受電手段を
前記ロボット本体に設けたものである。A second technical means is the mobile robot according to the first technical means, wherein the power feeding means is the second alternating magnetic field generating means, and the driving is performed by alternately switching with the first alternating magnetic field generating means. And a magnetic field strength control means for controlling the magnetic field strength to be constant when the first alternating magnetic field generation means is driven by the output of the magnetic field switching means. The robot main body is provided with a power receiving unit that receives the inductive power and charges the battery at a horizontally opposed position.
【0011】また第三の技術的手段は、第二の技術的手
段による移動ロボットにおいて、前記受電手段より充電
電流と充電電圧を検出する充電状態検出手段と、充電器
へフィードバックする充電状態伝達手段を前記ロボット
本体に、この充電状態伝達手段からの信号を受ける信号
検出手段を前記充電器に設け、この信号検出手段により
前記磁界強度制御手段で第二の交番磁界発生手段の磁界
強度を制御するものである。A third technical means is, in the mobile robot according to the second technical means, a charging state detecting means for detecting a charging current and a charging voltage from the power receiving means, and a charging state transmitting means for feeding back to a charger. The robot main body is provided with signal detection means for receiving a signal from the charging state transmission means in the charger, and the magnetic field strength control means controls the magnetic field strength of the second alternating magnetic field generation means by the signal detection means. It is a thing.
【0012】また第四の技術的手段は、第三の技術的手
段による移動ロボットにおいて、前記充電状態伝達手段
に赤外発光素子を用い、充電電流を赤外光パルス駆動と
し、充電電圧を赤外光直流駆動として、前記信号検出手
段を赤外受光素子で構成し、充電電流信号伝達経路と充
電電圧信号伝達経路を遮蔽手段で分離したものである。A fourth technical means is the mobile robot according to the third technical means, wherein an infrared light emitting element is used as the charging state transmitting means, the charging current is an infrared light pulse drive, and the charging voltage is red. For external light direct current drive, the signal detecting means is composed of an infrared light receiving element, and the charging current signal transmission path and the charging voltage signal transmission path are separated by a shielding means.
【0013】さらに第五の技術的手段は、第一から第四
の技術的手段による移動ロボットにおいて、前記磁界位
置検出手段による磁界の存在位置検出後、前記充電器の
第一の交番磁界発生手段から送出される磁力線の方向を
基準とする本体の相対角度に応じて且つ左右独立駆動輪
の最高速度を一定にして左右車輪を後進制御し、左右の
姿勢検出手段の片方で前記充電器との接触を検出後、一
定時間接触した側の車輪を前進させた後磁力線の方向を
基準とする本体の相対角度に応じた後進動作を繰り返
し、再度姿勢検出手段の片方で充電器との接触を検出
後、この接触した側と反対側の車輪を一定速度で後進さ
せ充電器に本体を誘導する誘導処理手段を前記ロボット
本体に設けたものである。A fifth technical means is, in the mobile robot according to the first to fourth technical means, after detecting the existing position of the magnetic field by the magnetic field position detecting means, first alternating magnetic field generating means of the charger. In response to the relative angle of the main body with respect to the direction of the magnetic force lines sent from the left and right independent driving wheels, the left and right wheels are controlled to move backward with the maximum speed of the left and right independent driving wheels kept constant. After the contact is detected, the wheel on the side that has been in contact for a certain period of time is moved forward, and then the backward movement is repeated according to the relative angle of the main body based on the direction of the magnetic field lines, and the contact with the charger is detected again by one of the attitude detection means. After that, the robot body is provided with a guidance processing means for guiding the body to the charger by moving the wheel on the side opposite to the contact side backward at a constant speed.
【0014】[0014]
【作用】以上のように構成された本発明による第一の技
術的手段によれば、移動ロボットの本体に設けた2つの
コイルの組み合わせによる磁界位置検出手段で、充電器
の位置すなわち充電器内に設けた第一の交番磁界発生手
段から発生される磁界の存在位置を検出し、同様に2つ
のコイルの組み合わせによる磁界方向検出手段で、正負
対称な磁界の発生方向を検出して磁界の方向すなわち外
部にある充電器の方向へ操舵兼駆動手段で移動ロボット
の本体を誘導し、充電器と対向する位置に本体が到達し
たことを姿勢検出手段で確認して、充電器の給電手段か
ら本体の受電手段に電力を電送して本体のバッテリーに
確実に充電するものである。According to the first technical means of the present invention configured as described above, the position of the charger, that is, the inside of the charger, is detected by the magnetic field position detecting means by the combination of the two coils provided in the main body of the mobile robot. The position of the magnetic field generated from the first alternating magnetic field generating means provided in the same is detected, and similarly, the magnetic field direction detecting means by the combination of the two coils detects the positive and negative symmetrical magnetic field generating directions to detect the magnetic field direction. That is, the main body of the mobile robot is guided by the steering and driving means toward the external charger, the attitude detecting means confirms that the main body has reached the position facing the charger, and the main body is fed from the power feeding means of the charger. The electric power is transmitted to the power receiving means to reliably charge the battery of the main body.
【0015】また第二の技術的手段によれば、充電器の
給電手段を第二の交番磁界発生手段とし、本体には受電
手段を設け、充電器側でこの充電磁界と誘導の為の第一
の交番磁界発生手段による誘導磁界を切り換えて用い、
誘導磁界を磁界強度制御手段で一定の強さに抑え、安全
且つ確実に誘導可能とするものである。According to the second technical means, the power feeding means of the charger is the second alternating magnetic field generating means, the main body is provided with the power receiving means, and the charger side is provided with the first alternating magnetic field and the second magnetic field inducing means. Switching the induction magnetic field by one alternating magnetic field generating means,
The induced magnetic field is suppressed to a constant strength by the magnetic field strength control means, and it is possible to guide safely and reliably.
【0016】また第三の技術的手段によれば、本体の受
電手段からバッテリーに供給される電圧と電流の充電状
態を検出する充電状態検出手段と充電器側にフィードバ
ックする充電状態伝達手段と、充電器側の磁界強度制御
手段とにより、電力制御を充電器側1カ所で行ない、制
御箇所の少ない構成としたものである。According to the third technical means, a charging state detecting means for detecting the charging state of the voltage and current supplied from the power receiving means of the main body to the battery, and a charging state transmitting means for feeding back to the charger side, With the magnetic field intensity control means on the charger side, power control is performed at one location on the charger side, and the number of control points is small.
【0017】また第四の技術的手段によれば、充電電流
を赤外光パルス駆動手段で、充電電圧を赤外光直流駆動
手段で本体から充電器にフィードバックし、電圧電流そ
れぞれを遮蔽手段を用いて分離し、且つ赤外光を用いた
ことで磁界の影響を受けずに確実に充電状態を伝達する
構成としたものである。According to the fourth technical means, the charging current is fed back to the charger from the main body by the infrared light pulse driving means and the charging voltage is fed back to the charger by the infrared light DC driving means, and the voltage and current are respectively shielded by the means. It is configured such that the charged state is reliably transmitted without being affected by the magnetic field by using the infrared light and separating it.
【0018】さらに第五の技術的手段によれば、誘導処
理手段を設け本体を充電器に誘導する際に移動の切り返
し動作を行なわせ確実に充電器への誘導を行なわせるよ
うにしたものである。Further, according to the fifth technical means, the induction processing means is provided so as to perform the switching operation of the movement when the main body is guided to the charger so as to surely guide the charger. is there.
【0019】[0019]
【実施例】以下、本発明による移動ロボットの一実施例
を図面を参照しながら説明する。図1、図2並びに図3
において、移動ロボットの本体1の下部には操舵兼駆動
輪2R,2Lとモ−タ3R,3Lとで構成される操舵兼
駆動手段4と、回転自在なキャスタ5が設けられてい
る。また操舵兼駆動手段4の上部には本体1の前後進方
向に配置した第一の水平磁界検出コイル6と垂直磁界検
出コイル7で構成される磁界方向検出手段8と、本体1
の前後進方向と直角に配置した第二の水平磁界検出コイ
ル9と垂直磁界検出コイル7とで構成される磁界位置検
出手段10がプリント基板11上に設けられており、誘
導処理手段12に接続されている。13は外部からの電
力を受ける受電手段であり、ここでは電力電送される磁
界を受けるコイル構成としている。14は充電状態検出
手段であり、バッテリー15に供給される充電電圧と充
電電流を検出しており、充電状態伝達手段16と接続さ
れている。本体1後部に設けた17R,17Lは左右一
対の接触スイッチであり、姿勢検出手段18を構成して
おり、次に述べる充電器19に対する本体1の姿勢を検
出するものである。次に、壁20の際に設置された充電
器19には、本体1を誘導するための第一の交番磁界発
生手段21と本体1に電力を供給する給電手段22を設
けている。第一の交番磁界発生手段21は垂直方向と4
5゜傾けており垂直水平両方向に磁界を送出する構成と
している。またここでは、給電手段22をコイルとし、
第二の磁界発生手段として構成している。また充電器1
9は磁界切換手段23を備え、第一の交番磁界発生手段
21と給電手段22を交互に切り換える構成としてお
り、充電器19下部の本体1の検出スイッチ24により
切り換えるものである。25は信号検出手段であり、2
6は磁界強度制御手段である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a mobile robot according to the present invention will be described below with reference to the drawings. 1, 2 and 3
In the lower part of the main body 1 of the mobile robot, there are provided a steering / driving means 4 composed of steering / driving wheels 2R and 2L and motors 3R and 3L, and a rotatable caster 5. A magnetic field direction detecting means 8 composed of a first horizontal magnetic field detecting coil 6 and a vertical magnetic field detecting coil 7 arranged in the forward and backward direction of the main body 1 is provided above the steering and driving means 4, and the main body 1
A magnetic field position detecting means 10 composed of a second horizontal magnetic field detecting coil 9 and a vertical magnetic field detecting coil 7 arranged at right angles to the forward / backward direction of is provided on the printed board 11 and connected to the guidance processing means 12. Has been done. Reference numeral 13 is a power receiving means for receiving electric power from the outside, and here has a coil structure for receiving a magnetic field for electric power transmission. Reference numeral 14 is a charge state detecting means, which detects the charge voltage and the charge current supplied to the battery 15, and is connected to the charge state transmitting means 16. Reference numerals 17R and 17L provided on the rear portion of the main body 1 are a pair of left and right contact switches, which constitute attitude detecting means 18, and detect the attitude of the main body 1 with respect to the charger 19 described below. Next, the charger 19 installed at the wall 20 is provided with a first alternating magnetic field generating means 21 for guiding the main body 1 and a power feeding means 22 for supplying electric power to the main body 1. The first alternating magnetic field generating means 21 has a vertical direction of 4
It is tilted at 5 ° and is configured to send out a magnetic field in both vertical and horizontal directions. Further, here, the power feeding means 22 is a coil,
It is configured as a second magnetic field generating means. Also charger 1
9 is provided with a magnetic field switching means 23, and is configured to alternately switch the first alternating magnetic field generating means 21 and the power feeding means 22, and is switched by the detection switch 24 of the main body 1 below the charger 19. 25 is a signal detecting means,
6 is a magnetic field strength control means.
【0020】次に、図4で充電器19の回路構成を説明
する。電源30に直列接続されたトランジスタ31,3
2で、コンデンサ33とリレー接点34を介して直列に
接続される第一の磁界発生手段21であるコイル並びに
給電手段22であるコイルとで構成されるLC直列共振
回路に電力を供給する構成としている。尚ダイオ−ド3
5,36はフライホイ−ルダイオ−ドである。充電器1
9に設けられた検出スイッチ24でリレーコイル37を
駆動しリレー接点34を切り換える構成としている。本
実施例では、このリレーにより磁界切換手段23を構成
しており、充電器19と本体1が接すると検出スイッチ
24がONとなり、磁界切換手段23が駆動されて第一
の磁界発生手段21から給電手段22にLC共振回路の
コイルが切り換えられる。トランジスタ31,32のベ
ースには磁界強度制御手段26が接続され、また充電電
圧を検出する赤外受光素子38と充電電流を検出する赤
外受光素子39とで構成される信号検出手段25と磁界
切換手段23とが接続されている。Next, the circuit configuration of the charger 19 will be described with reference to FIG. Transistors 31, 3 connected in series to the power supply 30
2, the power is supplied to the LC series resonance circuit composed of the coil which is the first magnetic field generating means 21 and the coil which is the power feeding means 22, which are connected in series via the capacitor 33 and the relay contact 34. There is. In addition, diode 3
Reference numerals 5 and 36 are flywheel diodes. Charger 1
The detection switch 24 provided in 9 drives the relay coil 37 to switch the relay contact 34. In this embodiment, this relay constitutes the magnetic field switching means 23. When the charger 19 and the main body 1 come into contact with each other, the detection switch 24 is turned on, the magnetic field switching means 23 is driven, and the first magnetic field generating means 21 is driven. The coil of the LC resonance circuit is switched to the power feeding means 22. The magnetic field strength control means 26 is connected to the bases of the transistors 31 and 32, and the signal detection means 25 and the magnetic field composed of an infrared light receiving element 38 for detecting a charging voltage and an infrared light receiving element 39 for detecting a charging current. The switching means 23 is connected.
【0021】次に図5を併用してこの回路の出力波形並
びに動作を説明する。トランジスタ31,32のベ−ス
電圧をSW1,SW2波形に示すように磁界強度制御手
段26で交互にONすると、第一の磁界発生手段21の
電圧はVLとなり、電流はILの如く正弦波となり正負
対称な誘導磁界が発生される。この時には、磁界強度制
御手段26は弱い一定出力の誘導磁界を出すよう制御す
る。検出スイッチ24がONとなると給電手段22に回
路が切り替わると同時に、上記のように磁界強度制御手
段26で磁界切り換え手段23と信号検出手段25から
の出力に従って給電手段22への電力が制御される。Next, the output waveform and operation of this circuit will be described with reference to FIG. When the base voltages of the transistors 31 and 32 are alternately turned on by the magnetic field strength control means 26 as shown by SW1 and SW2 waveforms, the voltage of the first magnetic field generation means 21 becomes VL and the current becomes a sine wave like IL. Positive and negative symmetrical induction magnetic fields are generated. At this time, the magnetic field strength control means 26 controls so as to output a weak constant output induction magnetic field. When the detection switch 24 is turned on, the circuit is switched to the power feeding means 22, and at the same time, the power to the power feeding means 22 is controlled by the magnetic field strength control means 26 according to the outputs from the magnetic field switching means 23 and the signal detection means 25 as described above. .
【0022】次に、図6を用いて本体1の磁界方向検出
手段8と磁界位置検出手段10の回路構成を説明する。
第一の水平磁界検出コイル6の出力をx、垂直磁界検出
コイル7の出力をz、第二の水平磁界検出コイル9の出
力をyで示した。xとzの出力から|z−x|と|z+
x|を作り、|z−x|+|z+x|の出力を取りだし
たものが磁界方向検出手段8である。 同様に、yとz
の出力から|z−y|と|z+y|を作り、|z−y|
+|z+y|の出力を取りだしたものが磁界位置検出手
段10である。x,y,zとも交番磁界の周期で振幅が
時間変化しており、zは本体1と充電器19の距離が一
定であれば本体1の方向に左右されず振幅|z|が一定
となる。これに対して、x,yは本体1の方向により振
幅|x||y|が変化する。Next, the circuit configuration of the magnetic field direction detecting means 8 and the magnetic field position detecting means 10 of the main body 1 will be described with reference to FIG.
The output of the first horizontal magnetic field detection coil 6 is shown by x, the output of the vertical magnetic field detection coil 7 is shown by z, and the output of the second horizontal magnetic field detection coil 9 is shown by y. From the output of x and z, | z−x | and | z +
The magnetic field direction detecting means 8 is a device that produces x | and takes out the output of | z−x | + | z + x |. Similarly, y and z
| Z−y | and | z + y | are created from the output of |
The magnetic field position detecting means 10 takes out the output of + | z + y |. In x, y, and z, the amplitude changes with time in the cycle of the alternating magnetic field. If the distance between the main body 1 and the charger 19 is constant, z does not depend on the direction of the main body 1 and the amplitude | z | is constant. . On the other hand, in x and y, the amplitude | x || y | changes depending on the direction of the main body 1.
【0023】図7に磁界方向検出手段8の出力を示し
た。これは、本体1と充電器19の距離を一定とし本体
1と充電器19との相対角度θを横軸に電圧出力Vを縦
軸に取った各出力である。|x|では左右対称に出力が
取れているため方向検出ができないが、|z−x|+|
z+x|では−180゜から+180゜まで異なる出力
となっており本体1の存在するすべての範囲で方向検出
が可能である。磁界位置検出手段10の出力|z−y|
+|z+y|についても同様であり、このため本体1の
磁界位置検出手段10が充電器19の第一の磁界発生手
段21を通過した瞬間に出力の正負が逆転するため逆転
した地点で充電器19の位置を判別できることになる。FIG. 7 shows the output of the magnetic field direction detecting means 8. This is each output in which the horizontal angle is the relative angle θ between the main body 1 and the charger 19 and the voltage output V is the vertical axis, with the distance between the main body 1 and the charger 19 being constant. In the case of | x |, the output cannot be detected because the output is symmetrical, but | z−x | + |
With z + x |, the outputs are different from −180 ° to + 180 °, and the direction can be detected in the entire range where the main body 1 exists. Output of magnetic field position detection means 10 | z−y |
The same applies to + | z + y |. Therefore, at the moment when the magnetic field position detection means 10 of the main body 1 passes the first magnetic field generation means 21 of the charger 19, the positive and negative of the output are reversed, and the charger is reversed at the point. The position of 19 can be discriminated.
【0024】次に、図8を用いて本体1の充電回路につ
いて説明する。受電手段13に接続されたダイオード4
0とコンデンサ41で整流平滑を構成している。整流平
滑された充電電圧42と基準電圧43とをアンプ44で
比較増幅し充電電圧42を検出する構成としている。ま
た、充電電流をモニター抵抗45で電圧に変換して検出
し、アンプ46で比較増幅し充電電流として検出する構
成としている。このふたつのアンプ44,46と基準電
圧43並びにモニター抵抗45で充電状態検出手段14
を構成している。また充電電流は、逆流防止ダイオード
47を介してバッテリー15に供給される構成である。
アンプ44の出力は抵抗48を介して充電状態伝達手段
16である赤外発光素子49に接続されており、充電電
流は常時一定に制御すべきであるため、アンプ46の出
力はV/F変換器50と抵抗51を介して充電状態伝達
手段16である赤外発光素子52に接続されている。こ
の赤外発光素子49は直流駆動であり、赤外発光素子5
0はパルス駆動されパルス周波数が電流値を伝達してい
る。52は充電電流信号伝達経路と充電電圧信号伝達経
路を分離する遮蔽手段である。Next, the charging circuit of the main body 1 will be described with reference to FIG. Diode 4 connected to power receiving means 13
0 and the capacitor 41 constitute rectifying and smoothing. The rectified and smoothed charging voltage 42 and the reference voltage 43 are compared and amplified by an amplifier 44 to detect the charging voltage 42. Further, the charging current is converted into a voltage by the monitor resistor 45 and detected, and the amplifier 46 compares and amplifies it to detect it as a charging current. The charge state detecting means 14 is constituted by the two amplifiers 44 and 46, the reference voltage 43 and the monitor resistor 45.
Are configured. The charging current is supplied to the battery 15 via the backflow prevention diode 47.
The output of the amplifier 44 is connected to the infrared light emitting element 49 which is the charging state transmitting means 16 via the resistor 48, and the charging current should always be controlled to be constant. Therefore, the output of the amplifier 46 is V / F converted. It is connected to the infrared light emitting element 52 which is the charging state transmission means 16 via the device 50 and the resistor 51. This infrared light emitting element 49 is driven by direct current, and the infrared light emitting element 5
0 is pulse-driven and the pulse frequency transmits the current value. Reference numeral 52 is a shielding means for separating the charging current signal transmission path and the charging voltage signal transmission path.
【0025】次に、図9と図10を用いて充電器19へ
の本体1の誘導動作を説明する。これは本体1内の誘導
処理手段12で行っている誘導処理動作である。充電器
19への誘導処理動作がSTARTで始まると、壁60
に沿って移動する壁沿い移動を開始する(図10の
A)。充電器19からの磁界位置を検出すると前記本体
1と充電器19との相対角度θに従って左右車輪速度を
設定しながら後進動作にはいる(図10のB)。姿勢検
出手段18の接触スイッチ17Lが作動すると(図10
のC)、姿勢検出手段18の作動が一回目であれば作動
した側の車輪ここでは左車輪2Lを一定時間一定速度で
前進させる。再度、本体1と充電器19との相対角度θ
に従って左右車輪速度を設定しながら後進動作にはいる
(図10のD)。姿勢検出手段18の接触スイッチ17
Lが作動すると、姿勢検出手段18の作動が二回目であ
るので、今度は姿勢検出手段18の作動側と反対側の車
輪を一定速度で後退させ、先に作動した姿勢検出手段1
8と反対側の姿勢検出手段が作動するとENDとなり、
誘導動作が終了する(図10のE)。Next, the guiding operation of the main body 1 to the charger 19 will be described with reference to FIGS. 9 and 10. This is a guidance processing operation performed by the guidance processing means 12 in the main body 1. When the induction processing operation to the charger 19 starts at START, the wall 60
The movement along the wall which starts along the wall is started (A in FIG. 10). When the position of the magnetic field from the charger 19 is detected, the left and right wheel speeds are set in accordance with the relative angle θ between the main body 1 and the charger 19 and the vehicle is in reverse operation (B in FIG. 10). When the contact switch 17L of the posture detecting means 18 is activated (see FIG. 10).
C), if the operation of the posture detecting means 18 is the first time, the wheel on the operated side, here the left wheel 2L, is moved forward at a constant speed for a certain period of time. Again, the relative angle θ between the main body 1 and the charger 19
In accordance with the above, the left and right wheel speeds are set and the vehicle is in the reverse movement (D in FIG. 10). Contact switch 17 of attitude detecting means 18
When L is activated, the posture detecting means 18 is activated for the second time. Therefore, the wheel on the side opposite to the operating side of the posture detecting means 18 is moved backward at a constant speed, and the posture detecting means 1 which is activated first is moved.
When the posture detecting means on the side opposite to 8 is activated, it becomes END,
The guiding operation ends (E in FIG. 10).
【0026】図10中矢線で本体1にある磁界方向検出
手段8の軌跡を示した。The locus of the magnetic field direction detecting means 8 in the main body 1 is shown by the arrow in FIG.
【0027】[0027]
【発明の効果】本発明における第一の技術的手段によれ
ば、移動ロボットの本体に設けた2つのコイルの組み合
わせによる磁界位置検出手段で、充電器の位置すなわち
充電器内に設けた第一の交番磁界発生手段から発生され
る磁界の存在位置を検出し、同様に2つのコイルの組み
合わせによる磁界方向検出手段で、正負対称な磁界の発
生方向を検出して磁界の方向すなわち外部にある充電器
の方向へ操舵兼駆動手段で移動ロボットの本体を誘導
し、充電器と対向する位置に本体が到達したことを姿勢
検出手段で確認して、充電器の給電手段から本体の受電
手段に電力を電送して本体のバッテリーに確実に充電す
る移動ロボットを提供できるものである。According to the first technical means of the present invention, the magnetic field position detecting means by the combination of two coils provided in the main body of the mobile robot is provided with the first position provided in the charger, that is, in the charger. The presence position of the magnetic field generated from the alternating magnetic field generating means is detected, and similarly, the magnetic field direction detecting means by the combination of the two coils detects the positive and negative symmetric magnetic field generating directions to detect the direction of the magnetic field, that is, external charging. Guide the main body of the mobile robot in the direction of the charger by steering and driving means, confirm that the main body has reached the position facing the charger with the posture detection means, and supply power from the power feeding means of the charger to the power receiving means of the main body. It is possible to provide a mobile robot that transfers the electric power to reliably charge the battery of the main body.
【0028】また第二の技術的手段によれば、充電器の
給電手段を第二の交番磁界発生手段とし、本体には受電
手段を設け、充電器側でこの充電磁界と誘導の為の第一
の交番磁界発生手段による誘導磁界を切り換えて用い、
誘導磁界を磁界強度制御手段で一定の強さに抑え、安全
且つ確実に誘導可能とする移動ロボットを提供できるも
のである。According to the second technical means, the power feeding means of the charger is the second alternating magnetic field generating means, the power receiving means is provided in the main body, and the charging magnetic field and the first means for induction are provided on the charger side. Switching the induction magnetic field by one alternating magnetic field generating means,
It is possible to provide a mobile robot capable of safely and reliably guiding an induced magnetic field to a constant strength by a magnetic field strength control means.
【0029】また第三の技術的手段によれば、本体の受
電手段からバッテリーに供給される電圧と電流を充電状
態を検出する充電状態検出手段と充電器側にフィードバ
ックする充電状態伝達手段と、充電器側の磁界強度制御
手段とにより、電力制御を充電器側1カ所で行ない、制
御箇所の少ない移動ロボットを提供できるものである。According to the third technical means, the charging state detecting means for detecting the charging state of the voltage and current supplied from the power receiving means of the main body to the battery, and the charging state transmitting means for feeding back to the charger side, By the magnetic field strength control means on the charger side, power control can be performed at one location on the charger side, and a mobile robot with few control points can be provided.
【0030】また第四の技術的手段によれば、充電電流
を赤外光パルス駆動手段で、充電電圧を赤外光直流駆動
手段で本体から充電器にフィードバックし、電圧、電流
それぞれを遮蔽手段を用いて分離し、且つ赤外光を用い
たことで磁界の影響を受けずに確実に充電状態を伝達す
る移動ロボットを提供できるものである。According to the fourth technical means, the charging current is fed back from the main body to the charger by the infrared light pulse driving means and the charging voltage is fed back to the charger by the infrared light direct current driving means, and the voltage and current are shielded respectively. It is possible to provide a mobile robot that reliably transmits the state of charge without being affected by the magnetic field by using the infrared light and separating using.
【0031】さらに第五の技術的手段によれば、誘導処
理手段により本体を充電器に誘導する際に移動の切り返
し動作を行なわせ確実に充電器への誘導を行なわせる移
動ロボットを提供できるものである。Further, according to the fifth technical means, it is possible to provide a mobile robot which performs a switching operation of movement when the main body is guided to the charger by the guidance processing means to surely guide the charger. Is.
【図1】本発明の一実施例による移動ロボットの側断面
図FIG. 1 is a side sectional view of a mobile robot according to an embodiment of the present invention.
【図2】同移動ロボットの平断面図FIG. 2 is a plan sectional view of the mobile robot.
【図3】同移動ロボットのブロック図FIG. 3 is a block diagram of the mobile robot.
【図4】同移動ロボットにおける充電器の回路構成図FIG. 4 is a circuit configuration diagram of a charger in the mobile robot.
【図5】同充電器の出力波形図[Fig. 5] Output waveform diagram of the charger
【図6】同移動ロボットにおける磁界検出部の回路構成
図FIG. 6 is a circuit configuration diagram of a magnetic field detection unit in the mobile robot.
【図7】(a)同磁界検出部の出力波形図 (b)同磁界検出部の出力波形図 (c)同磁界検出部の出力波形図7A is an output waveform diagram of the same magnetic field detection unit, FIG. 7B is an output waveform diagram of the same magnetic field detection unit, and FIG. 7C is an output waveform diagram of the same magnetic field detection unit.
【図8】同移動ロボットの充電回路構成図FIG. 8 is a block diagram of a charging circuit of the mobile robot.
【図9】同移動ロボットにおける誘導処理動作のフロー
チャートFIG. 9 is a flowchart of a guidance processing operation in the mobile robot.
【図10】同移動ロボットの誘導動作説明図FIG. 10 is an explanatory diagram of the guiding operation of the mobile robot.
1 本体 4 操舵兼駆動手段 8 磁界方向検出手段 10 磁界位置検出手段 13 受電手段 15 バッテリー 18 姿勢検出手段 19 充電器 21 第一の交番磁界発生手段 22 給電手段 DESCRIPTION OF SYMBOLS 1 Main body 4 Steering and driving means 8 Magnetic field direction detecting means 10 Magnetic field position detecting means 13 Power receiving means 15 Battery 18 Attitude detecting means 19 Charger 21 First alternating magnetic field generating means 22 Power feeding means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 光康 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤原 俊明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 江口 修 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 乾 弘文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高木 祥史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石橋 崇文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 黒木 義貴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuyasu Ogawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshiaki Fujiwara, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Osamu Eguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hirofumi Inui, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Yoshifumi Takagi Osaka 1006, Kadoma, Kadoma City, Fuchu Matsushita Electric Industrial Co., Ltd. (72) Takafumi Ishibashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsuda Electric Industrial Co., Ltd. (72) Yoshiki Kuroki 1006 Kadoma, Kadoma City, Osaka Matsushita Denki Sangyo Co., Ltd.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20932693AJP3319062B2 (en) | 1993-08-24 | 1993-08-24 | Mobile robot |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20932693AJP3319062B2 (en) | 1993-08-24 | 1993-08-24 | Mobile robot |
| Publication Number | Publication Date |
|---|---|
| JPH0764637Atrue JPH0764637A (en) | 1995-03-10 |
| JP3319062B2 JP3319062B2 (en) | 2002-08-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP20932693AExpired - Fee RelatedJP3319062B2 (en) | 1993-08-24 | 1993-08-24 | Mobile robot |
| Country | Link |
|---|---|
| JP (1) | JP3319062B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2851059A1 (en)* | 2003-02-06 | 2004-08-13 | Samsung Kwangju Electronics Co | ROBOT CLEANER SYSTEM COMPRISING AN EXTERNAL RECHARGE APPARATUS AND METHOD FOR MOORING SUCH A ROBOT CLEANER TO SUCH AN EXTERNAL RECHARGE APPARATUS |
| SG114645A1 (en)* | 2003-12-29 | 2005-09-28 | Singapore Tech Dynamics Pte | Method and apparatus for measuring attitude |
| JP2010051089A (en)* | 2008-08-21 | 2010-03-04 | Fujitsu Ltd | Non-contacting power transmission system |
| JP2010088178A (en)* | 2008-09-30 | 2010-04-15 | Fujitsu Ltd | Charging device and charging method |
| JP2010183813A (en)* | 2009-02-09 | 2010-08-19 | Toyota Industries Corp | Resonant contactless charging system |
| JP2011182624A (en)* | 2010-02-08 | 2011-09-15 | Showa Aircraft Ind Co Ltd | Transmitter for power-supply instruction |
| CN102237724A (en)* | 2010-04-24 | 2011-11-09 | 祝常红 | Self-adaptive wireless charging system for electric vehicle |
| JP2012005308A (en)* | 2010-06-21 | 2012-01-05 | Panasonic Corp | Wireless power transmission system |
| WO2012121184A1 (en)* | 2011-03-10 | 2012-09-13 | 日本電気株式会社 | System for contactlessly supplying power to moving body |
| CN102834292A (en)* | 2010-04-08 | 2012-12-19 | 高通股份有限公司 | Wireless power antenna alignment adjustment system for vehicles |
| JP2014513311A (en)* | 2011-05-13 | 2014-05-29 | ベックマン コールター, インコーポレイテッド | Systems and methods including laboratory product transport elements |
| JP2014518607A (en)* | 2011-04-13 | 2014-07-31 | クアルコム,インコーポレイテッド | Antenna alignment and vehicle guidance for wireless charging of electric vehicles |
| CN104656652A (en)* | 2015-01-05 | 2015-05-27 | 温州大学 | Method for fully-automatic water transportation of robot and water transporting robot system |
| US9561730B2 (en) | 2010-04-08 | 2017-02-07 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
| CN107775640A (en)* | 2017-12-05 | 2018-03-09 | 深圳市银星智能科技股份有限公司 | Mobile robot |
| CN109309409A (en)* | 2017-07-27 | 2019-02-05 | Tdk株式会社 | Coil unit and power supply unit, power receiving device and the Wireless power transmission system for using it |
| CN110829513A (en)* | 2018-08-08 | 2020-02-21 | 苏州宝时得电动工具有限公司 | Self-moving equipment, charging docking system and charging docking method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2851059A1 (en)* | 2003-02-06 | 2004-08-13 | Samsung Kwangju Electronics Co | ROBOT CLEANER SYSTEM COMPRISING AN EXTERNAL RECHARGE APPARATUS AND METHOD FOR MOORING SUCH A ROBOT CLEANER TO SUCH AN EXTERNAL RECHARGE APPARATUS |
| US7031805B2 (en) | 2003-02-06 | 2006-04-18 | Samsung Gwangju Electronics Co., Ltd. | Robot cleaner system having external recharging apparatus and method for docking robot cleaner with external recharging apparatus |
| CN1314367C (en)* | 2003-02-06 | 2007-05-09 | 三星光州电子株式会社 | Auto duster system with external recharger and method of coupling thin auto duster with external recharger |
| SG114645A1 (en)* | 2003-12-29 | 2005-09-28 | Singapore Tech Dynamics Pte | Method and apparatus for measuring attitude |
| JP2010051089A (en)* | 2008-08-21 | 2010-03-04 | Fujitsu Ltd | Non-contacting power transmission system |
| JP2010088178A (en)* | 2008-09-30 | 2010-04-15 | Fujitsu Ltd | Charging device and charging method |
| JP2010183813A (en)* | 2009-02-09 | 2010-08-19 | Toyota Industries Corp | Resonant contactless charging system |
| JP2011182624A (en)* | 2010-02-08 | 2011-09-15 | Showa Aircraft Ind Co Ltd | Transmitter for power-supply instruction |
| US11938830B2 (en) | 2010-04-08 | 2024-03-26 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
| CN102834292A (en)* | 2010-04-08 | 2012-12-19 | 高通股份有限公司 | Wireless power antenna alignment adjustment system for vehicles |
| JP2013524761A (en)* | 2010-04-08 | 2013-06-17 | クアルコム,インコーポレイテッド | Wireless power antenna alignment system for cars |
| US12351046B2 (en) | 2010-04-08 | 2025-07-08 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
| US10343535B2 (en) | 2010-04-08 | 2019-07-09 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
| JP2016015879A (en)* | 2010-04-08 | 2016-01-28 | クアルコム,インコーポレイテッド | Wireless power antenna alignment adjustment system for vehicles |
| US9561730B2 (en) | 2010-04-08 | 2017-02-07 | Qualcomm Incorporated | Wireless power transmission in electric vehicles |
| US11491882B2 (en) | 2010-04-08 | 2022-11-08 | Witricity Corporation | Wireless power antenna alignment adjustment system for vehicles |
| US10493853B2 (en) | 2010-04-08 | 2019-12-03 | Witricity Corporation | Wireless power transmission in electric vehicles |
| CN102237724A (en)* | 2010-04-24 | 2011-11-09 | 祝常红 | Self-adaptive wireless charging system for electric vehicle |
| JP2012005308A (en)* | 2010-06-21 | 2012-01-05 | Panasonic Corp | Wireless power transmission system |
| WO2012121184A1 (en)* | 2011-03-10 | 2012-09-13 | 日本電気株式会社 | System for contactlessly supplying power to moving body |
| JP2014518607A (en)* | 2011-04-13 | 2014-07-31 | クアルコム,インコーポレイテッド | Antenna alignment and vehicle guidance for wireless charging of electric vehicles |
| US10090885B2 (en) | 2011-04-13 | 2018-10-02 | Qualcomm Incorporated | Antenna alignment and vehicle guidance for wireless charging of electric vehicles |
| JP2017083464A (en)* | 2011-05-13 | 2017-05-18 | ベックマン コールター, インコーポレイテッド | Systems and methods including laboratory product transport elements |
| JP2014513311A (en)* | 2011-05-13 | 2014-05-29 | ベックマン コールター, インコーポレイテッド | Systems and methods including laboratory product transport elements |
| CN104656652A (en)* | 2015-01-05 | 2015-05-27 | 温州大学 | Method for fully-automatic water transportation of robot and water transporting robot system |
| CN109309409A (en)* | 2017-07-27 | 2019-02-05 | Tdk株式会社 | Coil unit and power supply unit, power receiving device and the Wireless power transmission system for using it |
| CN107775640A (en)* | 2017-12-05 | 2018-03-09 | 深圳市银星智能科技股份有限公司 | Mobile robot |
| CN110829513A (en)* | 2018-08-08 | 2020-02-21 | 苏州宝时得电动工具有限公司 | Self-moving equipment, charging docking system and charging docking method |
| Publication number | Publication date |
|---|---|
| JP3319062B2 (en) | 2002-08-26 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0764637A (en) | Mobile robot | |
| KR100656701B1 (en) | Robot vacuum cleaner system and external charging device return method | |
| JP3586955B2 (en) | Electric vehicle charging system | |
| KR100480036B1 (en) | Automatic charging apparatus method and method for automatic running vacuum cleaner | |
| SE8703133L (en) | FORARLOSA VEHICLE CONTROL DEVICE | |
| JP2001155944A (en) | Non-contact charging device, electronic device, information processing device, and non-contact charging method | |
| JPH0454804A (en) | mobile robot | |
| JP3319063B2 (en) | Mobile robot | |
| JPH0666201U (en) | Non-contact power supply device for moving body on constant track | |
| JPH03240106A (en) | Teaching device for direct teaching type robot | |
| JP3389757B2 (en) | Transport device for self-propelled vehicles | |
| KR100323219B1 (en) | Cart | |
| JPH02239830A (en) | Robot for moving work | |
| JPH06105408A (en) | Battery charger for automobile | |
| KR800000638B1 (en) | Self-supporting welding back support device | |
| JPH0451422Y2 (en) | ||
| CN110617878B (en) | Railway contact net vibration frequency detection device | |
| EP0239231A2 (en) | Apparatus for stopping carriage at preselected position | |
| JPS5828026B2 (en) | automatic welding equipment | |
| JPH0670409A (en) | Charging system for electric vehicles | |
| JPH04131198U (en) | Wireless linear encoder device | |
| CN2777496Y (en) | Novel navigation device | |
| KR20250128157A (en) | Portable wireless charging apparatus for moving magnet system | |
| JP2696866B2 (en) | Driving system for unmanned vehicles | |
| JP2517230B2 (en) | Moving car |
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080621 Year of fee payment:6 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090621 Year of fee payment:7 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100621 Year of fee payment:8 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100621 Year of fee payment:8 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110621 Year of fee payment:9 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120621 Year of fee payment:10 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20130621 Year of fee payment:11 | |
| LAPS | Cancellation because of no payment of annual fees |