【0001】[0001]
【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体(InXAlYGa1-X-YN、0≦X≦1、0≦Y≦
1)を用いたレーザ素子に関する。The present invention relates to a gallium nitride compound semiconductor (InX AlY Ga1-XY N, 0 ≦ X ≦ 1, 0 ≦ Y ≦.
The present invention relates to a laser device using 1).
【0002】[0002]
【従来の技術】窒化ガリウム系化合物半導体は短波長レ
ーザの材料として知られており、例えば特開平4−24
2985号公報には、窒化ガリウム系化合物半導体がS
iC、Si、サファイア、GaN等の基板上に積層され
てなるレーザダイオードチップ(以下、レーザチップと
いう。)が開示されている。また特開平4−21387
8号公報には、窒化ガリウム系化合物半導体がZnO基
板上に積層されてなるレーザチップを、ZnO基板とヒ
ートシンク面とを電気的に接続して載置したレーザ素子
が開示されている。このように窒化ガリウム系化合物半
導体は種々の基板上に積層されてレーザチップとされ、
そのレーザチップがヒートシンクに載置されてレーザ素
子とされるが、現在未だ実現されたものはない。2. Description of the Related Art A gallium nitride compound semiconductor is known as a material for a short wavelength laser, and is disclosed in, for example, Japanese Patent Laid-Open No. 4-24.
2985 discloses that a gallium nitride-based compound semiconductor is S
A laser diode chip (hereinafter referred to as a laser chip) laminated on a substrate of iC, Si, sapphire, GaN, or the like is disclosed. In addition, JP-A-4-21387
Japanese Patent Publication No. 8 discloses a laser device in which a laser chip in which a gallium nitride-based compound semiconductor is laminated on a ZnO substrate is mounted by electrically connecting the ZnO substrate and the heat sink surface. In this way, gallium nitride-based compound semiconductors are laminated on various substrates to form laser chips,
The laser chip is mounted on a heat sink to form a laser element, but none has been realized at present.
【0003】ところで、我々は1994年11月末に、
世界で初めて実用レベルに達した光度1000mcdの
青色発光ダイオードを発表した。その青色発光ダイオー
ドはサファイア基板の上に窒化ガリウム系化合物半導体
を積層してなり、さらにp−n接合を有するダブルへテ
ロ構造である。サファイア基板の上に窒化ガリウム系化
合物半導体を積層したダブルへテロ構造で1000mc
dの青色発光ダイオードが実現されれば、この構造でレ
ーザ素子を実現するには現在最も有望であり、そのレー
ザ素子の実現が切望されている。By the way, at the end of November 1994,
We announced the world's first blue light emitting diode with a luminous intensity of 1000 mcd, which reached a practical level. The blue light emitting diode has a double hetero structure in which a gallium nitride compound semiconductor is laminated on a sapphire substrate and further has a pn junction. 1000 mc with double hetero structure in which gallium nitride compound semiconductor is laminated on sapphire substrate
If the blue light emitting diode of d is realized, it is most promising to realize a laser device with this structure, and the realization of the laser device is desired.
【0004】[0004]
【発明が解決しようとする課題】サファイアを基板とす
るダブルへテロ構造の窒化ガリウム系化合物半導体より
なるレーザチップを用いてレーザ素子を実現する場合、
周知のようにチップの発熱を放熱するために熱伝導性の
良いヒートシンクに載置する必要がある。(ヒートシン
クは狭義でサブマウントと呼ばれることもあるが、本願
ではサブマウントも合わせ、レーザチップが載置され
て、その熱を放熱させる部材をヒートシンクという。)
ヒートシンクに効率よくレーザチップの発熱を放熱でき
れば、レーザ素子の常温発振が可能となり、ひいてはレ
ーザ素子の長寿命化を実現することができる。When a laser element is realized by using a laser chip made of a sapphire substrate and having a double hetero structure gallium nitride-based compound semiconductor,
As is well known, in order to radiate the heat generated by the chip, it is necessary to mount it on a heat sink having good thermal conductivity. (Although a heat sink may be called a submount in a narrow sense, in the present application, a member on which a laser chip is placed and which dissipates its heat is also called a heatsink together with the submount.)
If the heat generated by the laser chip can be efficiently radiated to the heat sink, the laser element can be oscillated at room temperature, and the life of the laser element can be extended.
【0005】従って本発明はこのような事情を鑑み成さ
れたものであり、その目的とするとことは、サファイア
を基板とする窒化ガリウム系化合物半導体よりなるレー
ザチップをレーザ素子として使用するにあたり、チップ
の放熱効率を向上させ、常温で連続発振可能なレーザ素
子を提供することにある。Therefore, the present invention has been made in view of the above circumstances, and it is an object of the present invention to use a laser chip made of a gallium nitride-based compound semiconductor having a sapphire substrate as a laser element. Another object of the present invention is to provide a laser device capable of continuously oscillating at room temperature by improving the heat radiation efficiency.
【0006】[0006]
【課題を解決するための手段】我々は、窒化ガリウム系
化合物半導体よりなるレーザチップをヒートシンクに載
置するにあたり、このヒートシンクに予め正、負両方の
電極をパターン形成し、これらの電極に、レーザチップ
の電極を接続して載置することにより、上記目的が達成
できることを見いだした。即ち本発明の窒化ガリウム系
化合物半導体レーザ素子は、サファイア基板上に窒化ガ
リウム系化合物半導体層が積層され、その窒化ガリウム
系化合物半導体層の同一面側に正、負一対の電極が形成
されてなるレーザチップが、同じく同一面側に正、負一
対の電極パターンがメタライズされた絶縁性のヒートシ
ンクに、互いの電極同士が対向するように載置されてな
ることを特徴とするものである。When mounting a laser chip made of a gallium nitride-based compound semiconductor on a heat sink, we pattern-form both positive and negative electrodes on the heat sink in advance, and the laser is formed on these electrodes. It was found that the above object can be achieved by connecting and mounting the electrodes of the chip. That is, the gallium nitride-based compound semiconductor laser device of the present invention comprises a gallium nitride-based compound semiconductor layer laminated on a sapphire substrate, and a pair of positive and negative electrodes formed on the same side of the gallium nitride-based compound semiconductor layer. Similarly, the laser chip is mounted on an insulating heat sink in which a pair of positive and negative electrode patterns are metallized on the same side such that the electrodes of the laser chip face each other.
【0007】本発明の一レーザ素子の構造を図1に示
す。1はサファイア基板、2は窒化ガリウム系化合物半
導体層、3と4は窒化ガリウム系化合物半導体層2の同
一面側に設けられた負電極と正電極であり、レーザチッ
プ10は基本的に1、2、3、4よりなっている。一
方、レーザチップ10を載置するヒートシンク20は絶
縁性、高熱伝導性の材料よりなり、その表面にはチップ
10の負電極3および正電極4と対応する位置にパター
ンメタライズされたヒートシンク20の負電極33およ
び正電極44が形成されている。そしてレーザチップ1
0の電極と、ヒートシンク20の電極とが対向するよう
に、チップの負電極3とヒートシンク10の負電極3
3、およびチップの正電極4とヒートシンクの正電極4
4とが導電性材料11を介して接続されている。The structure of one laser device of the present invention is shown in FIG. 1 is a sapphire substrate, 2 is a gallium nitride-based compound semiconductor layer, 3 and 4 are negative and positive electrodes provided on the same side of the gallium nitride-based compound semiconductor layer 2, and the laser chip 10 is basically 1, It consists of 2, 3, and 4. On the other hand, the heat sink 20 on which the laser chip 10 is mounted is made of a material having an insulating property and a high thermal conductivity, and the surface of the heat sink 20 is a negative electrode of the heat sink 20 which is pattern-metallized at a position corresponding to the negative electrode 3 and the positive electrode 4 of the chip 10. The electrode 33 and the positive electrode 44 are formed. And laser chip 1
The negative electrode 3 of the chip and the negative electrode 3 of the heat sink 10 so that the electrode of 0 and the electrode of the heat sink 20 face each other.
3, and the positive electrode 4 of the chip and the positive electrode 4 of the heat sink
4 are connected via a conductive material 11.
【0008】本発明のレーザ素子を構成するレーザチッ
プ10の窒化ガリウム系化合物半導体層2には、種々の
ダブルへテロ構造が提案されているが、その中でも図4
に示すように、サファイア基板1の表面に、GaN、G
aAlNまたはAlNよりなるバッファ層と、n型Ga
Nよりなるnコンタクト層と、n型GaAlNよりなる
クラッド層と、ノンドープn型InGaNまたはSiド
ープn型InGaNよりなる活性層と、p型GaAlN
よりなるクラッド層と、p型GaNよりなるpコンタク
ト層とが積層されたダブルへテロ構造を用いることが最
も好ましい。この構造の窒化ガリウム系化合物半導体層
が現在常温で優れたレーザ発振を示す。Various double hetero structures have been proposed for the gallium nitride-based compound semiconductor layer 2 of the laser chip 10 constituting the laser device of the present invention. Among them, FIG.
, The surface of the sapphire substrate 1 has GaN, G
a buffer layer made of aAlN or AlN, and n-type Ga
An n contact layer made of N, a cladding layer made of n type GaAlN, an active layer made of non-doped n type InGaN or Si doped n type InGaN, and p type GaAlN
It is most preferable to use a double hetero structure in which a clad layer made of p-type GaN and a p contact layer made of p-type GaN are stacked. The gallium nitride-based compound semiconductor layer having this structure currently exhibits excellent laser oscillation at room temperature.
【0009】一方、ダイオードチップを載置するヒート
シンク20にはダイヤモンド、AlN、cBN、Si
C、Si、BeO等の高熱伝導性を有し、絶縁性の材料
を好ましく用いることができる(但し本明細書におい
て、絶縁性とは半絶縁性のものも含むものとする。)。
これらの材料に蒸着、スパッタ等の薄膜形成技術を用い
て、同一面側に電極パターン44、33をメタライズで
きる。図1はメタライズされた正電極44がヒートシン
ク20の周縁部と連続して、ヒートシンク20の底部に
までパターニングされている。このように、ヒートシン
ク20表面にメタライズする二種類の電極の内のいずれ
か一方をヒートシンクの裏面(レーザチップが載置され
る面と反対面)まで連続形成することにより、金属ステ
ム21と導通が図れるので、レーザチップの熱が電極を
通って直接逃げやすくなる。またワイヤボンディングの
工程を減らすことができる。On the other hand, the heat sink 20 on which the diode chip is mounted has diamond, AlN, cBN, Si.
An insulating material having a high thermal conductivity such as C, Si and BeO can be preferably used (however, in the present specification, the insulating material includes a semi-insulating material).
The electrode patterns 44 and 33 can be metalized on the same surface side by using a thin film forming technique such as vapor deposition or sputtering on these materials. In FIG. 1, the metallized positive electrode 44 is patterned up to the bottom of the heat sink 20 continuously with the peripheral edge of the heat sink 20. In this way, by continuously forming either one of the two kinds of electrodes to be metalized on the surface of the heat sink 20 up to the back surface of the heat sink (the surface opposite to the surface on which the laser chip is mounted), the metal stem 21 is electrically connected. Therefore, the heat of the laser chip can easily escape directly through the electrodes. Further, the wire bonding process can be reduced.
【0010】また、レーザチップの電極3、4と、ヒー
トシンクの電極33、44とを直接接続する導電性材料
11には、例えばAuSn、PbSn、In、AuSi
等のはんだ材を用いることができる。The conductive material 11 that directly connects the electrodes 3 and 4 of the laser chip and the electrodes 33 and 44 of the heat sink is, for example, AuSn, PbSn, In, AuSi.
A solder material such as
【0011】図2は、図1に示すレーザ素子を金属ステ
ム21に実装した際の斜視図を示しており、パターンメ
タライズされた正電極44をヒートシンク20の裏面ま
で形成していることにより、金属ステム21と正電極4
4とを直接接続でき、ヒートシンクの放熱効果を高めて
いる。FIG. 2 is a perspective view of the laser element shown in FIG. 1 mounted on the metal stem 21, and the pattern-metallized positive electrode 44 is formed up to the back surface of the heat sink 20. Stem 21 and positive electrode 4
4 can be directly connected to enhance the heat dissipation effect of the heat sink.
【0012】図3は本発明の他の実施例に係るレーザ素
子の構造を示す模式断面図であり、ヒートシンク20の
正電極44をヒートシンク20の裏面まで形成せず、負
電極33と同様に同一平面上に形成して、レーザチップ
10の電極と導電性材料11を介して接続し、メタライ
ズ電極33、44にワイヤーボンディングしている。こ
のように、両方のメタライズ電極33、44をワイヤー
ボンディングして電源と接続することも可能である。FIG. 3 is a schematic sectional view showing the structure of a laser device according to another embodiment of the present invention, in which the positive electrode 44 of the heat sink 20 is not formed up to the back surface of the heat sink 20 and is the same as the negative electrode 33. It is formed on a flat surface, connected to the electrode of the laser chip 10 through the conductive material 11, and wire-bonded to the metallized electrodes 33 and 44. In this way, both metallized electrodes 33 and 44 can be wire-bonded to be connected to the power supply.
【0013】[0013]
【作用】ところで、本願に類似したレーザ素子として、
特開平1−184895号公報に、二種類の電極がメタ
ライズされたヒートシンクの一方の電極上にレーザチッ
プが載置された素子が示されている。この技術はヒート
シンク上に設けられた電極のいずれか一方にレーザチッ
プの底面電極を接続し、もう一方のチップの上面電極
と、ヒートシンクのもう一方の電極とをワイヤーボンデ
ィングすることにより、ボンディング線の長さを短くし
てインダクタンスの低減を図るものである。By the way, as a laser element similar to the present application,
JP-A-1-184895 discloses an element in which a laser chip is mounted on one electrode of a heat sink in which two kinds of electrodes are metallized. In this technology, the bottom electrode of the laser chip is connected to one of the electrodes provided on the heat sink, and the top electrode of the other chip and the other electrode of the heat sink are wire-bonded to form a bonding wire. The length is shortened to reduce the inductance.
【0014】これに対し本発明のレーザ素子は、前にも
述べたように窒化ガリウム系化合物半導体よりなるレー
ザチップの放熱効果を高め、常温で連続発振を実現する
ことを目的とする。そしてその構成は、レーザチップの
同一面側に設けた電極と、ヒートシンクの同一面側に設
けた電極とを直接接続している。このように同一面側に
設けた電極同士を直接接続しているので、チップの発熱
が正、負両方の電極面から直接ヒートシンクに効率よく
伝わり、放熱効果が格段に向上して常温でのレーザ発振
が可能となる。さらに副次的効果として、前記技術に比
べ、チップとヒートシンクとの接続にはワイヤーボンデ
ィングを必要としないので、実質的にボンディング線の
長さは0となり、さらなるインダクタンスの低減を実現
できることはいうまでもない。On the other hand, the purpose of the laser device of the present invention is to enhance the heat dissipation effect of the laser chip made of a gallium nitride-based compound semiconductor and realize continuous oscillation at room temperature as described above. In this configuration, the electrode provided on the same surface side of the laser chip and the electrode provided on the same surface side of the heat sink are directly connected. Since the electrodes provided on the same surface are directly connected in this way, the heat generation of the chip is efficiently transmitted directly from both the positive and negative electrode surfaces to the heat sink, and the heat dissipation effect is significantly improved, and the laser at room temperature is improved. Oscillation is possible. Further, as a side effect, wire bonding is not required to connect the chip and the heat sink as compared with the above-described technique, so that the length of the bonding line is practically 0, and further reduction of inductance can be realized. Nor.
【0015】[0015]
【実施例】サファイア基板1の表面に、GaNよりなる
バッファ層と、n型GaNよりなるn−コンタクト層
と、n型GaAlNよりなるn−クラッド層と、ノンド
ープn型InGaNよりなる活性層と、p型GaAlN
よりなるp−クラッド層と、p型GaNよりなるp−コ
ンタクト層とが順に積層されたウェーハを用意する。EXAMPLE A buffer layer made of GaN, an n-contact layer made of n-type GaN, an n-clad layer made of n-type GaAlN, and an active layer made of non-doped n-type InGaN are formed on the surface of the sapphire substrate 1. p-type GaAlN
A wafer in which a p-clad layer made of p-type GaN and a p-contact layer made of p-type GaN are sequentially stacked is prepared.
【0016】次にpコンタクト層の表面に所定の形状の
マスクを形成し、エッチングによりp−コンタクト層、
p−クラッド層、n−活性層、およびnクラッド層の一
部を取り除き、n−コンタクト層を露出させる。Next, a mask having a predetermined shape is formed on the surface of the p-contact layer, and the p-contact layer is formed by etching.
A part of the p-cladding layer, the n-active layer and the n-cladding layer is removed to expose the n-contact layer.
【0017】マスクを除去した後、p−コンタクト層の
表面に図4に示すように、SiO2よりなる絶縁膜を所
定の形状で形成し、さらにその絶縁体の上から正電極4
を形成する。また露出したn−コンタクト層の表面にも
負電極3を所定の形状で形成することによりレーザチッ
プ10を得る。なおこれらの電極、絶縁膜は先ほどのマ
スクを形成した技術と同じフォトリソフグラフィー技術
を用いて形成した。After removing the mask, an insulating film made of SiO2 is formed in a predetermined shape on the surface of the p-contact layer as shown in FIG. 4, and the positive electrode 4 is formed on the insulator.
To form. Further, the laser chip 10 is obtained by forming the negative electrode 3 in a predetermined shape on the exposed surface of the n-contact layer. Note that these electrodes and insulating films were formed by using the same photolithography technique as the technique for forming the mask.
【0018】一方、AlNよりなるヒートシンク20を
用意し、このヒートシンク20の表面に同様にしてフォ
トリソグラフィー技術により、図1および図2に示すよ
うな形状で、正電極44、負電極33の電極パターンを
Auで形成する。On the other hand, a heat sink 20 made of AlN is prepared, and the electrode pattern of the positive electrode 44 and the negative electrode 33 is formed on the surface of the heat sink 20 by the photolithography technique in the same manner as shown in FIGS. Are formed of Au.
【0019】次に前記レーザチップ10の正電極4、お
よび負電極3と、前記ヒートシンクの正電極44、およ
び負電極33とが互いに対向するように載置し、電極間
をAuSnで接続する。Next, the positive electrode 4 and the negative electrode 3 of the laser chip 10 and the positive electrode 44 and the negative electrode 33 of the heat sink are placed so as to face each other, and the electrodes are connected by AuSn.
【0020】以上のようにして得た本発明のレーザ素子
をステムに実装して、電極間に通電したところ、室温に
おいて、しきい値電流1kA/cm2で380nmの発光
波長でレーザ発振を確認した。さらに同条件で連続して
発振させたところ24時間もの寿命を示した。また前記
レーザーチップのバッファ層をAlN、およびGaAl
Nとした場合においても同一の結果が得られた。When the laser device of the present invention obtained as described above was mounted on a stem and a current was applied between the electrodes, laser oscillation was confirmed at room temperature with a threshold current of 1 kA / cm2 and an emission wavelength of 380 nm. did. Further, when continuously oscillated under the same conditions, a life of as long as 24 hours was exhibited. The buffer layer of the laser chip is made of AlN and GaAl.
The same result was obtained when N was set.
【0021】[比較例]AlN全面にAuがメタライズ
されたヒートシンクを用意し、図5に示すように、この
ヒートシンクに実施例で得られたレーザチップ10をサ
ファイア基板面が接するようにして載置する。さらに、
正電極4とヒートシンクのAuとをワイヤーボンドし、
負電極を他のメタルポストに接続した後、それらの電極
間に通電したところ、同じく、しきい値電流1kA/cm
2で常温発振を示したが、わずか数十秒間で切れてしま
った。[Comparative Example] A heat sink in which Au was metallized on the entire surface of AlN was prepared, and as shown in FIG. 5, the laser chip 10 obtained in the example was placed on the heat sink so that the surface of the sapphire substrate was in contact therewith. To do. further,
Wire-bond the positive electrode 4 and Au of the heat sink,
When the negative electrode was connected to another metal post and a current was applied between those electrodes, the threshold current was also 1 kA / cm.
At 2 the room temperature oscillation was shown, but it broke off in just a few tens of seconds.
【0022】[0022]
【発明の効果】以上説明したように、本発明のレーザ素
子は窒化ガリウム系化合物半導体の両電極と、ヒートシ
ンクにメタライズされた電極とを同時に接続しているの
で、レーザチップの放熱が非常によい。これにより常温
で24時間もの連続発振を示した。将来、この連続発振
時間をさらに延長し実用可能域にまで高める上で本発明
のレーザ素子は非常に有用である。As described above, in the laser device of the present invention, both electrodes of the gallium nitride compound semiconductor and the metallized electrode of the heat sink are connected at the same time, so that the heat dissipation of the laser chip is very good. . As a result, continuous oscillation for 24 hours was exhibited at room temperature. In the future, the laser device of the present invention will be very useful for further extending this continuous oscillation time and raising it to a practical range.
【図1】 本発明に係る一レーザ素子の構造を示す模式
断面図。FIG. 1 is a schematic cross-sectional view showing the structure of a laser device according to the present invention.
【図2】 図1のレーザ素子を金属ステムに実装した際
の斜視図。FIG. 2 is a perspective view of the laser element of FIG. 1 mounted on a metal stem.
【図3】 本発明に係る他のレーザ素子の構造を示す模
式断面図。FIG. 3 is a schematic cross-sectional view showing the structure of another laser element according to the present invention.
【図4】 本発明に係るレーザチップの構造を示す拡大
模式断面図。FIG. 4 is an enlarged schematic sectional view showing the structure of a laser chip according to the present invention.
【図5】 比較例のレーザ素子の構造を示す模式断面
図。FIG. 5 is a schematic cross-sectional view showing the structure of a laser device of a comparative example.
3・・・・レーザチップの負電極 4・・・・レーザチップの正電極 10・・・・レーザチップ 20・・・・ヒートシンク 33・・・・ヒートシンクの負電極 44・・・・ヒートシンクの正電極 3 ... Negative electrode of laser chip 4 ... Positive electrode of laser chip 10 ... Laser chip 20 ... Heat sink 33 ... Negative electrode of heat sink 44 ... Positive of heat sink electrode
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2267194AJPH07235729A (en) | 1994-02-21 | 1994-02-21 | Gallium nitride compound semiconductor laser device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2267194AJPH07235729A (en) | 1994-02-21 | 1994-02-21 | Gallium nitride compound semiconductor laser device |
| Publication Number | Publication Date |
|---|---|
| JPH07235729Atrue JPH07235729A (en) | 1995-09-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2267194APendingJPH07235729A (en) | 1994-02-21 | 1994-02-21 | Gallium nitride compound semiconductor laser device |
| Country | Link |
|---|---|
| JP (1) | JPH07235729A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996003776A1 (en)* | 1994-07-21 | 1996-02-08 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device and production method thereof |
| JPH10233549A (en)* | 1997-02-21 | 1998-09-02 | Nichia Chem Ind Ltd | Nitride semiconductor laser diode |
| US6136626A (en)* | 1994-06-09 | 2000-10-24 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device and production method thereof |
| JP2001007444A (en)* | 1994-12-22 | 2001-01-12 | Nichia Chem Ind Ltd | Nitride semiconductor laser device |
| JP2002208756A (en)* | 2001-12-14 | 2002-07-26 | Nichia Chem Ind Ltd | Nitride semiconductor laser diode and method of manufacturing the same |
| US6479325B2 (en)* | 1999-12-07 | 2002-11-12 | Sony Corporation | Method of stacking semiconductor laser devices in a sub-mount and heatsink |
| US6549552B1 (en) | 1997-09-03 | 2003-04-15 | Sharp Kabushiki Kaisha | Nitride-type compound semiconductor laser device and laser apparatus incorporating the same |
| US6740906B2 (en) | 2001-07-23 | 2004-05-25 | Cree, Inc. | Light emitting diodes including modifications for submount bonding |
| US6791119B2 (en) | 2001-02-01 | 2004-09-14 | Cree, Inc. | Light emitting diodes including modifications for light extraction |
| US6794684B2 (en) | 2001-02-01 | 2004-09-21 | Cree, Inc. | Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same |
| JP2004289183A (en)* | 1994-12-22 | 2004-10-14 | Nichia Chem Ind Ltd | Nitride semiconductor laser device |
| JP2005197670A (en)* | 2003-12-10 | 2005-07-21 | Showa Denko Kk | Gallium nitride base compound semiconductor light emitting element and its negative electrode |
| US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| US7166874B2 (en) | 1995-11-06 | 2007-01-23 | Nichia Corporation | Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor |
| CN1297045C (en)* | 2002-02-01 | 2007-01-24 | 株式会社日立制作所 | Optical device and optical head apparatus mounting method |
| US7211833B2 (en) | 2001-07-23 | 2007-05-01 | Cree, Inc. | Light emitting diodes including barrier layers/sublayers |
| JP2007294982A (en)* | 1994-12-22 | 2007-11-08 | Nichia Chem Ind Ltd | Nitride semiconductor laser device |
| JP2008227104A (en)* | 2007-03-12 | 2008-09-25 | Denso Corp | Laser equipment and its manufacturing method |
| CN103326231A (en)* | 2012-03-20 | 2013-09-25 | 山东浪潮华光光电子股份有限公司 | Semiconductor laser aging method and fixing clamp |
| JP2015188109A (en)* | 2015-06-22 | 2015-10-29 | シチズンホールディングス株式会社 | Semiconductor light emitting element |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6136626A (en)* | 1994-06-09 | 2000-10-24 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device and production method thereof |
| US5751013A (en)* | 1994-07-21 | 1998-05-12 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device and production method thereof |
| WO1996003776A1 (en)* | 1994-07-21 | 1996-02-08 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device and production method thereof |
| US5895225A (en)* | 1994-07-21 | 1999-04-20 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device and production method thereof |
| US6133058A (en)* | 1994-07-21 | 2000-10-17 | Matsushita Electric Industrial Co., Ltd. | Fabrication of semiconductor light-emitting device |
| US7616672B2 (en) | 1994-09-14 | 2009-11-10 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| US8934513B2 (en) | 1994-09-14 | 2015-01-13 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
| JP2001007444A (en)* | 1994-12-22 | 2001-01-12 | Nichia Chem Ind Ltd | Nitride semiconductor laser device |
| JP2007294982A (en)* | 1994-12-22 | 2007-11-08 | Nichia Chem Ind Ltd | Nitride semiconductor laser device |
| JP2004289183A (en)* | 1994-12-22 | 2004-10-14 | Nichia Chem Ind Ltd | Nitride semiconductor laser device |
| US7166869B2 (en) | 1995-11-06 | 2007-01-23 | Nichia Corporation | Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor |
| US8304790B2 (en) | 1995-11-06 | 2012-11-06 | Nichia Corporation | Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor |
| US7166874B2 (en) | 1995-11-06 | 2007-01-23 | Nichia Corporation | Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor |
| JPH10233549A (en)* | 1997-02-21 | 1998-09-02 | Nichia Chem Ind Ltd | Nitride semiconductor laser diode |
| US6549552B1 (en) | 1997-09-03 | 2003-04-15 | Sharp Kabushiki Kaisha | Nitride-type compound semiconductor laser device and laser apparatus incorporating the same |
| US6842470B2 (en) | 1997-09-03 | 2005-01-11 | Sharp Kabushiki Kaisha | Nitride-type compound semiconductor laser device and laser apparatus incorporating the same |
| US6720581B2 (en)* | 1999-12-07 | 2004-04-13 | Sony Corporation | Mounting plate for a laser chip in a semiconductor laser device |
| US6479325B2 (en)* | 1999-12-07 | 2002-11-12 | Sony Corporation | Method of stacking semiconductor laser devices in a sub-mount and heatsink |
| US7026659B2 (en) | 2001-02-01 | 2006-04-11 | Cree, Inc. | Light emitting diodes including pedestals |
| US6791119B2 (en) | 2001-02-01 | 2004-09-14 | Cree, Inc. | Light emitting diodes including modifications for light extraction |
| US8692277B2 (en) | 2001-02-01 | 2014-04-08 | Cree, Inc. | Light emitting diodes including optically matched substrates |
| US8426881B2 (en) | 2001-02-01 | 2013-04-23 | Cree, Inc. | Light emitting diodes including two reflector layers |
| US7420222B2 (en) | 2001-02-01 | 2008-09-02 | Cree, Inc. | Light emitting diodes including transparent oxide layers |
| US6794684B2 (en) | 2001-02-01 | 2004-09-21 | Cree, Inc. | Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same |
| US7211833B2 (en) | 2001-07-23 | 2007-05-01 | Cree, Inc. | Light emitting diodes including barrier layers/sublayers |
| US7611915B2 (en) | 2001-07-23 | 2009-11-03 | Cree, Inc. | Methods of manufacturing light emitting diodes including barrier layers/sublayers |
| US7037742B2 (en) | 2001-07-23 | 2006-05-02 | Cree, Inc. | Methods of fabricating light emitting devices using mesa regions and passivation layers |
| US6740906B2 (en) | 2001-07-23 | 2004-05-25 | Cree, Inc. | Light emitting diodes including modifications for submount bonding |
| US8907366B2 (en) | 2001-07-23 | 2014-12-09 | Cree, Inc. | Light emitting diodes including current spreading layer and barrier sublayers |
| JP2002208756A (en)* | 2001-12-14 | 2002-07-26 | Nichia Chem Ind Ltd | Nitride semiconductor laser diode and method of manufacturing the same |
| CN1297045C (en)* | 2002-02-01 | 2007-01-24 | 株式会社日立制作所 | Optical device and optical head apparatus mounting method |
| JP2005197670A (en)* | 2003-12-10 | 2005-07-21 | Showa Denko Kk | Gallium nitride base compound semiconductor light emitting element and its negative electrode |
| JP2008227104A (en)* | 2007-03-12 | 2008-09-25 | Denso Corp | Laser equipment and its manufacturing method |
| CN103326231A (en)* | 2012-03-20 | 2013-09-25 | 山东浪潮华光光电子股份有限公司 | Semiconductor laser aging method and fixing clamp |
| JP2015188109A (en)* | 2015-06-22 | 2015-10-29 | シチズンホールディングス株式会社 | Semiconductor light emitting element |
| Publication | Publication Date | Title |
|---|---|---|
| KR100568269B1 (en) | Gallium nitride based light emitting diode for flip-chip bonding and manufacturing method thereof | |
| JP3889933B2 (en) | Semiconductor light emitting device | |
| JPH07235729A (en) | Gallium nitride compound semiconductor laser device | |
| US8861561B2 (en) | Semiconductor laser chip, semiconductor laser device, and semiconductor laser chip manufacturing method | |
| JP3447527B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
| KR102086365B1 (en) | Semiconductor light emitting device | |
| US6185238B1 (en) | Nitride compound semiconductor laser and its manufacturing method | |
| JP3617565B2 (en) | Nitride semiconductor laser device | |
| US9385277B2 (en) | Nitride semiconductor light emitting device | |
| KR20080087135A (en) | Nitride semiconductor light emitting device | |
| KR101960128B1 (en) | Laser diode device | |
| JP3087831B2 (en) | Nitride semiconductor device | |
| US7095041B2 (en) | High-efficiency light emitting diode | |
| US9008138B2 (en) | Laser diode device | |
| JP3618989B2 (en) | Semiconductor laser device | |
| JP3946337B2 (en) | Gallium nitride compound semiconductor laser | |
| JPH1093186A (en) | Nitride semiconductor laser device | |
| JP3309953B2 (en) | Nitride semiconductor laser diode | |
| JPH1022570A (en) | Nitride semiconductor laser device | |
| JP3786000B2 (en) | Nitride semiconductor laser diode and manufacturing method thereof | |
| JP2007173369A (en) | Semiconductor light-emitting element and manufacturing method thereof | |
| JP3620498B2 (en) | Nitride semiconductor laser device | |
| JPH09181394A (en) | Nitride semiconductor laser diode | |
| JP4288947B2 (en) | Manufacturing method of nitride semiconductor light emitting device | |
| JPH10107384A (en) | Nitride semiconductor light emitting device |