【0001】[0001]
【産業上の利用分野】本発明は、マイクロ波機器等に用
いられるマイクロ波回路及び回路基板の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a microwave circuit and a circuit board used in microwave equipment and the like.
【0002】[0002]
【従来の技術】高周波回路において代表されるマイクロ
波回路は通常アルミナ等の基板上にマイクロストリップ
線路を用いた回路を形成し、これを金属のパッケージ内
に接地するが、そのパッケージ内でしばしば不要共振が
発生する。この不要共振は回路パターンの曲折部、不連
続部、接続部他での放射がパッケージ内で共振すること
に起因している。図6は従来のマイクロ波回路の解析用
の一モデル図で、マイクロストリップ線路1にオープン
スタブ4を接続した構造である。ここで、パッケージ内
空間の寸法は長さa=5.8mm、幅b=8.6mm、高さ
d=3.0mmと、とし、マイクロストリップ線路の基板
厚h=0.25mm、基板の比誘電率εr=9.8、スト
リップ幅W=0.25mm、スタブ長L=0.86mmとし
た。この回路ではオープンスタブ長Lが30GHzでλ
/4(λは線路波長)となっており、オープンスタブ4
は短絡回路として働くために30GHz付近においてリ
ターンロス値は小さくなることが予想される。このマイ
クロ波回路のモデルにおいて、マイクロストリップ線路
の一端は無反射終端し他端から見込んだリターンロス特
性を測定した結果を図7に示す。この測定結果からみる
と、周波数30.2GHzにおいてリターンロスは急激
に増大し、リターンロス特性曲線上に15dB以上の急
激な偏差が生じている。この急激な偏差はパッケージの
共振によるものでオープンスタブ4の短絡作用を防げる
不要な特性である。この不要共振を抑制する方法として
は電波吸収体を用いる方法、動作周波数帯が遮断周波数
以下となるような内部空間寸法を持つパッケージを用い
る方法、あるいは共振自体が起こらない構造、寸法、配
置の最適化を図るという方法等が挙げられる。この内、
最も簡便でかつ効果の上がる方法として電波吸収体が従
来良く用いられていた。この電波吸収体は高周波損の大
きい樹脂等で出来ているものであり、その使用にあたっ
ては電波吸収体をパッケージの内壁や天板の内側等のな
るべく回路に損失を与えない所に塗りつけたり、貼りつ
けたりして用いる。これによりマイクロストリップ線路
より発生する不要放射を吸収し、回路特性の不要共振を
抑制する。2. Description of the Related Art A microwave circuit typified by a high frequency circuit usually forms a circuit using a microstrip line on a substrate such as alumina and grounds it in a metal package, but it is often unnecessary in the package. Resonance occurs. This unnecessary resonance is caused by the radiation in the bent portion, discontinuous portion, connection portion, etc. of the circuit pattern, which resonates in the package. FIG. 6 is a model diagram for analyzing a conventional microwave circuit, which has a structure in which an open stub 4 is connected to a microstrip line 1. Here, the dimensions of the space inside the package are length a = 5.8 mm, width b = 8.6 mm, and height d = 3.0 mm, and the substrate thickness h of the microstrip line is h = 0.25 mm, the substrate ratio is Dielectric constant εr = 9.8, strip width W = 0.25 mm, stub length L = 0.86 mm. In this circuit, the open stub length L is 30 GHz and λ
/ 4 (λ is the line wavelength), open stub 4
Since it acts as a short circuit, it is expected that the return loss value will be small near 30 GHz. In this microwave circuit model, one end of the microstrip line is nonreflectively terminated, and the return loss characteristics measured from the other end are measured. The results are shown in FIG. From the results of this measurement, the return loss rapidly increases at a frequency of 30.2 GHz, and a rapid deviation of 15 dB or more occurs on the return loss characteristic curve. This abrupt deviation is due to the resonance of the package and is an unnecessary characteristic that can prevent the short circuit action of the open stub 4. As a method of suppressing this unnecessary resonance, a method of using a radio wave absorber, a method of using a package having an internal space dimension such that the operating frequency band is equal to or lower than the cutoff frequency, or an optimal structure, dimension, and arrangement in which resonance does not occur There is a method of promoting the conversion. Of this,
A radio wave absorber has been conventionally well used as the simplest and most effective method. This electromagnetic wave absorber is made of a resin that has a large high-frequency loss.When using the electromagnetic wave absorber, apply or stick it on the inner wall of the package, the inner side of the top plate, or the like as far as possible to avoid circuit loss. Used by attaching. This absorbs unnecessary radiation generated from the microstrip line and suppresses unnecessary resonance of circuit characteristics.
【0003】この電波吸収体を用いる方法は簡便である
反面、次のような問題を有している。 (1)パッケー
ジ1つ1つに電波吸収体を塗りつけたり、貼りつけたり
しなければならず大変手間がかかる。Although the method using this radio wave absorber is simple, it has the following problems. (1) It is very time-consuming to apply or attach the electromagnetic wave absorber to each package.
【0004】(2)電波吸収体を用いるためにその分の
材料費並びに製造工程の増加によってコストが増加す
る。 (3)また一般に、マイクロ波回路の寸法は回路の整合
をとる関係上周波数が高くなるほどに小さくなるため、
マイクロ波回路に影響のないようにパッケージ内に電波
吸収体を塗りつけたり、貼りつけたりするという作業が
非常に細かな作業になるため必ずしも簡便な方法ではな
くなる。 (4)使用周波数帯において電波吸収率の良い材料を選
択する必要がある等の問題があり、新たな対策が望まれ
ていた。(2) Since the electromagnetic wave absorber is used, the cost is increased due to the increase of the material cost and the manufacturing process. (3) Generally, the size of the microwave circuit becomes smaller as the frequency becomes higher due to the matching of the circuit.
Since the work of applying and pasting the electromagnetic wave absorber inside the package so as not to affect the microwave circuit is a very detailed work, it is not always a simple method. (4) There is a problem that it is necessary to select a material having a good radio wave absorption rate in the used frequency band, and a new measure has been desired.
【0005】[0005]
【発明が解決しようとする課題】以上述べてきたように
マイクロ波回路のパッケージ内部の不要共振を減じるた
め電波吸収体を用いているが、塗布、貼付けには非常に
手間がかかり、また、マイクロ波回路の小型化に伴い作
業技術が困難化する等の問題点が生じていた。As described above, the electromagnetic wave absorber is used in order to reduce unnecessary resonance in the package of the microwave circuit, but it takes a lot of time and effort to apply and attach the microwave absorber. With the miniaturization of wave circuits, there have been problems such as difficulty in working techniques.
【0006】本発明は、上記欠点を除去すべくなされた
もので、マイクロ波回路の誘電体基板上に抵抗膜を形成
することで、特別な加工技術、工程を必要とせずに、ま
た最小限の部品点数で効率よくマイクロ波回路のパッケ
ージ内に発生する不要共振を低減するマイクロ波回路を
提供する。The present invention has been made to eliminate the above-mentioned drawbacks, and by forming a resistance film on a dielectric substrate of a microwave circuit, a special processing technique and process are not required, and at the minimum. Provided is a microwave circuit which efficiently reduces unnecessary resonance generated in a microwave circuit package with the number of parts described in (1).
【0007】[0007]
【課題を解決するための手段】本発明は、誘電体基板
と,この誘電体基板表面上に形成されるマイクロストリ
ップ線路と、前記誘電体基板裏面上に形成される接地導
体と、前記マイクロストリップ線路に電気的に接触する
ことなく所定の距離を隔てて前記誘電体基板表面上に形
成される抵抗膜と、前記誘電体基板を収納するパッケー
ジとを具備することを特徴とするマイクロ波回路を提供
する。The present invention is directed to a dielectric substrate, a microstrip line formed on the front surface of the dielectric substrate, a ground conductor formed on the back surface of the dielectric substrate, and the microstrip. A microwave circuit comprising: a resistance film formed on the surface of the dielectric substrate at a predetermined distance without electrically contacting a line; and a package for housing the dielectric substrate. provide.
【0008】[0008]
【作用】上記構成によれば、誘電体基板上に設けられる
マイクロストリップ線路から所定の距離を隔てて抵抗膜
を形成する。このパッケージ内に起こる不要共振を低減
させるに有効なこの抵抗膜は、回路に設けられる抵抗体
の製造過程と同一工程内で形成することができるため、
作業工程の簡易化につながり、また、小型化されたマイ
クロ波回路の製造においても適用が可能となる。According to the above structure, the resistance film is formed at a predetermined distance from the microstrip line provided on the dielectric substrate. This resistance film, which is effective in reducing unnecessary resonance that occurs in this package, can be formed in the same step as the manufacturing process of the resistor provided in the circuit.
This leads to simplification of the working process, and can also be applied to the manufacture of miniaturized microwave circuits.
【0009】[0009]
【実施例】以下に本発明にかかるマイクロ波回路の一実
施例を図面を参照しながら詳細に説明する。図1は、マ
イクロ波回路の一モデルを示す斜視図である。したがっ
て、実際には金属パッケージ5内には、抵抗や、コンデ
ンサ等が収納され、マイクロストリップ線路の回路パタ
ーンももっと複雑なものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a microwave circuit according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective view showing a model of a microwave circuit. Therefore, in reality, the metal package 5 accommodates resistors, capacitors and the like, and the circuit pattern of the microstrip line is more complicated.
【0010】図1に示すように、金属のパッケージ5内
に収納される誘電体基板2上には、マイクロストリップ
線路1が設けられ、その途中にはオープンスタブ4が配
されている。また、このマイクロストリップ線路1及び
オープンスタブ4から所定の距離をおいてNiCr、T
aN3 、CrSiO、Ti等から成る薄膜もしくは、厚
膜の抵抗(以下抵抗膜という)3が、誘電体基板2の表
面を覆っている。また、この誘電体基板2の裏面には接
地導体7が全面または一部において形成されている。As shown in FIG. 1, a microstrip line 1 is provided on a dielectric substrate 2 housed in a metal package 5, and an open stub 4 is arranged in the middle of the microstrip line 1. Further, NiCr, T are provided at a predetermined distance from the microstrip line 1 and the open stub 4.
A thin film or thick film resistor (hereinafter referred to as a resistance film) 3 made of aN3 , CrSiO, Ti or the like covers the surface of the dielectric substrate 2. A ground conductor 7 is formed on the entire back surface or a part of the back surface of the dielectric substrate 2.
【0011】パッケージ5は、マイクロ波回路から発生
する不要共振を低減させる効果を有しており、マイクロ
波回路を完全に覆ってしまうものや、本実施例のような
一方向が開いているもの等様々な形状のものがある。The package 5 has an effect of reducing unnecessary resonance generated from the microwave circuit, and it completely covers the microwave circuit, or the one that is open in one direction as in this embodiment. There are various shapes.
【0012】また、誘電体基板2は、この実施例ではア
ルミナ製のセラミック基板であるとするが、その他にも
テフロン基板やサファイア、石英製のセラミック基板を
用いることも可能である。Although the dielectric substrate 2 is assumed to be a ceramic substrate made of alumina in this embodiment, it is also possible to use a Teflon substrate, sapphire, or a ceramic substrate made of quartz.
【0013】ところで、図1に示すマイクロ波回路の各
構成寸法は、従来例との特性比較のため同寸法としてあ
る。すなわち、パッケージ内の空間寸法の長さa=5.
8mm、幅b=8.6mm、高さd=3.0mmとし、マイク
ロストリップ線路の基板厚H=0.25mm、基板の誘電
率εr=9.8、ストリップ幅W=0.25mm、スタブ
長L=0.86mmとしている。なお、NiCr抵抗膜3
のシート抵抗は、R=50Ω/口、抵抗膜3とマイクロ
トリップ線路1の間隔はG=1.5mmとしている。 そ
こで、図2に本願発明のマイクロ波回路の構造から解析
したリターンロス特性を示す。縦軸はリターンロス(d
B)を示し、横軸は周波数(GHz)を示すものであ
る。その手段は、従来技術として示した図6、図7の解
析方法と同様に行い、すなわち、マイクロストリップ線
路1の一端を無反射終端させ、他端から見込んだリター
ンロス特性を計測する。By the way, the constituent dimensions of the microwave circuit shown in FIG. 1 are the same for comparison with the characteristics of the conventional example. That is, the length of the space dimension in the package a = 5.
8 mm, width b = 8.6 mm, height d = 3.0 mm, microstrip line substrate thickness H = 0.25 mm, substrate dielectric constant εr = 9.8, strip width W = 0.25 mm, stub length L = 0.86 mm. The NiCr resistance film 3
Sheet resistance of R = 50 Ω / port, and the distance between the resistance film 3 and the micro trip line 1 is G = 1.5 mm. Therefore, FIG. 2 shows the return loss characteristics analyzed from the structure of the microwave circuit of the present invention. The vertical axis shows the return loss (d
B), and the horizontal axis represents frequency (GHz). The means is performed in the same manner as the analysis method of FIGS. 6 and 7 shown as the prior art, that is, one end of the microstrip line 1 is non-reflectively terminated, and the return loss characteristic expected from the other end is measured.
【0014】図2のグラフに示される解析結果をみると
30GHz付近において、従来のマイクロ波回路のリタ
ーンロス特性のグラフ図5にみられるような不要共振は
なく、急激なリターンロス特性の落ち込みは存在してい
ない。Looking at the analysis results shown in the graph of FIG. 2, in the vicinity of 30 GHz, there is no unnecessary resonance as shown in the graph of the return loss characteristic of the conventional microwave circuit as shown in FIG. 5, and there is a sharp drop in the return loss characteristic. It doesn't exist.
【0015】つまり、マイクロ波回路に抵抗膜3を設け
たことで抵抗膜3が金属パッケージ5内の共振Qを低下
させる作用をもつためであり、不要な共振を除去する効
果を有していることを表している。That is, since the resistance film 3 has a function of lowering the resonance Q in the metal package 5 by providing the resistance film 3 in the microwave circuit, it has an effect of eliminating unnecessary resonance. It means that.
【0016】次に、図1に示す抵抗膜3を有する誘電体
基板2のフォトエッチング法による製造方法の一例を図
3、図4を参照して簡単に説明する。図3、図4に誘電
体基板2を上から見た平面図及びA−A´における切断
面を示す。Next, an example of a method of manufacturing the dielectric substrate 2 having the resistance film 3 shown in FIG. 1 by the photoetching method will be briefly described with reference to FIGS. 3 and 4 are plan views of the dielectric substrate 2 as seen from above and a cross section taken along line AA ′.
【0017】増幅器等では、普通その回路パターンにバ
イアス回路などを有するため抵抗を設けている。よっ
て、ここでは本発明にかかる抵抗膜とともにマイクロス
トリップ線路に、最も一般的に設けられる抵抗体を有す
る回路基板の形成過程を示すことにする。In an amplifier or the like, a resistor is usually provided because it has a bias circuit in its circuit pattern. Therefore, here, a process of forming a circuit board having a resistor most commonly provided on the microstrip line together with the resistance film according to the present invention will be described.
【0018】まず、誘電体基板2表面に抵抗体材料とし
て例えばNiCr抵抗膜3を薄膜形成させる(図3
(a))。次にこのNiCr抵抗膜3上に感光性樹脂で
あるフォト・レジスト10を塗布しフォト・マスクによ
りマスキングをし、これに紫外線を照射し感光する。感
光させた部分のフォト・レジスト10は変形し溶け去る
(図3(b))。First, a thin film of, for example, a NiCr resistance film 3 is formed as a resistance material on the surface of the dielectric substrate 2 (see FIG. 3).
(A)). Next, a photo resist 10 which is a photosensitive resin is applied on the NiCr resistance film 3 and masked by a photo mask, which is exposed to ultraviolet rays to be exposed. The photoresist 10 in the exposed portion is deformed and melted away (FIG. 3B).
【0019】このフォト・レジスト10が溶け去った部
分は、不要部分であるので化学腐食(エッチング)し、
NiCr抵抗膜3を取り去る。フォト・レジスト10を
洗浄除去する(図3(c))。The portion of the photoresist 10 that has been melted away is an unnecessary portion and is therefore chemically corroded (etched).
The NiCr resistance film 3 is removed. The photoresist 10 is washed and removed (FIG. 3C).
【0020】次に、再びフォト・レジスト10を誘電体
基板2表面に塗布し、フォトマスクにより必要部をマス
キングし、紫外線を照射感光する。このとき不要部分の
フォトレジスト10は変形し、溶け去り、マイクロスト
リップ線路1の形状が形成される(図4(a))。Next, the photoresist 10 is again applied to the surface of the dielectric substrate 2, a necessary portion is masked by a photomask, and ultraviolet rays are exposed to light. At this time, the photoresist 10 in the unnecessary portion is deformed and melted away, and the shape of the microstrip line 1 is formed (FIG. 4A).
【0021】この誘電体基板2に例えばAu(金)11
を真空蒸着させ、マイクロストリップ線路1を形成する
(図4(b))。この誘電体基板2からフォト・レジス
ト10を除去することで、回路に抵抗体12を有するマ
イクロ波回路基板が実現される(図4(c))。On this dielectric substrate 2, for example, Au (gold) 11
Is vacuum-deposited to form the microstrip line 1 (FIG. 4B). By removing the photoresist 10 from the dielectric substrate 2, a microwave circuit substrate having a resistor 12 in the circuit is realized (FIG. 4 (c)).
【0022】上記したような抵抗体12を有する回路基
板9の形成過程に示したように図1における不要共振を
軽減させる作用を持つ抵抗膜3すなわち不要波軽減用抵
抗膜3は、一般的な回路基板の製造過程上で同時に形成
されるものであり、不要波軽減用抵抗膜3を回路基板上
に形成するために特別な工程及び技術を必要とすること
はない。As shown in the process of forming the circuit board 9 having the resistor 12 as described above, the resistance film 3 having a function of reducing unnecessary resonance in FIG. They are formed simultaneously during the manufacturing process of the circuit board, and there is no need for special steps and techniques to form the unnecessary wave reducing resistance film 3 on the circuit board.
【0023】したがって、不要共振の低減において、本
発明では不要波軽減用抵抗膜3を誘電体基板2の表面上
に他の回路部品と同時に製造するため、従来のような電
波吸収体の貼り付け、塗布といったわずらわしい作業を
必要とせず、工程数も大幅に簡略化、削減される。さら
に、将来においてマイクロ波回路がますます高周波数化
されるに伴い、機器は小型化に向うものであるが、その
際においても本発明は非常に有効なものであると思われ
る。Therefore, in order to reduce unnecessary resonance, the present invention manufactures the unnecessary wave reducing resistance film 3 on the surface of the dielectric substrate 2 at the same time as other circuit parts, so that the conventional electromagnetic wave absorber is attached. No need for troublesome work such as coating, and the number of steps is greatly simplified and reduced. Furthermore, in the future, as microwave circuits become higher and higher in frequency, equipment tends to be miniaturized, and in that case, the present invention is also considered to be very effective.
【0024】なお、本発明は図5に示すようなマイクロ
ストリップ線路1の両側に接地導体7を配したコプレー
ナ線路においても有用なもであり、その場合においても
上述してきた実施例と同様に接地導体7より一定の距離
をおいて不要波軽減用抵抗膜3を設けることで不要共振
を低減することができる。The present invention is also useful in a coplanar line in which the ground conductors 7 are arranged on both sides of the microstrip line 1 as shown in FIG. The unnecessary resonance can be reduced by providing the unnecessary wave reducing resistance film 3 at a constant distance from the conductor 7.
【0025】また、上述してきた実施例では誘電体基板
2表面のほぼ全面にわたり、不要波軽減用抵抗膜3を形
成したが誘電体基板2表面の一部分にみ不要波軽減用抵
抗膜3を形成しても同様に不要共振を低減させる効果を
有している。この場合基板上における電磁界の強部に不
要波軽減用抵抗膜3を設けた方が不要共振の低減効率は
高い。Further, in the above-described embodiment, the unnecessary wave reducing resistance film 3 is formed over substantially the entire surface of the dielectric substrate 2, but the unnecessary wave reducing resistance film 3 is formed only on a part of the surface of the dielectric substrate 2. Even if it does, it also has the effect of reducing unnecessary resonance. In this case, the unnecessary resonance reducing efficiency is higher when the unnecessary wave reducing resistance film 3 is provided on the strong portion of the electromagnetic field on the substrate.
【0026】また、図3、図4に示す前記した回路基板
の形成過程の一例において、薄膜の生成技術として真空
蒸着法を用いたが、その他スパッタリング法等を用いて
もよい。In the example of the process of forming the circuit board shown in FIGS. 3 and 4, the vacuum deposition method is used as the thin film forming technique, but other sputtering methods or the like may be used.
【0027】また、不要共振を低減させるべき誘電体基
板上に抵抗体を設けるが、これに加えて金属パッケージ
内壁に電波吸収体を設けることでさらに良好な不要共振
低減効果を有することが可能である。Further, the resistor is provided on the dielectric substrate for which the unnecessary resonance is to be reduced. In addition to this, by providing the electromagnetic wave absorber on the inner wall of the metal package, it is possible to further improve the unnecessary resonance reduction effect. is there.
【0028】さらに、これまで不平衡モード伝送線路に
ついて述べてきたが、平衡モード伝送線路においても同
様の効果を持つマイクロ波回路を実現することができ
る。またマイクロ波帯の機器に限らずその他の高周波帯
を使用する機器の不要共振を低減するにも適用が可能で
ある。Further, although the unbalanced mode transmission line has been described so far, a microwave circuit having a similar effect can be realized also in the balanced mode transmission line. Further, the present invention can be applied not only to microwave band devices but also to reduce unnecessary resonance in devices using other high frequency bands.
【0029】[0029]
【発明の効果】以上述べたように、従来、電波の不要共
振を防止するために電波吸収体の塗布、貼付けといった
作業工程及び作業技術が必要とされていたが、本発明に
よれば、回路に設けられる抵抗体の形成と同一工程内で
不要共振の低減に有効な抵抗膜を設けることが可能とな
る。したがって、作業工程数の簡略化につながるととも
に、その作業も容易化され、ますます小型化されるマイ
クロ波回路の製造において非常に有効な手段となる。As described above, work steps and work techniques such as coating and pasting of a radio wave absorber have been conventionally required in order to prevent unnecessary resonance of radio waves, but according to the present invention, a circuit is provided. It is possible to provide a resistance film effective in reducing unnecessary resonance in the same step as the formation of the resistor provided in the above. Therefore, the number of working steps is simplified, and the work is facilitated, which is a very effective means in the manufacture of an increasingly miniaturized microwave circuit.
【図1】 本発明にかかるマイクロ波回路の一実施例を
示す図。FIG. 1 is a diagram showing an embodiment of a microwave circuit according to the present invention.
【図2】 図1のマイクロ波回路の構造におけるリター
ンロス特性を示すグラフ。FIG. 2 is a graph showing a return loss characteristic in the structure of the microwave circuit shown in FIG.
【図3】 本発明にかかるマイクロ波回路における回路
基板形成の工程を示す図。FIG. 3 is a diagram showing a process of forming a circuit board in a microwave circuit according to the present invention.
【図4】 本発明にかかるマイクロ波回路における回路
基板形成の工程を示す図。FIG. 4 is a diagram showing a process of forming a circuit board in a microwave circuit according to the present invention.
【図5】 本発明にかかるマイクロ波回路の他の実施例
を示す図。FIG. 5 is a diagram showing another embodiment of the microwave circuit according to the present invention.
【図6】 従来のマイクロ波回路の構成を示す図。FIG. 6 is a diagram showing a configuration of a conventional microwave circuit.
【図7】 図6のマイクロ波回路の構造におけるリター
ンロス特性を示すグラフ。7 is a graph showing return loss characteristics in the structure of the microwave circuit of FIG.
1…マイクロストリップ線路 2…誘電体基板 3…抵抗膜 4…オープンスタブ 5…パッケージ 7…接地導体 1 ... Microstrip line 2 ... Dielectric substrate 3 ... Resistive film 4 ... Open stub 5 ... Package 7 ... Ground conductor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/14 A 7511−4E─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl.6 Identification code Internal reference number FI technical display location H05K 3/14 A 7511-4E
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6065351AJPH07273509A (en) | 1994-04-04 | 1994-04-04 | Method for manufacturing microwave circuit and circuit board |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6065351AJPH07273509A (en) | 1994-04-04 | 1994-04-04 | Method for manufacturing microwave circuit and circuit board |
| Publication Number | Publication Date |
|---|---|
| JPH07273509Atrue JPH07273509A (en) | 1995-10-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6065351APendingJPH07273509A (en) | 1994-04-04 | 1994-04-04 | Method for manufacturing microwave circuit and circuit board |
| Country | Link |
|---|---|
| JP (1) | JPH07273509A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005043176A3 (en)* | 2003-10-22 | 2005-12-15 | Cascade Microtech Inc | Probe testing structure |
| US7138810B2 (en) | 2002-11-08 | 2006-11-21 | Cascade Microtech, Inc. | Probe station with low noise characteristics |
| US7164279B2 (en) | 1995-04-14 | 2007-01-16 | Cascade Microtech, Inc. | System for evaluating probing networks |
| US7176705B2 (en) | 2004-06-07 | 2007-02-13 | Cascade Microtech, Inc. | Thermal optical chuck |
| US7187188B2 (en) | 2003-12-24 | 2007-03-06 | Cascade Microtech, Inc. | Chuck with integrated wafer support |
| US7190181B2 (en) | 1997-06-06 | 2007-03-13 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
| US7221146B2 (en) | 2002-12-13 | 2007-05-22 | Cascade Microtech, Inc. | Guarded tub enclosure |
| WO2007069366A1 (en)* | 2005-12-12 | 2007-06-21 | Matsushita Electric Industrial Co., Ltd. | Antenna device |
| US7268533B2 (en) | 2001-08-31 | 2007-09-11 | Cascade Microtech, Inc. | Optical testing device |
| US7330041B2 (en) | 2004-06-14 | 2008-02-12 | Cascade Microtech, Inc. | Localizing a temperature of a device for testing |
| US7330023B2 (en) | 1992-06-11 | 2008-02-12 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
| JP2008048445A (en)* | 2007-09-21 | 2008-02-28 | Mitsubishi Electric Corp | Transmission line substrate and semiconductor package |
| WO2008026743A1 (en)* | 2006-08-31 | 2008-03-06 | Seiji Kagawa | Gradient bonding conductive film, high-frequency transmission line and high-frequency filter using the same |
| US7348787B2 (en) | 1992-06-11 | 2008-03-25 | Cascade Microtech, Inc. | Wafer probe station having environment control enclosure |
| US7352168B2 (en) | 2000-09-05 | 2008-04-01 | Cascade Microtech, Inc. | Chuck for holding a device under test |
| US7368925B2 (en) | 2002-01-25 | 2008-05-06 | Cascade Microtech, Inc. | Probe station with two platens |
| US7498828B2 (en) | 2002-11-25 | 2009-03-03 | Cascade Microtech, Inc. | Probe station with low inductance path |
| US7535247B2 (en) | 2005-01-31 | 2009-05-19 | Cascade Microtech, Inc. | Interface for testing semiconductors |
| US7554322B2 (en) | 2000-09-05 | 2009-06-30 | Cascade Microtech, Inc. | Probe station |
| US7616017B2 (en) | 1999-06-30 | 2009-11-10 | Cascade Microtech, Inc. | Probe station thermal chuck with shielding for capacitive current |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7589518B2 (en) | 1992-06-11 | 2009-09-15 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
| US7595632B2 (en) | 1992-06-11 | 2009-09-29 | Cascade Microtech, Inc. | Wafer probe station having environment control enclosure |
| US7330023B2 (en) | 1992-06-11 | 2008-02-12 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
| US7492147B2 (en) | 1992-06-11 | 2009-02-17 | Cascade Microtech, Inc. | Wafer probe station having a skirting component |
| US7348787B2 (en) | 1992-06-11 | 2008-03-25 | Cascade Microtech, Inc. | Wafer probe station having environment control enclosure |
| US7321233B2 (en) | 1995-04-14 | 2008-01-22 | Cascade Microtech, Inc. | System for evaluating probing networks |
| US7164279B2 (en) | 1995-04-14 | 2007-01-16 | Cascade Microtech, Inc. | System for evaluating probing networks |
| US7190181B2 (en) | 1997-06-06 | 2007-03-13 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
| US7436170B2 (en) | 1997-06-06 | 2008-10-14 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
| US7626379B2 (en) | 1997-06-06 | 2009-12-01 | Cascade Microtech, Inc. | Probe station having multiple enclosures |
| US7616017B2 (en) | 1999-06-30 | 2009-11-10 | Cascade Microtech, Inc. | Probe station thermal chuck with shielding for capacitive current |
| US7423419B2 (en) | 2000-09-05 | 2008-09-09 | Cascade Microtech, Inc. | Chuck for holding a device under test |
| US7352168B2 (en) | 2000-09-05 | 2008-04-01 | Cascade Microtech, Inc. | Chuck for holding a device under test |
| US7518358B2 (en) | 2000-09-05 | 2009-04-14 | Cascade Microtech, Inc. | Chuck for holding a device under test |
| US7501810B2 (en) | 2000-09-05 | 2009-03-10 | Cascade Microtech, Inc. | Chuck for holding a device under test |
| US7554322B2 (en) | 2000-09-05 | 2009-06-30 | Cascade Microtech, Inc. | Probe station |
| US7514915B2 (en) | 2000-09-05 | 2009-04-07 | Cascade Microtech, Inc. | Chuck for holding a device under test |
| US7268533B2 (en) | 2001-08-31 | 2007-09-11 | Cascade Microtech, Inc. | Optical testing device |
| US7368925B2 (en) | 2002-01-25 | 2008-05-06 | Cascade Microtech, Inc. | Probe station with two platens |
| US7138810B2 (en) | 2002-11-08 | 2006-11-21 | Cascade Microtech, Inc. | Probe station with low noise characteristics |
| US7498828B2 (en) | 2002-11-25 | 2009-03-03 | Cascade Microtech, Inc. | Probe station with low inductance path |
| US7221146B2 (en) | 2002-12-13 | 2007-05-22 | Cascade Microtech, Inc. | Guarded tub enclosure |
| US7639003B2 (en) | 2002-12-13 | 2009-12-29 | Cascade Microtech, Inc. | Guarded tub enclosure |
| GB2423588B (en)* | 2003-10-22 | 2007-08-08 | Cascade Microtech Inc | Probe testing structure |
| WO2005043176A3 (en)* | 2003-10-22 | 2005-12-15 | Cascade Microtech Inc | Probe testing structure |
| US7250626B2 (en)* | 2003-10-22 | 2007-07-31 | Cascade Microtech, Inc. | Probe testing structure |
| JP2007509343A (en)* | 2003-10-22 | 2007-04-12 | カスケード マイクロテック インコーポレイテッド | Probe test structure |
| US8069491B2 (en)* | 2003-10-22 | 2011-11-29 | Cascade Microtech, Inc. | Probe testing structure |
| GB2423588A (en)* | 2003-10-22 | 2006-08-30 | Cascade Microtech Inc | Probe testing structure |
| US7362115B2 (en) | 2003-12-24 | 2008-04-22 | Cascade Microtech, Inc. | Chuck with integrated wafer support |
| US7187188B2 (en) | 2003-12-24 | 2007-03-06 | Cascade Microtech, Inc. | Chuck with integrated wafer support |
| US7504823B2 (en) | 2004-06-07 | 2009-03-17 | Cascade Microtech, Inc. | Thermal optical chuck |
| US7176705B2 (en) | 2004-06-07 | 2007-02-13 | Cascade Microtech, Inc. | Thermal optical chuck |
| US7330041B2 (en) | 2004-06-14 | 2008-02-12 | Cascade Microtech, Inc. | Localizing a temperature of a device for testing |
| US7535247B2 (en) | 2005-01-31 | 2009-05-19 | Cascade Microtech, Inc. | Interface for testing semiconductors |
| WO2007069366A1 (en)* | 2005-12-12 | 2007-06-21 | Matsushita Electric Industrial Co., Ltd. | Antenna device |
| US7839350B2 (en) | 2005-12-12 | 2010-11-23 | Panasonic Corporation | Antenna device |
| WO2008026743A1 (en)* | 2006-08-31 | 2008-03-06 | Seiji Kagawa | Gradient bonding conductive film, high-frequency transmission line and high-frequency filter using the same |
| JP5186375B2 (en)* | 2006-08-31 | 2013-04-17 | 清二 加川 | Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same |
| TWI464956B (en)* | 2006-08-31 | 2014-12-11 | Seiji Kagawa | Gradient bonded conductive film and high frequency transmission line using the same, and high frequency filter |
| JP2008048445A (en)* | 2007-09-21 | 2008-02-28 | Mitsubishi Electric Corp | Transmission line substrate and semiconductor package |
| Publication | Publication Date | Title |
|---|---|---|
| JPH07273509A (en) | Method for manufacturing microwave circuit and circuit board | |
| US6538614B2 (en) | Broadband antenna structure | |
| US4266206A (en) | Stripline filter device | |
| US8859193B2 (en) | Method of applying patterned metallization to block filter resonators | |
| CN100411135C (en) | Method for manufacturing spiral inductor on substrate and device manufactured according to the method | |
| JPH07249925A (en) | Antenna and antenna system | |
| CN101142708A (en) | Antenna Parts | |
| US20040129958A1 (en) | Compact microwave/millimeter wave filter and method of manufacturing and designing thereof | |
| KR100586502B1 (en) | Dielectric ceramic filter with metal guide cans | |
| USRE31470E (en) | Stripline filter device | |
| US6411182B1 (en) | Cavity resonator for reducing phase noise of voltage controlled oscillator and method for fabricating the same | |
| JP2714343B2 (en) | High frequency coil and method of manufacturing the same | |
| JP2001291615A (en) | Three-terminal variable inductor | |
| JP2000068702A (en) | Filter element and its production | |
| JPH03124102A (en) | Dielectric filter | |
| KR20210056077A (en) | Slot Antenna | |
| JPH08213810A (en) | Dielectric resonator | |
| JPH06350306A (en) | Matching circuit for dielectric duplexer | |
| JPH06252613A (en) | Distributed constant matching circuit and manufacturing method thereof | |
| KR20020008527A (en) | Method for manufacturing in a dielectric filter | |
| JPH0311803A (en) | Manufacture of ceramic electronic component | |
| JP4632336B2 (en) | Semiconductor circuit board and manufacturing method thereof | |
| JPH11251144A (en) | Chip inductor and manufacture thereof | |
| JPH11284413A (en) | Directional coupler | |
| JPH10224121A (en) | High-frequency circuit, and method for adjusting frequency of the same |