【発明の詳細な説明】 技術分野 本発明は化学分析装置に関するものである。TECHNICAL FIELD The present invention relates to a chemical analyzer.
従来技術 従来の化学分析装置として、例えば特開昭58−113737号
公報に記載されたものがある。この化学分析装置は、タ
ーンテーブル上に同一円周上に並べられた反応容器列を
横切る位置に一個の光度計を設け、一周期中にターンテ
ーブルを一回転と反応容器一個分とを回転させながら、
所定の位置において順次の試料を反応容器列の順次の反
応容器に分注すると共に、その回転中に個々の反応容器
内の液を測光して反応過程を観察し、その同一液に対す
る複数の測光値に基いて当該液の化学的特性を分析する
ものである。しかし、この化学分析装置では、一周期中
にターンテーブルを一回転と反応容器一個分とを回転さ
せるため、一周期の時間が長くなつて処理速度が遅くな
る不具合があり、同一試料について多項目を分析する場
合に適さない。2. Description of the Related Art As a conventional chemical analyzer, for example, there is one described in JP-A-58-113737. This chemical analyzer is equipped with a photometer at a position across a row of reaction vessels arranged on the same circumference on the turntable, and rotates the turntable one revolution and one reaction vessel during one cycle. While
At a predetermined position, a sequential sample is dispensed into the sequential reaction vessels of the reaction vessel array, and while it is rotating, the liquid in each reaction vessel is measured to observe the reaction process, and multiple photometry is performed for the same solution. The chemical property of the liquid is analyzed based on the value. However, in this chemical analysis device, since the turntable rotates once and the reaction container rotates for one cycle, the cycle time becomes long and the processing speed becomes slow. Not suitable when analyzing.
発明の目的 本発明の目的は上述した不具合を解決し、一周期の時間
を短く、したがつて処理測度を速くできると共に安定し
た処理能力で多項目分析を効率良くできるよう適切に構
成した化学分析装置を提供しようとするものである。OBJECT OF THE INVENTION The object of the present invention is to solve the above-mentioned problems, to shorten the time for one cycle, and thus to speed up the processing rate and to carry out a multi-item analysis efficiently with stable processing capacity. It is intended to provide a device.
発明の概要 本発明の化学分析装置は、少なくとも1つの反応ライン
に沿って列状配置した複数の反応容器を順次移送する移
送手段と、 前記移送手段により移送される複数の反応容器の夫々に
対して、同一および異なる試料を分注し得る試料分注手
段と、 試料を分注された反応容器に、2以上の異なる分析項目
に対応する試薬を選択的に分注する試薬分注手段と、 1つの光源と、 2以上の測光位置に夫々固定配置され、前記光源からの
光を2以上の反応容器に向けて投射する2以上の投光部
と、 前記投光部の夫々に対応するように設けられ、前記測光
位置にある各反応容器を透過した光を受光する受光部
と、 前記投光部または受光部に対して設けられ、前記光源か
らの光のうち分析項目に応じた波長の光を投射前または
透過後に選択するための1つの波長選択手段と、 前記投光部または受光部の夫々と前記波長選択手段とに
よる光路を形成するための光伝導部材と、 2以上の同一試料と互いに異なる試薬との組み合わせ又
は2以上の異なる試料と同一試薬との組み合わせからな
る分注を夫々の反応容器に対して選択的に行うように前
記試料分注手段および試薬分注手段の動作を制御すると
共に、同一試料に関する異なる分析項目の測定又は同一
試薬に関する異なる試料の測光を行うべき2以上の反応
容器に対して前記1つの光源および1つの波長選択手段
による同一光路を共通に用いるような制御を行う制御部
とを備えたことを特徴とするものである。SUMMARY OF THE INVENTION The chemical analysis apparatus of the present invention has a transfer means for sequentially transferring a plurality of reaction vessels arranged in a row along at least one reaction line, and a plurality of reaction vessels transferred by the transfer means. A sample dispensing means capable of dispensing the same and different samples, and a reagent dispensing means for selectively dispensing a reagent corresponding to two or more different analysis items into a reaction container into which the sample is dispensed, One light source, two or more light projecting sections that are fixedly arranged at two or more photometric positions, respectively, and project the light from the light source toward two or more reaction vessels, and the light projecting sections are respectively provided. And a light-receiving unit that receives light transmitted through each reaction container at the photometric position, and a light-receiving unit that is provided for the light-projecting unit or the light-receiving unit and has a wavelength corresponding to an analysis item among the light from the light source Select light before projection or after transmission Combination of one wavelength selecting means for forming a light path for each of the light projecting portion or the light receiving portion and the wavelength selecting means, and two or more same samples and reagents different from each other, or The operations of the sample dispensing means and the reagent dispensing means are controlled so that the dispensing consisting of the combination of the different samples and the same reagent is selectively performed to each reaction container, and the different analysis for the same sample is performed. And a control unit for performing control so as to commonly use the same light path by the one light source and one wavelength selection means for two or more reaction vessels in which measurement of items or photometry of different samples regarding the same reagent should be performed. It is characterized by that.
実施例 第1図は本発明の化学分析装置の一例の構成を示すもの
である。反応容器移送テーブル1は、同一複数の反応容
器2をそれぞれ等ピツチに保持した同心円状の二列の反
応容器列を有し、制御装置3により矢印方向に一ピツチ
ずつ間欠的に回動させる。本例では一つの試料について
一チヤンネルで二項目したがつて合計四項目の分析を行
なうもので、分析すべき血清等の複数の試料は、それぞ
れ試料容器4に収容し、制御装置3により試料容器移送
装置5を介して矢印方向に間欠的に移送させ、所定の停
止位置aにおいて制御装置3により二本の分注ノズル6
a,6bを有する試料分注器7を介して試料を吸引し、反応
容器移送テーブル1の反応容器停止位置bにおいて一ピ
ツチ毎に各反応容器列の順次の二個、したがつて合計四
個の反応容器に定量分注する。このようにして、分析す
べき順次の試料をそれぞれ反応容器移送テーブル1上の
四個の反応容器に順次分注する。EXAMPLE FIG. 1 shows the constitution of an example of the chemical analyzer of the present invention. The reaction container transfer table 1 has two concentric reaction container rows that hold the same plurality of reaction containers 2 in equal pitches, and is intermittently rotated by one pitch in the direction of the arrow by the control device 3. In this example, one sample includes two items in one channel, and thus a total of four items are analyzed. A plurality of samples such as serum to be analyzed are housed in the sample containers 4, respectively, and the control device 3 controls the sample containers. The two transfer nozzles 6 are intermittently transferred in the direction of the arrow through the transfer device 5, and the two dispensing nozzles 6 are controlled by the control device 3 at a predetermined stop position a.
A sample is sucked through the sample dispenser 7 having a and 6b, and at the reaction container stop position b of the reaction container transfer table 1, two each of the reaction container rows are provided for each pitch, and thus a total of four. Dispense a fixed amount into the reaction container of. In this way, the sequential samples to be analyzed are sequentially dispensed into the four reaction vessels on the reaction vessel transfer table 1.
同一試料が分注された四個の反応容器には、試料分注位
置bから3ピツチおよび2ピツチ後の停止位置cおよび
dにおいて、制御装置3により第1試薬分注器8〜11を
介してそれぞれ分析項目に応じた第1試薬12〜15を定量
分注して、その分注の勢いによりそれぞれ第1試薬12〜
15と試料とを撹拌し、その後停止位置cの次の停止位置
eにおいて光度計16−1により一ピツチ毎に各反応容器
列の被検液を測光する。For the four reaction containers into which the same sample has been dispensed, the control device 3 controls the first reagent dispenser 8-11 via the first reagent dispenser 8-11 at the stop positions c and d after 3 pitches and 2 pitches from the sample dispensing position b. Aliquots of the first reagents 12 to 15 according to the respective analysis items, and the first reagents 12 to 15
The sample 15 is stirred with the sample, and thereafter, at the stop position e next to the stop position c, the test liquid in each reaction container row is measured by the photometer 16-1 for each pitch.
その後、反応容器移送テーブル1が数ピツチ回動した順
次の停止位置fおよびgにおいて、同一試料が分注され
た四個の反応容器に、制御装置3により第2試薬分注器
17〜20を介してそれぞれ分析項目に応じた第2試薬21〜
24を定量分注し、次に反応容器移送テーブル1が二ピツ
チ回動した停止位置hおよびiにおいて、同一試料を分
注した四個の反応容器内の被検液を制御装置3により撹
拌装置25を介して撹拌して測光部に移送する。Then, at the sequential stop positions f and g where the reaction container transfer table 1 has rotated several pitches, the second reagent dispenser is controlled by the controller 3 into the four reaction containers into which the same sample has been dispensed.
Second reagent 21 to 17 depending on the analysis item via 17 to 20
24 is dispensed in a fixed amount, and then, at the stop positions h and i where the reaction container transfer table 1 is rotated by two pitches, the test liquid in the four reaction containers into which the same sample is dispensed is agitated by the controller 3 It is stirred via 25 and transferred to the photometric unit.
測光部は、本例では撹拌装置25から一ピツチ後の停止位
置jと更にこの停止位置jから二ピツチ毎の停止位置k
〜rの9個所にそれぞれ光度計16−2〜16−10を配置し
て構成し、これら光度計16−2〜16−10によりそれぞれ
各反応容器列の被検液を測光する。これら光度計16−2
〜6−10からの各反応容器列の被検液の測光値は、光度
計16−1からの各反応容器列の被検液の測光値と共に演
算装置26に供給し、ここで同一被検液に対する測光値か
ら、例えばその直線反応範囲を判別してその直線反応範
囲の測光値に基いて酵素活性値を演算し、その分析結果
を表示装置27あるいは外部に出力するためのインターフ
エース等へ供給する。In the present example, the photometric unit includes a stop position j after one pitch from the stirring device 25 and a stop position k every two pitches from this stop position j.
To r, the photometers 16-2 to 16-10 are respectively arranged at nine positions, and the photometers 16-2 to 16-10 measure the test liquids in the respective reaction vessel arrays. These photometers 16-2
The photometric values of the test liquids of the respective reaction container rows from 6-10 are supplied to the arithmetic unit 26 together with the photometric values of the test liquids of the respective reaction container rows from the photometer 16-1, and the same test object is detected here. From the photometric value for the liquid, for example, determine the linear reaction range, calculate the enzyme activity value based on the photometric value of the linear reaction range, to the display device 27 or an interface or the like for outputting to the outside. Supply.
測光終了後は洗浄装置28に移送し、制御装置3の制御に
より各反応容器列の反応容器を洗浄、乾燥して次の試料
の分析にそなえる。なお、洗浄装置28は本例では停止位
置r後の二ピツチ目の停止位置sから試料分注位置bの
一つ前の停止位置tまでの順次の6個の停止位置に亘つ
て設ける。After the photometry is completed, it is transferred to a cleaning device 28, and the control device 3 controls the reaction containers in each reaction container row to be washed and dried for the next sample analysis. In this example, the cleaning device 28 is provided over six sequential stop positions from the stop position s after the stop position r to the stop position s at the second pitch to the stop position t immediately before the sample dispensing position b.
第2図は第1図に示す化学分析装置の要部の動作を示す
タイミングチヤートである。本例では、一周期を12秒と
し、この一周期中に反応容器移送テーブル1を一ピツチ
ずつ二回間欠的に移動させ、その一回目のピツチ送り後
の反応容器2の停止状態下で、停止位置bにおいて試料
分注器7により試料を分注すると共に、光度計16−1〜
16−10によりそれらの設定位置eおよびj〜rにある各
反応容器内の被検液を測光し、二回目のピツチ送り後の
反応容器2の停止状態下で、同様に試料分注器7による
同一試料の分注および光度計16−1〜16−10による測光
を行なうと共に、同一試料を分注した四個の反応容器に
対して停止位置c,dおよびf,gにおいて第1および第2試
薬分注器8〜11および17〜20による第1および第2試薬
12〜15および21〜24の分注、停止位置h,iでの撹拌装置2
5による被検液の撹拌および停止位置s,t間での洗浄装置
28による洗浄を行なう。FIG. 2 is a timing chart showing the operation of the main part of the chemical analyzer shown in FIG. In this example, one cycle is set to 12 seconds, the reaction container transfer table 1 is intermittently moved twice by one pitch during this cycle, and the reaction container 2 is stopped after the first feed of the pitch. At the stop position b, the sample is dispensed by the sample dispenser 7 and the photometer 16-1 to
16-10 photometrically measures the test liquid in each reaction container at those set positions e and j to r, and similarly after the second pitch feeding, the sample dispenser 7 is stopped while the reaction container 2 is stopped. Dispensing the same sample with the photometer and photometry with the photometers 16-1 to 16-10, and at the stop positions c, d and f, g for the four reaction vessels into which the same sample was dispensed, First and second reagents by two-reagent dispenser 8-11 and 17-20
Dispenser 12-15 and 21-24, stirrer at stop position h, i 2
Agitator for test liquid by 5 and cleaning device between stop positions s and t
Wash with 28.
本実施例によれば、12秒周期で一試料に対する四項目の
分析を行なうことができるから処理速度が極めて速いと
共に、各反応容器内の被検液を光度計16−2〜16−10に
より12秒毎に9回測光するものであるから、その反応過
程を細かく観察でき、しかも各測光は反応容器2の停止
状態で行なうものであるから高精度の分析を行なうこと
ができる。According to this example, since four items can be analyzed for one sample in a cycle of 12 seconds, the processing speed is extremely fast, and the test liquid in each reaction container is analyzed by a photometer 16-2 to 16-10. Since the photometry is performed 9 times every 12 seconds, the reaction process can be observed in detail, and since each photometry is performed while the reaction vessel 2 is stopped, highly accurate analysis can be performed.
第3図は第1図に示す化学分析装置における光度計の一
例の構成を示すものである。本例では光源ランプ31の光
をレンズ32を経てスリツト33に導き、このスリツト33を
出射する光を回転可能なフイルタ環34にセツトされた複
数種の干渉フイルタ35から分析項目に応じた波長の干渉
フイルタを選択して分光し、光フアイバ36に入射させ
る。この光フアイバ36の出射端は二列の反応容器列の各
測光位置に分岐させてそれぞれプリズム37を経て反応容
器2に入射させ、その透過光をそれぞれホトダイオード
38で受光してその光電変換出力を増幅器39で増幅して演
算装置26(第1図参照)に供給する。FIG. 3 shows an example of the configuration of a photometer in the chemical analyzer shown in FIG. In this example, the light of the light source lamp 31 is guided to the slit 33 through the lens 32, and the light emitted from this slit 33 is output from the plurality of types of interference filters 35, which are set in the rotatable filter ring 34, of the wavelength corresponding to the analysis item. The interference filter is selected, dispersed, and made incident on the optical fiber 36. The emission end of the optical fiber 36 is branched to each photometric position of the two rows of reaction vessels, and is made incident on the reaction vessel 2 via each prism 37, and the transmitted light thereof is respectively fed to the photodiode.
The light is received by 38, its photoelectric conversion output is amplified by the amplifier 39, and the amplified output is supplied to the arithmetic unit 26 (see FIG. 1).
第4図は第1図に示す化学分析装置における光度計の他
の構成を示すものである。本例では光源ランプ31の光を
レンズ32を経て光フアイバ36に入射させ、この光フアイ
バ36の出射端を第3図の場合と同様二列の反応容器列の
各測光位置に分岐させてそれぞれプリズム37を経て反応
容器2に入射させる。各反応容器2の透過光は、本例で
はそれぞれプリズム40を経て光フアイバ41に入射させ、
これら光フアイバ41の出射端を光マルチプレクサ42に集
めて各測光位置毎にその透過光をレンズ43を経て回折格
子44で分光してホトダイオード群45で受光し、そのホト
ダイオード群から分析項目に応じた波長の光を受光する
ホトダイオードの光電変換出力を選択して同様に増幅器
(図示せず)を経て第1図に示す演算装置26に供給す
る。FIG. 4 shows another configuration of the photometer in the chemical analyzer shown in FIG. In this example, the light from the light source lamp 31 is made incident on the optical fiber 36 through the lens 32, and the emission end of the optical fiber 36 is branched to each photometric position of the two reaction vessel rows as in the case of FIG. It is incident on the reaction container 2 via the prism 37. The transmitted light of each reaction container 2 is made to enter the optical fiber 41 through the prism 40 in this example,
The emission ends of these optical fibers 41 are collected in the optical multiplexer 42, and the transmitted light is separated by the diffraction grating 44 through the lens 43 at each photometric position and is received by the photodiode group 45, and the photodiode group responds to the analysis item. The photoelectric conversion output of the photodiode that receives the light of the wavelength is selected and similarly supplied to the arithmetic unit 26 shown in FIG. 1 through the amplifier (not shown).
なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である。例えば第1図
では反応容器列を二列、すなわち二チヤンネルとした
が、一チヤンネルあるいは三チヤンネル以上にも構成す
ることができる。また、一チヤンネルにおける分析項目
は二項目に限らず三項目以上とすることができ、多項目
になればなる程その効果は著しくなる。更に、第1およ
び第2試薬としてそれぞれ同一の試薬を複数用意すると
共に、異なる試料を同時に吸引して選択的に分注するよ
う構成することによつて、同様の動作により一チヤンネ
ル一項目の分析を高速に、しかも精度良く行なうことも
できる。また、第1図では第2試薬分注後の測光位置を
二ピツチ毎に9個所設定したが、これは任意のピツチ間
隔で二個所以上設定すればよい。更にまた、第1図では
反応容器を繰返し使用するようにしたが、これは使い捨
にすることもできる。また、反応容器列は第1図のよう
に水平面上で間欠的に回動させる以外に、直線状に間欠
的に移動させることもできるし、ベルト状の搬送機構に
より垂直面上で間欠的に回動させることもできる。更
に、反応容器列はエアーや液体の恒温槽に浸漬して移送
するよう構成することもできる。この場合、第3図にお
いては光度計を構成するホトダイオードあるいはこれと
増幅器とを恒温槽内に配置することにより、その温度ド
リフトを防止することができる。It should be noted that the present invention is not limited to the examples described above, and many variations and modifications are possible. For example, in FIG. 1, there are two rows of reaction vessels, that is, two channels, but it is also possible to have one channel or three channels or more. Moreover, the analysis items in one channel are not limited to two items but can be three or more items, and the more items, the more remarkable the effect. Furthermore, by preparing a plurality of the same reagents as the first and second reagents, respectively, and by aspirating different samples at the same time and selectively dispensing them, analysis of one channel and one item is performed by the same operation. Can be performed at high speed and with high accuracy. Further, in FIG. 1, nine photometric positions are set for every two pitches after the second reagent is dispensed, but two or more photometric positions may be set at arbitrary pitch intervals. Furthermore, although the reaction vessel is used repeatedly in FIG. 1, it can be used up. In addition to intermittently rotating the reaction vessel array on the horizontal plane as shown in FIG. 1, it can be linearly intermittently moved, or intermittently on a vertical surface by a belt-shaped transport mechanism. It can also be rotated. Further, the reaction vessel array can be configured so as to be immersed and transferred in a constant temperature bath of air or liquid. In this case, in FIG. 3, the temperature drift can be prevented by disposing the photodiode constituting the photometer or the amplifier and the amplifier in the thermostatic chamber.
発明の効果 以上述べたように、本発明によれば、少なくとも1つの
反応ライン上の2以上の反応容器に関する多波長を用い
た分析を、同一の光路を介して選択的に行う構成とした
ので、順次移送される2以上の反応容器に対して安定し
た処理能力でもって多項目の分析を効率良く実施でき
る。EFFECTS OF THE INVENTION As described above, according to the present invention, the analysis using multiple wavelengths for two or more reaction vessels on at least one reaction line is selectively performed via the same optical path. The multi-item analysis can be efficiently performed with a stable processing capacity for two or more reaction vessels that are sequentially transferred.
第1図は本発明の化学分析装置の一例の構成を示す線
図、 第2図はその要部の動作を説明するタイミングチヤー
ト、 第3図は第1図に示す化学分析装置における光度計の一
例の構成を示す線図、 第4図は同じく他の例の構成を示す線図である。 1……反応容器移送テーブル 2……反応容器、3……制御装置 4……試料容器、5……試料容器移送装置 6a,6b……分注ノズル 7……試料分注器、8〜11……第1試薬分注器 12〜15……第1試薬 16−1〜16−10……光度計 17〜20……第2試薬分注器 21〜24……第2試薬、25……撹拌装置 26……演算装置、27……表示装置 28……洗浄装置、31……光源ランプ 32,43……レンズ、33……スリツト 34……フイルタ環、35……干渉フイルタ 36,41……光フアイバ 37,40……プリズム、38……ホトダイオード 39……増幅器、42……光マルチプレクサ 44……回折格子、45……ホトダイオード群FIG. 1 is a diagram showing the structure of an example of the chemical analysis device of the present invention, FIG. 2 is a timing chart for explaining the operation of the main part thereof, and FIG. 3 is a photometer in the chemical analysis device shown in FIG. FIG. 4 is a diagram showing the configuration of one example, and FIG. 4 is a diagram showing the configuration of another example. 1 ... Reaction container transfer table 2 ... Reaction container, 3 ... Control device 4 ... Sample container, 5 ... Sample container transfer device 6a, 6b ... Dispensing nozzle 7 ... Sample dispenser, 8-11 ...... First reagent dispenser 12 to 15 ...... First reagent 16-1 to 16-10 ...... Photometer 17 to 20 ...... Second reagent dispenser 21 to 24 ...... Second reagent, 25 ...... Stirring device 26 …… Computing device, 27 …… Display device 28 …… Cleaning device, 31 …… Light source lamp 32,43 …… Lens, 33 …… Slit 34 …… Filter ring, 35 …… Interference filter 36,41… … Optical fiber 37,40 …… Prism, 38 …… Photodiode 39 …… Amplifier, 42 …… Optical multiplexer 44 …… Diffraction grating, 45 …… Photodiode group
フロントページの続き 審判の合議体 審判長 高橋 詔男 審判官 志村 博 審判官 河野 直樹 (56)参考文献 特開 昭58−99731(JP,A) 特開 昭56−154664(JP,A) 特公 昭55−24588(JP,B2)Continuation of the front page Judgment panel Judgment chief Norio Takahashi Judge Judge Hiroshi Shimura Judge Naoki Kono (56) References JP-A-58-99731 (JP, A) JP-A-56-154664 (JP, A) JP Sho 55-24588 (JP, B2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59001289AJPH0723896B2 (en) | 1984-01-10 | 1984-01-10 | Chemical analyzer |
| DE19853500639DE3500639A1 (en) | 1984-01-10 | 1985-01-10 | Photometric analyser for chemical analyses |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP59001289AJPH0723896B2 (en) | 1984-01-10 | 1984-01-10 | Chemical analyzer |
| Publication Number | Publication Date |
|---|---|
| JPS60146156A JPS60146156A (en) | 1985-08-01 |
| JPH0723896B2true JPH0723896B2 (en) | 1995-03-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP59001289AExpired - LifetimeJPH0723896B2 (en) | 1984-01-10 | 1984-01-10 | Chemical analyzer |
| Country | Link |
|---|---|
| JP (1) | JPH0723896B2 (en) |
| DE (1) | DE3500639A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1177253B (en)* | 1984-11-19 | 1987-08-26 | Instrumentation Lab Spa | ANALYTICAL PHOTOMETER, IN PARTICULAR MULTI-CHANNEL APPLIED TO A CENTRIFUGAL SYSTEM FOR THE PRACTICALLY SIMULTANEOUS DETERMINATION OF THE PRESENCE OF DIFFERENT SUBSTANCES IN A CERTAIN NUMBER OF SAMPLES |
| JPS61176570A (en)* | 1985-02-01 | 1986-08-08 | Ricoh Co Ltd | Novel zinc complex |
| DE3680317D1 (en)* | 1986-01-31 | 1991-08-22 | Nittec Koganei Kk | AUTOMATIC ANALYZER. |
| EP0251441B1 (en)* | 1986-05-30 | 1993-12-29 | Zymark Corporation | An automated processing system |
| JPH0644003B2 (en)* | 1987-02-04 | 1994-06-08 | 日立化成工業株式会社 | Analysis equipment |
| JPH01145552A (en)* | 1987-12-02 | 1989-06-07 | Olympus Optical Co Ltd | Automatic apparatus for analysis |
| JP2731229B2 (en)* | 1989-04-25 | 1998-03-25 | オリンパス光学工業株式会社 | Automatic analyzer |
| FR2669428B1 (en)* | 1990-11-16 | 1993-04-23 | Alcyon Analyzer Sa | AUTOMATIC COLORIMETRY SAMPLE ANALYZER. |
| DE19615957A1 (en)* | 1996-04-22 | 1997-10-23 | Hans Joachim Bruins | Distribution device |
| FR2784464B1 (en)* | 1998-10-08 | 2000-12-22 | Andre Chojnacki | OPTICAL MEASURING HEAD, IN PARTICULAR FOR AN AUTOMATIC CHEMICAL OR BIOCHEMICAL REACTION ANALYZER |
| DE10205838C1 (en)* | 2002-02-13 | 2003-04-03 | Achim Rappl | Analysis apparatus for determining concentration of nitrite, nitrate, ammonia, ammonium ions and phosphate in fish-rearing tanks or clarification basins has single test tube automatically filled with sample and reactants |
| JP4875391B2 (en)* | 2006-03-30 | 2012-02-15 | シスメックス株式会社 | Sample analyzer |
| JP4829716B2 (en)* | 2006-08-18 | 2011-12-07 | シスメックス株式会社 | Blood coagulation analyzer |
| JP7386326B2 (en)* | 2019-08-28 | 2023-11-24 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | Photometer optical coupling device for double incubation ring using periscope structure |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3697185A (en)* | 1970-08-06 | 1972-10-10 | Technicon Instr | Method and apparatus for the time sharing of multiple channel analysis means |
| BE868242A (en)* | 1977-06-20 | 1978-12-19 | Coulter Electronics | METHOD AND APPARATUS FOR CONTROLLING CHEMICAL REACTIONS |
| JPS5913896B2 (en)* | 1978-08-11 | 1984-04-02 | 折田 イチ子 | Flour mill rotary crusher pressure adjustment mechanism |
| JPS55144550A (en)* | 1979-04-28 | 1980-11-11 | Olympus Optical Co Ltd | Automatic analyzer |
| DE3029795C2 (en)* | 1979-08-07 | 1983-10-27 | Olympus Optical Co., Ltd., Tokyo | Automatic analyzer for liquid samples |
| JPS56154664A (en)* | 1980-05-01 | 1981-11-30 | Olympus Optical Co Ltd | Driving control of automatic chemical analytical device |
| JPS57156543A (en)* | 1981-03-24 | 1982-09-27 | Olympus Optical Co Ltd | Device for chemical analysis |
| JPS58113759A (en)* | 1981-12-11 | 1983-07-06 | Olympus Optical Co Ltd | Dispensing method of sample |
| Publication number | Publication date |
|---|---|
| DE3500639A1 (en) | 1985-07-18 |
| JPS60146156A (en) | 1985-08-01 |
| Publication | Publication Date | Title |
|---|---|---|
| US4325910A (en) | Automated multiple-purpose chemical-analysis apparatus | |
| JP2708437B2 (en) | Automatic analyzer | |
| US5192505A (en) | Automatic analyzing apparatus | |
| EP0160458B1 (en) | An automatic chemical analyzing apparatus | |
| JPH0723896B2 (en) | Chemical analyzer | |
| US4540549A (en) | Chemical analyzing apparatus | |
| JPH0619351B2 (en) | Latex agglutination reaction measuring device | |
| EP0325101B1 (en) | Automatic chemical analytical apparatus | |
| JPS6126623B2 (en) | ||
| JP2008281392A (en) | Photometric apparatus and automatic analysis apparatus | |
| JPH01145552A (en) | Automatic apparatus for analysis | |
| NO782137L (en) | APPARATUS FOR MONITORING CHEMICAL REACTIONS | |
| JPH06100607B2 (en) | Automatic chemical analyzer | |
| JPS5944584B2 (en) | Automatic analysis method | |
| JPS63205546A (en) | Automatic analysis instrument | |
| JPH0980055A (en) | Multi-item automatic analyzer | |
| JPS62228935A (en) | automatic chemical analyzer | |
| JPS63175749A (en) | Transmitting light photometric instrument | |
| JP2505190B2 (en) | Chemical analyzer | |
| JPS59180364A (en) | automatic analyzer | |
| JPH0130100B2 (en) | ||
| JPS5838744B2 (en) | Analyzer for clinical testing | |
| JPS60187862A (en) | Automatic analyzer | |
| JPH028652B2 (en) | ||
| JP2001074553A (en) | Biochemical analyzer |