Movatterモバイル変換


[0]ホーム

URL:


JPH072171B2 - Method for manufacturing implant member - Google Patents

Method for manufacturing implant member

Info

Publication number
JPH072171B2
JPH072171B2JP1080586AJP8058689AJPH072171B2JP H072171 B2JPH072171 B2JP H072171B2JP 1080586 AJP1080586 AJP 1080586AJP 8058689 AJP8058689 AJP 8058689AJP H072171 B2JPH072171 B2JP H072171B2
Authority
JP
Japan
Prior art keywords
implant member
bioactive material
layer
bioactive
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1080586A
Other languages
Japanese (ja)
Other versions
JPH02257947A (en
Inventor
隆夫 川井
進次 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel LtdfiledCriticalKobe Steel Ltd
Priority to JP1080586ApriorityCriticalpatent/JPH072171B2/en
Publication of JPH02257947ApublicationCriticalpatent/JPH02257947A/en
Publication of JPH072171B2publicationCriticalpatent/JPH072171B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【発明の詳細な説明】 [産業上の利用分野] 本発明は人工骨や人工歯根等に代表される生体用インプ
ラント部材の製造方法に関し、詳細には生体組織と強固
に固着させるため外面に生体活性材料層を形成してなる
インプラント部材の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a biomedical implant member typified by an artificial bone or an artificial dental root, and more particularly, to a living body on the outer surface for firmly fixing it to a living tissue. The present invention relates to a method for manufacturing an implant member formed by forming an active material layer.

[従来の技術] 損傷又は欠損した骨,関節,歯根等を修復するために人
工骨,人工関節、人工歯根等の生体用インプラント部材
を使用することがある。
[Prior Art] A biomedical implant member such as an artificial bone, an artificial joint, or an artificial tooth root may be used to repair a damaged or missing bone, joint, or root.

該インプラント部材は強度的に優れ、且つ生体との適合
性に優れていることの他、術後に成長する新たな生体骨
組織(以下生体新組織と言うことがある)がインプラン
ト部材に対して強い一体性を示す様に構成されているこ
とも重要な要件の一つである。そのための手段の一つと
してインプラント部材表面を粗面化し、そこに形成され
た凹部内に生体新組織を侵入・成長せしめてアンカー効
果を発揮させる方法がある。インプラント部材の表面を
粗面化する方法としては、インプラント部材の基材表面
に微細な粉粒体や線条体等を溶射又は加圧溶着する方
法、或はメッシュやワイヤを貼着する方法等がある。
The implant member has excellent strength and compatibility with a living body, and a new living bone tissue (hereinafter also referred to as a living new tissue) that grows after the surgery is used for the implant member. One of the important requirements is that it is configured to exhibit strong unity. As one of the means for that purpose, there is a method of roughening the surface of the implant member and invading and growing a new biological tissue in the recess formed therein to exert an anchor effect. As a method for roughening the surface of the implant member, a method of spraying or pressure welding fine powder particles or filaments on the surface of the base material of the implant member, or a method of attaching a mesh or a wire, etc. There is.

インプラント部材の基材としては機械的強度の高いステ
ンレス鋼やチタン合金等の金属材料が使用されることが
多く、前記粉粒体や線条体についても基材と同種の金属
材料を使用している。しかしながら金属材料は生体組織
との親和性が低く、インプラント部材の表面を粗面化し
て機械的なアンカー効果を期待するだけでは十分な固着
性を確保することが困難であった。そこで生体組織に対
して親和性の高いアパタイトやバイオガラス等の生体活
性材料をインプラント部材の最外層に添設することが考
えられている。
Metal materials such as stainless steel and titanium alloys with high mechanical strength are often used as the base material of the implant member, and the same kind of metal material as the base material is also used for the powders and filaments. There is. However, the metal material has a low affinity with living tissue, and it has been difficult to secure sufficient adhesion by only roughening the surface of the implant member and expecting a mechanical anchoring effect. Therefore, it has been considered to add a bioactive material such as apatite or bioglass having a high affinity for living tissues to the outermost layer of the implant member.

[発明が解決しようとする課題] 予め粗面化されたインプラント部材表面に上記生体活性
材料を添着させる方法の代表例としては、溶射法が挙げ
られる。第3図はその概念図であり、完全溶融又は表面
のみを溶融させた生体活性材料粒子をインプラント部材
4の表面に向けて噴射し表面層2の表面に該粒子を添着
させる。
[Problems to be Solved by the Invention] As a typical example of the method of impregnating the surface of the implant member, which has been roughened in advance, with the bioactive material, there is a thermal spraying method. FIG. 3 is a conceptual diagram thereof, in which bioactive material particles, which are completely melted or only the surface is melted, are jetted toward the surface of the implant member 4 to attach the particles to the surface of the surface layer 2.

ところがこの溶射法では、インプラント部材表面層2の
凸部上面に溶射粒子を積層して生体活性材料層3を形成
できるに止まり、入込んだ奥底部11には溶射源を傾斜す
ることにより若干量を侵入させることはできるが、アン
ダーカット部や更に入込んだ奥部になると、溶射粒子を
到達させることはできなかった。特に生体活性材料層3
を20μm程度という薄い層厚に抑えるときには、重複し
て溶射できる回数も制限され、上記不都合は一層顕著な
ものにならざるを得なかった。そのため該生体活性材料
層3における基材側との接合面積は小さく、該生体活性
材料層3と表面層2との接合強度が低くなるばかりでな
く、生体新組織が上記奥底部11内へ侵入してきても、そ
の先端は基材金属との直接接触になる為十分な接合力を
得ることができず、インプラント部材の固着性を充分に
確保するまでには至らなかった。
However, in this thermal spraying method, the bioactive material layer 3 can only be formed by laminating the thermal spraying particles on the upper surface of the convex portion of the implant member surface layer 2, and the amount of the thermal spraying source can be slightly tilted to the inner bottom 11 into which the thermal spraying particles have been formed. Although it was possible to infiltrate, it was not possible to reach the spray particles at the undercut portion and the deeper portion where it was further inserted. Especially the bioactive material layer 3
When the layer thickness is suppressed to a small layer thickness of about 20 μm, the number of times that the thermal spraying can be repeated is limited, and the above-mentioned inconvenience is unavoidable. Therefore, the bonding area of the bioactive material layer 3 with the base material side is small, and not only the bonding strength between the bioactive material layer 3 and the surface layer 2 is reduced, but also new biological tissue penetrates into the inner bottom part 11. However, since the tip of the tip is in direct contact with the base metal, a sufficient joining force cannot be obtained, and it has not been possible to sufficiently secure the fixing property of the implant member.

さらに金属製インプラント部材の表面に予め酸化物層を
形成しておくことも考えられている。しかし上記生体活
性材料は酸化物層に対しても異種材料となる為、接合強
度は依然として低いものであり、しかも該生体活性材料
は前述の如く表面層2の凸部の頂部というごくわずかな
面に貼着されるだけであるから、該生体活性材料は術後
のわずかな外力によっても簡単に剥れ落ちてしまうとい
う不都合があった。この他該生体活性材料層3を厚く形
成して上記不都合を回避することも検討されているが、
厚くすればするほど、金属材料との熱膨張率差によって
割れや剥れを発生し易くなるという傾向が出てくる。
Further, it has been considered to form an oxide layer on the surface of the metallic implant member in advance. However, since the bioactive material is a different material even for the oxide layer, the bonding strength is still low, and the bioactive material has a very small surface such as the top of the convex portion of the surface layer 2 as described above. Since the bioactive material is simply affixed to the skin, there is a disadvantage that the bioactive material is easily peeled off even by a slight external force after the operation. In addition, it has been studied to form the bioactive material layer 3 thick to avoid the above-mentioned inconvenience,
As the thickness increases, cracks and peeling tend to occur more easily due to the difference in coefficient of thermal expansion from the metal material.

そこで本発明者らは、粗面化したインプラント部材表面
の凹凸の隅々まで生体活性材料を行き渡らせる様に被覆
することができ、且つ該生体活性材料層をインプラント
部材の基材側表面材料に強く接合でき、術後は生体内で
高い固着力を発揮・維持し続けることのできるインプラ
ント部材を簡単に製造する方法を提供する目的で研究を
重ね、本発明を完成した。
Therefore, the inventors of the present invention can coat the surface of the roughened implant member so that the bioactive material can be distributed to every corner of the unevenness, and the bioactive material layer can be used as a substrate-side surface material of the implant member. The present invention has been completed by carrying out research for the purpose of providing a method for easily manufacturing an implant member that can be strongly joined and can continue to exhibit and maintain a high fixing force in a living body after surgery.

[課題を解決するための手段] 上記目的を達成した本発明は、生体活性材料の粉末を媒
体中に分散させたスラリー液中に前記基材を浸漬すると
共に、該基材を陰極として電圧を印加し、基材表面に生
体活性材料を被覆して乾燥後、上記生体活性材料を焼成
するを要旨とするものである。
[Means for Solving the Problems] In the present invention which has achieved the above object, the base material is immersed in a slurry liquid in which a powder of a bioactive material is dispersed in a medium, and a voltage is applied using the base material as a cathode. The gist is to apply the applied material, coat the surface of the base material with the bioactive material, dry the material, and then calcine the bioactive material.

[作用及び実施例] 金属製インプラント部材の基材1(第1図参照)の表面
に、同種の金属材料によって形成された微細な粉粒体又
は線条体をプラズマ溶射法や加圧溶着法によって拡散接
合し、インプラント部材表面に微細な凹凸を有する表面
層2を形成する。尚生体新組織の侵入及び成長によって
アンカー効果を発揮させるときには、インプラント部材
表面の凹部12の直径はおおよそ100〜400μmの大きさと
し、さらに該凹部12は最表面から奥側方向へ向かって末
広がりに拡大する形状に形成することが好ましい。
[Operations and Examples] On the surface of the base material 1 (see FIG. 1) of the metallic implant member, fine powder particles or filaments formed by the same kind of metallic material are plasma sprayed or pressure welded. Diffusion bonding is carried out to form the surface layer 2 having fine irregularities on the surface of the implant member. When the anchor effect is exerted by invasion and growth of new biological tissue, the diameter of the recess 12 on the surface of the implant member is set to about 100 to 400 μm, and the recess 12 further expands toward the inner side from the outermost surface. It is preferable to form the shape.

アパタイト、バイオガラス、β−燐酸三石灰、セラビタ
ール又は結晶化ガラス等の生体活性材料は数μm以下〜
数100μmの微粉末に粉砕し、水又はアルコール等の媒
体中に分散してスラリー液とする。上記生体活性材料は
10μm以下とし、またスラリー濃度は10%以下とするこ
とが好ましく、これによって表面層上にくまなく粒子が
拡げられ、且つ被着強度の高い皮膜を形成することがで
きる。
Bioactive materials such as apatite, bioglass, β-tricalcium phosphate, cerabital or crystallized glass are several μm or less
It is pulverized into a fine powder of several 100 μm and dispersed in a medium such as water or alcohol to obtain a slurry liquid. The bioactive material is
It is preferably 10 μm or less, and the slurry concentration is preferably 10% or less, whereby particles can be spread all over the surface layer and a coating having high adhesion strength can be formed.

上記スラリー液の塗着は次に説明する様な方法によって
行なう。第2図は浸漬装置の一例を示す説明図であり、
スラリー液6は密閉タイプの容器5内に貯留され、イン
プラント部材4は容器5内を上下移動できる様に吊下げ
られる。一方スラリー液6中には電極8を浸漬すると共
に、インプラント部材4と前記電極8には直流電源9を
接続する。尚インプラント部材4側を陰極とする。また
必要により図示する真空ポンプ10や図示しない加圧ポン
プを容器5の上方空間に連通する。
The coating of the slurry liquid is performed by the method described below. FIG. 2 is an explanatory view showing an example of the dipping device,
The slurry liquid 6 is stored in a closed type container 5, and the implant member 4 is hung so that it can move up and down in the container 5. On the other hand, the electrode 8 is immersed in the slurry liquid 6, and a direct current power source 9 is connected to the implant member 4 and the electrode 8. The implant member 4 side is the cathode. If necessary, the illustrated vacuum pump 10 and a not-shown pressure pump are connected to the space above the container 5.

上記装置を使ってインプラント部材4の表面に生体活性
材料を塗着するに当たっては、まずインプラント部材4
を容器5の上方空間5A内に吊り下げた状態で、真空ポン
プ10を作動し、上方空間5A内を真空状態とし、インプラ
ント部材の表面凹部内に残留付着している空気をほぼ完
全に脱気させる。こうして脱気を完了した後、インプラ
ント部材4を更に降下させてスラリー液6中へ浸漬し、
さらにインプラント部材4と電極8の間に電圧を印加
し、スラリー6中の生体活性材料粒子を(+)に帯電し
て陰極側のインプラント部材4の表面に引き寄せ、凹部
12の奥底部11へも粒子を被着させる。このとき電源9の
電圧を変えることによって粒子の被着量を調節し、層の
厚さを自由に調整することができる。尚上記の真空条件
は10-2〜10-5Torrとするのが好ましい。またインプラン
ト部材4の浸漬中に上方空間5Aを3〜10kg/cm2の範囲内
で加圧することもでき、これによって生体活性材料の付
着を促進することもできる。
In applying the bioactive material to the surface of the implant member 4 using the above device, first, the implant member 4
The vacuum pump 10 is operated in a state in which the container 5 is suspended in the upper space 5A of the container 5 so that the upper space 5A is in a vacuum state, and the air remaining in the surface recess of the implant member is almost completely degassed. Let After completing the degassing, the implant member 4 is further lowered and immersed in the slurry liquid 6,
Further, a voltage is applied between the implant member 4 and the electrode 8 to charge the bioactive material particles in the slurry 6 to (+) and draw it toward the surface of the implant member 4 on the cathode side to form a recess.
Particles are also deposited on the bottom part 11 of 12. At this time, by changing the voltage of the power supply 9, it is possible to adjust the amount of particles deposited and freely adjust the layer thickness. The above vacuum condition is preferably 10-2 to 10-5 Torr. It is also possible to pressurize the upper space 5A within the range of3 to 10 kg / cm2 during the immersion of the implant member 4, which can promote the attachment of the bioactive material.

こうしてスラリー液を塗着し終えたインプラント部材4
を容器5の外へ取出し、溶媒を蒸発させて生体活性材料
の微粉末だけをインプラント部材の表面に添着させる。
該微粉末の添着厚さを調節する場合には、スラリー液の
濃度を変えたり或は浸漬−乾燥工程の繰返し回数を変え
ればよい。また乾燥方法については、急激な乾燥による
微粉末層のひび割れや脱落を防止するため後述する様な
段階的乾燥が望ましい。
In this way, the implant member 4 which has finished applying the slurry liquid
Is taken out of the container 5, the solvent is evaporated, and only the fine powder of the bioactive material is attached to the surface of the implant member.
When the impregnation thickness of the fine powder is adjusted, the concentration of the slurry liquid may be changed or the number of times of repeating the dipping-drying process may be changed. The drying method is preferably stepwise drying as described below in order to prevent cracking and falling of the fine powder layer due to rapid drying.

乾燥の完了したインプラント部材は表面に添着した生体
活性材料を焼結させるために、生体活性材料の軟化温度
以上で、且つインプラント部材の基材又は表面層の変態
温度未満の範囲内で加熱しつつ、不活性ガスを利用する
静水圧加圧処理(以下単にHIP処理という)を行なう。
この結果第1図に示す様に生体活性材料は前記奥底部11
まで行き渡って全表面を生体活性材によって被覆すると
共に、生体活性材料層3は表面層2の全面へまんべんな
く形成することができ、該生体活性材料層3と表面層2
の接合面積は従来よりも増加して接合強度が高くなり、
両層の接合面において剥離を生じることはなくなった。
また生体新組織は凹部12の内部、特にアンダーカット部
においても優れた化学的親和性を示すので、アンカー効
果とも相まってインプラント部材と生体組織の固着性は
大幅に向上できる様になった。さらに第1図の2点鎖線
で示す如く生体活性材料層3Aを厚く(例えば0.3〜0.5m
m)形成する場合においては、該生体活性材料層の初期
層は表面層2の凹部12内側まで確実に充填されることに
なり、両層は非常に強く接合される。
The dried implant member is heated within the range of the softening temperature of the bioactive material or higher and lower than the transformation temperature of the base material or surface layer of the implant member in order to sinter the bioactive material attached to the surface. , Perform hydrostatic pressure treatment using inert gas (hereinafter simply referred to as HIP treatment).
As a result, as shown in FIG.
The entire surface is covered with the bioactive material, and the bioactive material layer 3 can be formed evenly on the entire surface of the surface layer 2.
The joining area of is increased and the joining strength is higher than before.
No peeling occurred at the joint surface of both layers.
In addition, since the new biological tissue has an excellent chemical affinity even inside the recess 12, particularly in the undercut portion, the adhesion between the implant member and the biological tissue can be significantly improved in combination with the anchor effect. Further, as shown by the chain double-dashed line in FIG. 1, thicken the bioactive material layer 3A (for example, 0.3 to 0.5 m).
m) When forming, the initial layer of the bioactive material layer is surely filled up to the inside of the concave portion 12 of the surface layer 2, and the two layers are very strongly bonded.

尚生体活性材料層3の密度をさらに高め、且つ確実な焼
結を行なわせる目的で、HIP処理工程の以前に、次に説
明する冷間加圧工程及び予備焼結工程を付加することが
推奨される。
For the purpose of further increasing the density of the bioactive material layer 3 and performing reliable sintering, it is recommended to add the cold pressing step and pre-sintering step described below before the HIP processing step. To be done.

<実験例> Ca及びPを含有する生体活性ガラスを10μm以下に粉砕
し、濃度10%の水スラリーを作り、第2図に示す装置の
容器5内に満たした。一方Ti合金製基材1上に多孔質Ti
製ビーズを溶射して表面層2を形成した。インプラント
部材4を上方空間5A内に吊下げて1時間10-2Torrに真空
引きした後スラリー液6中へ浸漬し、直流10Vを5分間
印加した後容器5外へ取出した。そして温度を20℃、温
度を50%とした雰囲気中に4時間放置し、更に40℃より
110℃まで1℃/minで昇温乾燥させた。該インプラント
部材を900℃で2時間真空炉で予備焼成した後、Arガス
雰囲気中で1000気圧,800℃の条件下に30分間焼成した。
<Experimental Example> A bioactive glass containing Ca and P was crushed to 10 μm or less to prepare a water slurry having a concentration of 10%, and the water was filled in the container 5 of the apparatus shown in FIG. On the other hand, porous Ti on the Ti alloy substrate 1
The beads made were sprayed to form the surface layer 2. The implant member 4 was suspended in the upper space 5A, evacuated to 10-2 Torr for 1 hour, immersed in the slurry liquid 6, applied with DC 10 V for 5 minutes, and then taken out of the container 5. Then, leave it in an atmosphere where the temperature is 20 ° C and the temperature is 50% for 4 hours.
The temperature was raised to 110 ° C. and dried at 1 ° C./min. The implant member was pre-baked in a vacuum furnace at 900 ° C. for 2 hours and then baked in an Ar gas atmosphere at 1000 atm and 800 ° C. for 30 minutes.

こうして得られたインプラント部材の生体活性材料層は
厚さ20μmで表面層2上に均一に形成され、骨セメント
(ポリメチルメタアクリレート樹脂)を使用して剪断試
験を行なった結果、約3kg/mm2で骨セメント部分が破壊
され、表面層2と生体活性材料層の接合強度は上記以上
の値を示すことが分かった。
The bioactive material layer of the implant member thus obtained was formed uniformly on the surface layer 2 with a thickness of 20 μm, and the result of a shear test using bone cement (polymethylmethacrylate resin) was about 3 kg / mm.2 bone cement portion is broken, the bonding strength of the surface layer 2 and the bioactive material layer was found to exhibit a value greater than or equal to the.

さらに該インプラント部材を凝似体液中で養生したとこ
ろ4日後には表面はアパタイト層で覆われ、動物体内に
埋め込んだところ生体骨と十分な結合が得られた。
Further, when the implant member was cured in a fluid of a simulated body, the surface was covered with an apatite layer after 4 days, and when it was embedded in an animal body, sufficient bonding with living bone was obtained.

[発明の効果] 本発明は以上の様に構成されているので、粗面化したイ
ンプラント部材表面の隅々まで生体活性材料を強固に接
合できる様になった。その結果生体組織をインプラント
部材表面の凹部奥側まで誘導して優れたアンカー効果を
発揮することができ、さらに生体活性材料層を介して基
材側表面層と生体組織を強く接合させることができ、イ
ンプラント部材を生体内で確実に固着できる様になっ
た。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it becomes possible to firmly bond the bioactive material to every corner of the roughened surface of the implant member. As a result, the living tissue can be guided to the deep side of the recess on the surface of the implant member, and an excellent anchoring effect can be exhibited, and further, the base material side surface layer and the living tissue can be strongly bonded via the bioactive material layer. , The implant member can be securely fixed in the living body.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法によって製造されたインプラント部
材の一例を示す断面説明図、第2図は本発明方法に利用
するスラリー浸漬装置の例を示す説明図、第3図は従来
の生体活性材料を溶射法によって添着したインプラント
部材の一例を示す断面説明図である。 1……基材、2……表面層 3……生体活性材料層、4……インプラント部材 5……容器、6……スラリー液 8……電極、9……直流電源 10……真空ポンプ、11……奥底部
FIG. 1 is a cross-sectional explanatory view showing an example of an implant member manufactured by the method of the present invention, FIG. 2 is an explanatory view showing an example of a slurry dipping device used in the method of the present invention, and FIG. 3 is a conventional bioactive material. FIG. 4 is a cross-sectional explanatory view showing an example of an implant member in which is attached by a thermal spraying method. 1 ... Substrate, 2 ... Surface layer 3 ... Bioactive material layer, 4 ... Implant member 5 ... Container, 6 ... Slurry liquid 8 ... Electrode, 9 ... DC power supply 10 ... Vacuum pump, 11 ... Deep bottom

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】基材の表面上に生体組織との親和性が高い
生体活性材料層を形成してなるインプラント部材の製造
方法において、生体活性材料の粉末を媒体中に分散させ
たスラリー液中に前記基材を浸漬すると共に、該基材を
陰極として電圧を印加し、基材表面に生体活性材料を被
覆して乾燥後、上記生体活性材料を焼成することを特徴
とするインプラント部材の製造方法。
1. A method of manufacturing an implant member comprising a bioactive material layer having a high affinity for a biological tissue formed on a surface of a base material, wherein a slurry of a bioactive material powder is dispersed in a medium. A method for producing an implant member, which comprises immersing the base material in a substrate and applying a voltage to the base material as a cathode to coat the surface of the base material with the bioactive material, drying the bioactive material, and firing the bioactive material. Method.
JP1080586A1989-03-301989-03-30 Method for manufacturing implant memberExpired - Fee RelatedJPH072171B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP1080586AJPH072171B2 (en)1989-03-301989-03-30 Method for manufacturing implant member

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP1080586AJPH072171B2 (en)1989-03-301989-03-30 Method for manufacturing implant member

Publications (2)

Publication NumberPublication Date
JPH02257947A JPH02257947A (en)1990-10-18
JPH072171B2true JPH072171B2 (en)1995-01-18

Family

ID=13722454

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP1080586AExpired - Fee RelatedJPH072171B2 (en)1989-03-301989-03-30 Method for manufacturing implant member

Country Status (1)

CountryLink
JP (1)JPH072171B2 (en)

Also Published As

Publication numberPublication date
JPH02257947A (en)1990-10-18

Similar Documents

PublicationPublication DateTitle
US4784160A (en)Implantable device having plasma sprayed ceramic porous surface
US5104410A (en)Surgical implant having multiple layers of sintered porous coating and method
US6986453B2 (en)Manufacturing method for a ceramic to metal seal
US4784159A (en)Process for making an implantable device having plasma sprayed metallic porous surface
US7998523B2 (en)Open-pore biocompatible surface layer for an implant, methods of production and use
JP2006517111A (en) System for depositing a drug on a surface and method for coating a surface with a drug
US7722735B2 (en)Microstructure applique and method for making same
US9074267B2 (en)Rapid fabrication of porous metal-based biomaterial by microwave sintering
CN104922727B (en)A kind of bioactivity, porous titanium medical embedded material and preparation method thereof
US20040236338A1 (en)Implant
CN112057674A (en)Bone-luring medical titanium alloy with micro-nano structure on surface and preparation method thereof
JPH072171B2 (en) Method for manufacturing implant member
JPH119679A (en) Manufacturing method of implant
JPH08173523A (en) Intraosseous implant and manufacturing method thereof
JP2002320667A (en)Material buried in living body and its manufacturing method
JPH0349766A (en)Production of porous body having excellent osteoaffinity
JP2004141234A (en)Artificial dental root
JPH02203853A (en)Manufacture of implant member
JP2775523B2 (en) Bone substitute material and its manufacturing method
JPH072172B2 (en) Implant member and manufacturing method thereof
JP3166352B2 (en) Implant components
CN108785750B (en) A kind of hydroxyapatite gradient structure coating and preparation method thereof
JPH08117324A (en)Method for manufacturing a bio-implant material
JPH02237559A (en)Implant member for living body and preparation thereof
JPH11332974A (en) Bioprosthetic members

Legal Events

DateCodeTitleDescription
FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080118

Year of fee payment:13

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090118

Year of fee payment:14

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp