【0001】[0001]
【産業上の利用分野】本発明は、医学、化学、生物工学
の分野における各種サンプルを、迅速に加熱および冷却
することができ、そして、サンプルの精密温度制御が可
能であり、かつ、温度分布精度の良好な加熱冷却器であ
り、被加熱冷却物用の光学的測定用の観察用貫通孔の構
造を有する加熱冷却器の構造に関する。BACKGROUND OF THE INVENTION The present invention is capable of rapidly heating and cooling various samples in the fields of medicine, chemistry and biotechnology, and enables precise temperature control of samples and temperature distribution. The present invention relates to a structure of a heating / cooling device having a good accuracy and having a structure of an observation through hole for optical measurement for an object to be heated.
【0002】[0002]
【従来の技術】従来の理科学向け恒温水槽においては、
水を熱媒体としていたために、サンプル容器が水と接触
してしまう。また、サンプルの迅速な昇温と降温が不可
能であった。一定の温度へ到達するまでに長時間がかか
り、かつ設定温度を変更する場合、応答速度が遅かっ
た。また、精密な温度プログラムコントロールをしなが
ら被加熱冷却物の光学的測定用の観察用貫通孔の構造を
備えたものが存在しなかった。2. Description of the Related Art In a conventional constant temperature water tank for science and science,
Since water was used as the heat medium, the sample container comes into contact with water. Moreover, it was impossible to rapidly raise and lower the temperature of the sample. It took a long time to reach a certain temperature, and when the set temperature was changed, the response speed was slow. Further, there has been no one having a structure of an observation through hole for optical measurement of a cooled object while controlling a precise temperature program.
【0003】[0003]
【発明が解決しようとする課題】本発明は、このような
従来の欠点を解決して、各種サンプルを所定の温度まで
すばやく昇温あるいは降温し、かつ温度変更に対しても
迅速に対応し、かつ温度分布も良好で精密なプログラマ
ブル温度コントロールが可能であり、被加熱冷却物の光
学的測定用の観察用貫通孔の構造を備えた迅速な昇温お
よび降温が可能な加熱冷却器を提供するために成された
ものである。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, quickly raises or lowers the temperature of various samples to a predetermined temperature, and quickly responds to temperature changes, Provided is a heating / cooling device having a good temperature distribution, capable of precise programmable temperature control, and having a structure of a through hole for observation for optical measurement of an object to be heated and capable of rapid heating and cooling. It was made for the purpose.
【0004】[0004]
【課題を解決するための手段】上記の課題を解決するた
めに成された本発明は、構造体の任意の面に被加熱冷却
物支持用の面、孔、溝を有するとともに、その構造体内
部に熱伝導率の良好な液体金属からなる熱媒体を充填
し、ヒーターを設置すると共に、降温に関しては、熱放
散性の良好なフィン、ハニカム構造あるいはパイプから
なる冷却部を設置し、冷気あるいは冷媒等に接触するこ
とにより降温させ、任意の部分に所望の形状の被加熱冷
却物用の光学的測定用の観察用貫通孔の構造を備えて、
各種サンプルの測定を可能にすると言う技術的手段を採
用した。DISCLOSURE OF THE INVENTION The present invention, which has been made to solve the above-mentioned problems, has a structure for supporting a material to be heated, a hole, and a groove on an arbitrary surface of the structure, and the structure thereof. The inside is filled with a heat medium made of a liquid metal having good thermal conductivity, and a heater is installed.Finally, for cooling the temperature, a fin having good heat dissipation properties, a cooling unit made of a honeycomb structure or a pipe is installed, and cold air or The temperature is lowered by coming into contact with a refrigerant or the like, and an arbitrary portion is provided with a structure of an observation through hole for optical measurement for a heated object having a desired shape,
We adopted the technical means of enabling measurement of various samples.
【0005】[0005]
【作 用】上記のように構成された加熱冷却器によれば
被加熱冷却物は、構造体に設けられた面、孔、溝に接し
ているため迅速に加熱冷却器の温度と等しくなる。ま
た、ヒーターが液体金属の熱伝導率の良好な熱媒体の中
に設置してあるため、精密に温度を制御する事が可能と
なり、被加熱冷却物用の光学的測定用の観測用貫通孔の
構造を備えることにより各種サンプルの測定が可能とな
る。[Operation] According to the heating / cooling device configured as described above, since the object to be heated is in contact with the surface, the hole, and the groove provided in the structure, the temperature of the heating / cooling device quickly becomes equal to that of the heating / cooling device. In addition, since the heater is installed in a heat medium with good thermal conductivity of liquid metal, it is possible to precisely control the temperature, and an observation through hole for optical measurement of the object to be heated. With the structure described above, various samples can be measured.
【0006】[0006]
【実施例1】図1は、本発明の構成を示す。1は、熱伝
導率の良い銅合金製の中空構造の被加熱冷却物支持容器
であり、その中空内部には、水銀が封入されている。
2、3、4は被加熱冷却物を支持するための孔である。
1の内部には、冷却用パイプ5が通っており、冷却部7
によって冷却された冷媒がポンプ6によって送り込まれ
る。8も冷却用のパイプであり、効率を上げるため構造
体の外部に設置されている。9は、1に封入された水銀
を熱するために設置されたヒーターであり、13は、外
部ヒーターである。撹拌翼10によって、水銀の温度分
布を均一にするために撹拌する。11は、温度センサー
であり、加熱手段および冷却手段にフィードバックされ
る。12は、被加熱冷却物の光学的測定の観測用貫通孔
である。以上の構成で、恒温槽を組み立て、実験を行っ
た。図1の2、3、4に試験管をセットし、それぞれの
試験管に熱電対を取り付け、2の位置の熱電対でPID
制御で行った。その時、2の位置の熱電対の出力をチェ
ックした。この時の実験の温度範囲は−20℃から10
0℃の範囲で、昇温速度12℃/秒を達成し、降温速度
6.2℃/秒を達成し、温度分布精度±0.1℃以内を
達成することができた。Embodiment 1 FIG. 1 shows the structure of the present invention. Reference numeral 1 denotes a hollow-structured object supporting object to be cooled which is made of a copper alloy having a good thermal conductivity, and mercury is enclosed in the hollow inside thereof.
2, 3 and 4 are holes for supporting the object to be heated.
A cooling pipe 5 passes through the inside of 1, and a cooling unit 7
The coolant cooled by is pumped by the pump 6. Reference numeral 8 is also a cooling pipe, and is installed outside the structure to improve efficiency. Reference numeral 9 is a heater installed to heat the mercury enclosed in 1, and 13 is an external heater. The stirring blade 10 stirs to make the temperature distribution of mercury uniform. A temperature sensor 11 is fed back to the heating means and the cooling means. Reference numeral 12 is a through hole for observation of optical measurement of the object to be heated. An experiment was conducted by assembling a constant temperature bath with the above configuration. Set the test tubes to 2, 3 and 4 in Fig. 1, attach thermocouples to each test tube, and use the PID with the thermocouple at the 2 position.
Controlled. At that time, the output of the thermocouple at the position 2 was checked. The temperature range of the experiment at this time was from -20 ° C to 10
In the range of 0 ° C., the temperature rising rate of 12 ° C./second was achieved, the temperature decreasing rate of 6.2 ° C./second was achieved, and the temperature distribution accuracy of ± 0.1 ° C. or less was achieved.
【0007】[0007]
【発明の効果】以上のように、本発明は、構造体の任意
の面に被加熱冷却物支持用の面、孔、溝を有するととも
に、その構造体内部に熱伝導率の良好な水銀からなる熱
媒体を充填し、ヒーターを設置する、このように構成さ
れた加熱冷却器によれば被加熱冷却物は、構造体に設け
られた面、孔、溝に接しているため迅速に加熱冷却器の
温度と等しくなる。降温に関しては、フィン、ハニカム
構造あるいはパイプからなる冷却部を設置し、冷気ある
いは冷媒等に接触することにより降温させる。この結果
温度分布も良好となり、精密なプログラマブル温度コン
トロールが可能となる。したがって、従来の技術では、
なしえなっかた各種の温度パターンの精密温度制御が可
能となり、被加熱冷却物用の光学的測定用の観測用貫通
孔の構造を備えることにより各種サンプルの測定が可能
にした。医学、化学、生物工学の分野等においては、新
しい用途が開け、複雑な温度プログラム制御が可能とな
り、新規な操作方法かできるようになった。INDUSTRIAL APPLICABILITY As described above, according to the present invention, a structure for supporting a material to be heated, a hole, and a groove are provided on any surface of the structure, and mercury having good thermal conductivity is formed inside the structure. According to the heating / cooling device configured as described above, the heating target is filled with a heat medium, and the object to be heated is quickly heated and cooled because it is in contact with the surface, hole, or groove provided in the structure. It becomes equal to the temperature of the vessel. Regarding cooling, a cooling unit composed of fins, a honeycomb structure, or a pipe is installed, and the temperature is lowered by contacting cold air or a refrigerant. As a result, the temperature distribution becomes good and precise programmable temperature control becomes possible. Therefore, in the conventional technology,
Precise temperature control of various temperature patterns has become possible, and various samples can be measured by providing the structure of the observation through hole for optical measurement of the object to be heated. In the fields of medicine, chemistry, biotechnology, etc., new applications have opened up, complicated temperature program control has become possible, and new operation methods have become possible.
【図1】実施例1の構成図FIG. 1 is a configuration diagram of a first embodiment.
1 構造体 2、3、4 被加熱冷却物支持用の穴 5 内部冷却パイプ 6 ポンプ 7 冷却用熱交換部 8 外部冷却パイプ 9 内部ヒーター 10 撹拌翼 11 温度センサー 12 光学観測穴 13 外部ヒーター 1 Structure 2, 3, 4 Hole for Supporting Heated Cooled Material 5 Internal Cooling Pipe 6 Pump 7 Cooling Heat Exchange Section 8 External Cooling Pipe 9 Internal Heater 10 Stirrer Blade 11 Temperature Sensor 12 Optical Observation Hole 13 External Heater
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 圭一 神奈川県川崎市宮前区馬絹1634−1 コス モ宮崎台 アバンシード305号 (72)発明者 栗田 洋 神奈川県鎌倉市西鎌倉4−16−15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiichi Kato 163-1 Makinagi, Miyamae-ku, Kawasaki-shi, Kanagawa Cosmo Miyazakidai Avanced 305 (72) Inventor Hiro Kurita 4-16-15 Nishi-Kamakura, Kamakura-shi, Kanagawa
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP35484093AJPH07185363A (en) | 1993-12-27 | 1993-12-27 | Heating and cooling device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP35484093AJPH07185363A (en) | 1993-12-27 | 1993-12-27 | Heating and cooling device |
| Publication Number | Publication Date |
|---|---|
| JPH07185363Atrue JPH07185363A (en) | 1995-07-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP35484093APendingJPH07185363A (en) | 1993-12-27 | 1993-12-27 | Heating and cooling device |
| Country | Link |
|---|---|
| JP (1) | JPH07185363A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009537152A (en)* | 2006-05-17 | 2009-10-29 | カリフォルニア インスティテュート オブ テクノロジー | Temperature cycle system |
| US20100279299A1 (en)* | 2009-04-03 | 2010-11-04 | Helixis, Inc. | Devices and Methods for Heating Biological Samples |
| US8003370B2 (en)* | 2006-05-17 | 2011-08-23 | California Institute Of Technology | Thermal cycling apparatus |
| US8987685B2 (en) | 2009-09-09 | 2015-03-24 | Pcr Max Limited | Optical system for multiple reactions |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009537152A (en)* | 2006-05-17 | 2009-10-29 | カリフォルニア インスティテュート オブ テクノロジー | Temperature cycle system |
| EP2027251A4 (en)* | 2006-05-17 | 2010-05-05 | California Inst Of Techn | THERMAL CYCLING SYSTEM |
| US8003370B2 (en)* | 2006-05-17 | 2011-08-23 | California Institute Of Technology | Thermal cycling apparatus |
| US8008046B2 (en)* | 2006-05-17 | 2011-08-30 | California Institute Of Technology | Thermal cycling method |
| US8232091B2 (en)* | 2006-05-17 | 2012-07-31 | California Institute Of Technology | Thermal cycling system |
| EP2535427A3 (en)* | 2006-05-17 | 2013-04-24 | California Institute of Technology | Thermal cycling system |
| US9316586B2 (en) | 2006-05-17 | 2016-04-19 | California Institute Of Technology | Apparatus for thermal cycling |
| US20100279299A1 (en)* | 2009-04-03 | 2010-11-04 | Helixis, Inc. | Devices and Methods for Heating Biological Samples |
| EP2414504A4 (en)* | 2009-04-03 | 2013-08-28 | Illumina Inc | Devices and methods for heating biological samples |
| US8987685B2 (en) | 2009-09-09 | 2015-03-24 | Pcr Max Limited | Optical system for multiple reactions |
| Publication | Publication Date | Title |
|---|---|---|
| CN213337028U (en) | Instrument for heat treatment of nucleic acids according to a thermal profile | |
| US4492480A (en) | Probe for use in a microcalorimeter | |
| Ivey | Experiments on transient natural convection in a cavity | |
| US4679615A (en) | Method and apparatus for heating and/or cooling objects simultaneously at different preselected temperatures | |
| Chaudhari et al. | Transient liquid crystal thermometry of microfabricated PCR vessel arrays | |
| US9266109B2 (en) | Thermal control system and method for chemical and biochemical reactions | |
| CN202052555U (en) | Constant temperature bath device | |
| Cheng et al. | Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient | |
| CN107012086A (en) | A kind of real-time fluorescence PCR thermocirculator and PCR instrument | |
| US20240344905A1 (en) | System for calibrating a sensor | |
| JPH07185363A (en) | Heating and cooling device | |
| Mamalis et al. | Bubble rise in a non-isothermal self-rewetting fluid and the role of thermocapillarity | |
| CN110927199A (en) | An indoor experimental device for high temperature fouling of crude oil heat exchangers | |
| Zaragoza et al. | Development of a device for the measurement of thermal and fluid flow properties of heat exchanger materials | |
| CN201607389U (en) | Gas thermal type temperature control system of rotating drop interfacial tensiometer | |
| US3505023A (en) | Thermally conditioned spot plate | |
| Siviour et al. | Heat transfer in subcooled pool film boiling | |
| CN102350385A (en) | High temperature thermostatic bath of high capacity and high precision | |
| Chen et al. | Marangoni convection analysis during ethanol natural evaporation in a capillary tube | |
| Gau et al. | Flow visualization during solid-liquid phase change heat transfer I. Freezing in a rectangular cavity | |
| JPS5924935Y2 (en) | Constant temperature bath | |
| CN205562442U (en) | Glass coefficient of expansion testing arrangement | |
| CN205317706U (en) | A attemperator for conductometer | |
| RU2708934C1 (en) | Device for measuring parameters of crystallization kinetics | |
| Skrbek et al. | Scale-up method for comparative heat capacity measurement of liquids |