Movatterモバイル変換


[0]ホーム

URL:


JPH07159689A - Optical system for amphibious camera - Google Patents

Optical system for amphibious camera

Info

Publication number
JPH07159689A
JPH07159689AJP5309380AJP30938093AJPH07159689AJP H07159689 AJPH07159689 AJP H07159689AJP 5309380 AJP5309380 AJP 5309380AJP 30938093 AJP30938093 AJP 30938093AJP H07159689 AJPH07159689 AJP H07159689A
Authority
JP
Japan
Prior art keywords
lens
optical system
photographing
curvature
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5309380A
Other languages
Japanese (ja)
Other versions
JP3429540B2 (en
Inventor
Masaru Morooka
優 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co LtdfiledCriticalOlympus Optical Co Ltd
Priority to JP30938093ApriorityCriticalpatent/JP3429540B2/en
Publication of JPH07159689ApublicationCriticalpatent/JPH07159689A/en
Application grantedgrantedCritical
Publication of JP3429540B2publicationCriticalpatent/JP3429540B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To provide an optical system for an amphibious camera capable of being switched to photographing states in the air and under water only by mounting/demounting an auxiliary lens system having simple constitution and capable of photographing while keeping high image-formation performance even in a high-magnification zoom lens. CONSTITUTION:In this optical system, a 1st group having negative power (G1), a 2nd group having negative power (G2) and a 3rd group having positive power(G3, G4, G5 and G6) are arranged in order from an object side; and a variable focal distance zoom lens is constituted by moving respective lens groups; and further underwater photographing is possible by mounting the auxiliary lens system 1 to the object side of the lens group.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、防水機構が施された空
気中及び水中の何れにおいても撮影可能な水陸両用カメ
ラの光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system for an amphibious camera which is waterproof and is capable of photographing both in air and underwater.

【0002】[0002]

【従来の技術】従来の水陸両用カメラは、空気中におい
て使用されているカメラを水中ハウジング内に収容した
もの、或いは、カメラ自体に防水機構を施したものが使
用されていた。しかしながら、空気中で収差補正された
光学系を使用する水中ハウジングや、防水機構が施され
たカメラの防水窓が平板ガラスである場合、水中撮影時
に起きる物体空間と平板ガラスとの境界面の屈折作用に
よって歪曲収差及び倍率色収差が発生し、結像性能が著
しく低下するばかりか、水中での画角が狭くなるという
問題があった。
2. Description of the Related Art Conventional amphibious cameras have been used in which the camera used in the air is housed in an underwater housing or the camera itself has a waterproof mechanism. However, when the underwater housing that uses an optical system with aberration correction in the air or the waterproof window of a camera with a waterproof mechanism is flat glass, the refraction of the boundary surface between the object space and the flat glass that occurs during underwater photography Distortion aberration and chromatic aberration of magnification occur due to the action, and there is a problem that not only the imaging performance is significantly deteriorated but also the angle of view in water is narrowed.

【0003】そこで、水中ハウジングの防水窓入射面の
曲率中心を前記防水窓を含めたレンズ系全体の入射瞳位
置にほぼ一致させた同心球面窓として形成することによ
り、軸外光線の防水窓入射面への屈折作用の変化を小さ
くし、水中撮影時の収差,画角の変化を小さくするとい
う従来の光学系があった。又、防水窓を光学系の一部と
して考え、レンズ入射面の曲率中心をレンズ系の入射瞳
位置にほぼ一致させ、カメラ自体に防水機構を施すこと
によって水陸両用カメラを構成した従来例もあった。
又、撮影レンズの前方にアッタチメント光学系を装着す
ることで、水中での収差を良好に補正し、撮影レンズと
の合成焦点距離を強め、水中での画角の変化を小さくし
た従来例として、特開昭54−85721号公報,特開
昭58−85721号公報及び特開昭57−4017号
公報に夫々記載されている光学系が公知である。
Therefore, the center of curvature of the entrance surface of the waterproof window of the underwater housing is formed as a concentric spherical window which substantially coincides with the entrance pupil position of the entire lens system including the waterproof window, so that the off-axis rays enter the waterproof window. There is a conventional optical system that reduces changes in refraction on the surface and changes in aberration and angle of view during underwater photography. There is also a conventional example in which an amphibious camera is constructed by considering the waterproof window as a part of the optical system, making the center of curvature of the lens entrance surface substantially coincide with the entrance pupil position of the lens system, and providing a waterproof mechanism on the camera itself. It was
Also, by attaching an attachment optical system in front of the taking lens, aberrations underwater are satisfactorily corrected, the combined focal length with the taking lens is strengthened, and a change in the angle of view underwater is reduced as a conventional example. The optical systems described in JP-A-54-85721, JP-A-58-85721 and JP-A-57-4017 are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、レンズ
入射面の曲率中心を、レンズ系全体の入射瞳位置にほぼ
一致させた従来例は、レンズ入射面が物体側に曲率の強
い凸面となり、物体平面がレンズの方向に凹面を向けた
球面状の虚像となるため、プラスの像面湾曲が大きく発
生し、これを補正することは困難であった。例えば、レ
ンズ入射面が平面であるか、或いは、僅かに湾曲してい
るにすぎない状態ならば、像面は水中に移動した場合で
もフラットになることが知られている。
However, in the conventional example in which the center of curvature of the lens entrance surface is substantially aligned with the entrance pupil position of the entire lens system, the lens entrance surface is a convex surface having a strong curvature toward the object side, and Is a spherical virtual image with a concave surface facing the lens, and a large positive field curvature is generated, which is difficult to correct. For example, it is known that if the lens entrance surface is flat or is only slightly curved, the image surface will be flat even when moved into water.

【0005】又、高倍率のズームレンズを上記のような
レンズ面を有した水陸両用カメラの光学系に用いた場合
には、レンズ系の入射瞳位置が変倍時に移動するので、
レンズ入射面の曲率中心が入射瞳位置から外れてしまう
ばかりか、水中ではレンズ入射面に負の屈折力が生じる
ため、変倍時の収差変動が大きく、且つ、バックフォー
カスも変化してしまうため、水中撮影時に良好な結像性
能を維持することができなくなるという問題があった。
When a high-magnification zoom lens is used in the optical system of an amphibious camera having the lens surface as described above, the entrance pupil position of the lens system moves during zooming.
Not only the center of curvature of the lens entrance surface deviates from the entrance pupil position, but also negative refracting power is generated on the lens entrance surface in water, which causes large aberration fluctuation during zooming and also changes the back focus. However, there is a problem that it becomes impossible to maintain a good imaging performance during underwater photography.

【0006】又、アッタチメント光学系を用いた特開昭
54−85721号公報に記載の光学系は、ズームレン
ズへの装着の際、全焦点距離域に亘って良好な結像性能
を得ることができなかった。又、ズームレンズへの装着
が可能となった特開昭58−85721号公報及び特開
昭57−4017号公報に夫々記載の光学系は、レンズ
が3枚以上必要とされるため製造工程においてコスト面
で不利となる。
Further, the optical system described in Japanese Patent Laid-Open No. 54-85721, which uses an attachment optical system, can obtain good image forming performance over the entire focal length range when mounted on a zoom lens. could not. Further, the optical systems described in JP-A-58-85721 and JP-A-57-4017, which can be mounted on a zoom lens, respectively, require three or more lenses in the manufacturing process. It is disadvantageous in terms of cost.

【0007】そこで、本発明は、上記のような従来技術
の有する問題点に鑑み、簡単な構成の補助レンズ系の着
脱のみで空気中と水中との撮影状態を相互に切り換える
ことができ、高倍率なズームレンズにおいても、高い結
像性能を維持しながら空気中,水中を問わず撮影可能な
水陸両用カメラの光学系を提供することを目的としてい
る。
In view of the problems of the prior art as described above, the present invention is capable of switching the shooting state between in-air and under-water by simply attaching and detaching the auxiliary lens system having a simple structure. It is an object of the present invention to provide an optical system for an amphibious camera capable of shooting in air or underwater while maintaining high image forming performance even with a high-power zoom lens.

【0008】[0008]

【課題を解決するための手段及び作用】上記目的を達成
するため、本発明の水陸両用カメラの光学系は、物体空
間が空気で収差補正された複数のレンズ群を有し、該レ
ンズ群の移動によって焦点距離可変の撮影光学系におい
て、撮影時の物体空間が水である場合には、物体側より
順に物体側に凸面を向けた負のメニスカスレンズと物体
側に凸面を向けた正のメニスカスレンズとが配置され且
つ最も物体側に配置されたレンズの曲率半径が最も像側
に配置されたレンズの曲率半径よりも小さくなるように
構成された補助レンズ系を前記撮影光学系の前方に装着
すると共に、変倍のための移動レンズ群を物体空間が空
気である場合の撮影時とは異なるように移動させること
で水中撮影を可能とし、更に、以下の条件式を満足する
ようにしたことを特徴としている。 0.1<|(RF−Rr)/(Rf+Rr)|<0.8 但し、Rfは補助レンズ系の入射面の曲率半径、Rr
補助レンズ系の射出面の曲率半径である。又、本発明の
光学系は、前記補助レンズを構成している正のメニスカ
スレンズの少なくとも一面を非球面にするようにしたこ
とを特徴としている。
In order to achieve the above object, the optical system of the amphibious camera of the present invention has a plurality of lens groups whose object space is aberration-corrected by air. In an imaging optical system whose focal length is variable by movement, when the object space at the time of shooting is water, a negative meniscus lens with a convex surface facing the object side and a positive meniscus with a convex surface facing the object side are arranged in order from the object side. And an auxiliary lens system configured such that the radius of curvature of the lens disposed closest to the object side and smaller than the radius of curvature of the lens disposed closest to the image side are mounted in front of the photographing optical system. At the same time, by moving the moving lens group for zooming so that it is different from the shooting when the object space is air, underwater shooting is possible and the following conditional expression is satisfied. To It is a symptom. 0.1 <| (RF −Rr ) / (Rf + Rr ) | <0.8 where Rf is the radius of curvature of the incident surface of the auxiliary lens system, and Rr is the curvature of the exit surface of the auxiliary lens system. Is the radius. Further, the optical system of the present invention is characterized in that at least one surface of the positive meniscus lens forming the auxiliary lens is aspherical.

【0009】このように、本発明の水陸両用カメラの光
学系は、物体空間が空気で収差補正された複数のレンズ
群から成り、当該レンズ群を移動させることによって焦
点距離可変のズームレンズを構成している。しかしなが
ら、物体空間が空気で収差補正されているレンズをその
まま水中で使用すると、水中での画角は空気中での画角
よりも狭くなること、又、レンズ入射面における種々の
収差、特に歪曲収差並びに倍率色収差が発生することは
前述の通りである。
As described above, the optical system of the amphibious camera of the present invention comprises a plurality of lens groups in which the object space is aberration-corrected by air, and the zoom lens having a variable focal length is constructed by moving the lens groups. is doing. However, if a lens in which the object space is air-corrected is used in water as it is, the angle of view in water will be narrower than the angle of view in air, and various aberrations, especially distortion, on the lens entrance surface will occur. As described above, the aberration and the chromatic aberration of magnification occur.

【0010】そこで、本発明の光学系は、水中撮影時に
は、物体側より順に、物体側に凸面を向けた負のメニス
カスレンズと物体側に凸面を向けた正のメニスカスレン
ズとが配置されて構成される補助レンズ系を、空気中で
収差補正されている撮影光学系の前方に配置すること
で、水中における補助レンズ系と撮影光学系との合成焦
点距離を小さくし、空気中での画角を水中でもある程度
保つことを可能にしている。更に、前記補助レンズ系は
負,正の二つのレンズ群により構成されているため、レ
ンズ入射面の曲率を強くしなくても、水中においてレン
ズ入射面で発生する歪曲収差及び倍率色収差を前記補助
レンズ系のみで補正することができるので、入射側のレ
ンズが必要以上に大型化することもない。
Therefore, the optical system of the present invention is constructed such that, when photographing underwater, a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side are arranged in order from the object side. By arranging the auxiliary lens system in front of the photographic optical system whose aberration is corrected in air, the combined focal length of the auxiliary lens system and the photographic optical system in water is reduced, and the angle of view in air is increased. It is possible to keep the water in the water to some extent. Furthermore, since the auxiliary lens system is composed of two lens groups, a negative lens group and a positive lens group, the auxiliary lens system can be used to prevent distortion and chromatic aberration of magnification that occur on the lens incident surface in water without increasing the curvature of the lens incident surface. Since the correction can be performed only by the lens system, the lens on the incident side does not become larger than necessary.

【0011】又、本発明の光学系の補助レンズ系は、最
も物体側に配置されているレンズの曲率半径を最も像側
に配置されているレンズの曲率半径よりも小さくするこ
とによって、水中撮影時に生じる歪曲収差を適正に補正
しながら倍率色収差の発生を抑制している。更に、本発
明の光学系において、歪曲収差及び倍率色収差を良好に
補正するためには、以下の条件式を満足することが好ま
しい。 0.1<|(Rf−Rr)/(Rf+Rr)|<0.8・・・・(1) 但し、Rfは補助レンズ系の入射面の曲率半径、Rr
補助レンズ系の射出面の曲率半径である。上記条件式
(1)の値がその取り得る値の範囲の上限を越えると、
歪曲収差の発生は小さくなるが、倍率色収差が大きく発
生し良好な結像性能を維持できなくなる。一方、条件式
(1)の値がその取り得る値の範囲の下限を下回ると、
倍率色収差の発生は小さくなるが、歪曲収差が大きく発
生し良好な結像性能を維持できなくなる。
In the auxiliary lens system of the optical system of the present invention, the radius of curvature of the lens disposed closest to the object side is made smaller than the radius of curvature of the lens disposed closest to the image side for underwater photography. The occurrence of lateral chromatic aberration is suppressed while appropriately correcting distortion that sometimes occurs. Further, in the optical system of the present invention, in order to satisfactorily correct distortion and lateral chromatic aberration, it is preferable to satisfy the following conditional expressions. 0.1 <| (Rf −Rr ) / (Rf + Rr ) | <0.8 (1) where Rf is the radius of curvature of the incident surface of the auxiliary lens system and Rr is the auxiliary It is the radius of curvature of the exit surface of the lens system. When the value of the conditional expression (1) exceeds the upper limit of the range of possible values,
Although distortion is less likely to occur, chromatic aberration of magnification is greater, and good imaging performance cannot be maintained. On the other hand, when the value of conditional expression (1) is below the lower limit of the range of possible values,
Although the chromatic aberration of magnification is reduced, a large amount of distortion is generated, and good imaging performance cannot be maintained.

【0012】しかしながら、前記補助レンズ系を撮影光
学系の前方に装着しても、補助レンズ系を構成する最も
物体側に配置されたレンズの入射面は物体側に対して凸
面の形状を有しているため、水中撮影時にはプラスの像
面湾曲が大きく発生してしまい、これを前記補助レンズ
系のみで補正することは困難である。又、撮影光学系は
変倍光学系になっているため、撮影光学系のある焦点距
離で収差性能が向上し得るように補助レンズ系を構成し
ているレンズの各面の曲率を定めても、前記撮影光学系
をズーミングしたときの収差及びバックフォーカスの変
動のため、全焦点距離域に亘って良好な結像性能を維持
することができないという問題もある。
However, even when the auxiliary lens system is mounted in front of the photographing optical system, the incident surface of the lens which is the closest to the object side and which forms the auxiliary lens system has a convex shape with respect to the object side. Therefore, a large positive curvature of field occurs during underwater photography, and it is difficult to correct this with only the auxiliary lens system. Further, since the photographing optical system is a variable power optical system, even if the curvature of each surface of the lens forming the auxiliary lens system is determined so that the aberration performance can be improved at a certain focal length of the photographing optical system. However, there is also a problem that good imaging performance cannot be maintained over the entire focal length range due to variations in aberration and back focus when the photographing optical system is zoomed.

【0013】そこで、本発明の光学系は、変倍のための
移動レンズ群において、特に変倍に伴って像面が移動し
ないように固定させると共に、像面湾曲の特性に寄与し
他の収差の変動に影響を及ぼさないレンズ群を移動させ
ることにより、水中変倍時に全焦点距離域に亘って良好
な結像光学系を維持することを可能にしている。本発明
の光学系は、補助レンズ系と撮影光学系との間は空気が
密閉されており、水の侵入を防ぐため、防水性能を損な
わないように補助レンズ系装着時のレンズ全長を一定に
して、当該補助レンズ系が焦点距離可変時の撮影光学系
に干渉しないような位置に装着するのが良い。そのた
め、撮影光学系は焦点距離可変時の全長変化が少ないも
のが好ましい。
Therefore, in the optical system of the present invention, in the moving lens group for zooming, the image surface is fixed so that it does not move particularly with zooming, and at the same time, it contributes to the characteristic of field curvature and other aberrations. By moving the lens group that does not affect the fluctuation of (3), it is possible to maintain a good imaging optical system over the entire focal length range during zooming in water. In the optical system of the present invention, air is sealed between the auxiliary lens system and the photographing optical system, and in order to prevent water from entering, the total lens length when the auxiliary lens system is attached is kept constant so as not to impair the waterproof performance. Then, it is preferable to mount the auxiliary lens system at a position where it does not interfere with the photographing optical system when the focal length is variable. Therefore, it is preferable that the taking optical system has little change in the total length when the focal length is changed.

【0014】又、ある程度全長が変化する撮影光学系を
用いて、補助レンズ系装着時のレンズ全長を一定にする
場合、焦点距離可変時の収差変動が大きく、これを補正
するのは困難であるため、補助レンズ系の正メニスカス
レンズの少なくとも一面に非球面を使用することで、収
差変動を良好に補正することが可能である。更に、撮影
光学系は、水中撮影時のズームカム(回転レンズ環に設
けられた移動レンズ群の案内溝)を、空気中撮影時のズ
ームカムの広角端の延長上に、水中撮影時の広角端から
始まるように設けることで、水中撮影時への切り換えが
容易に行える。
Further, when a photographing optical system whose total length changes to some extent is used and the total lens length when the auxiliary lens system is attached is made constant, aberration variation is large when the focal length is varied, and it is difficult to correct this. Therefore, by using an aspherical surface for at least one surface of the positive meniscus lens of the auxiliary lens system, it is possible to satisfactorily correct aberration fluctuations. In addition, the photographic optical system uses the zoom cam for underwater photography (a guide groove for the moving lens group provided on the rotary lens ring) as an extension of the wide-angle end of the zoom cam for in-air photography, and from the wide-angle end for underwater photography. By setting it so that it starts, it is possible to easily switch to underwater photography.

【0015】[0015]

【実施例】以下、図示した実施例に基づき、本発明を詳
細に説明する。図1は、本発明による光学系の空気中撮
影時におけるレンズ構成を示す断面図であり、(a)は
広角端,(b)は中間倍率,(c)は望遠端での構成を
夫々示した図である。図2は、本発明による光学系の水
中撮影時におけるレンズ構成を示す断面図であり、
(a)広角端,(b)は中間倍率,(c)は望遠端での
構成を夫々示した図である。図3は、本発明の光学系に
よる空気中撮影時の収差曲線図であり、(a)は広角
端,(b)は中間倍率,(c)は望遠端での状態を夫々
示した図である。図4は、本発明の光学系による水中撮
影時の収差曲線図であり、(a)は広角端,(b)は中
間倍率,(c)は望遠端での状態を夫々示した図であ
る。図5は、図1に示した光学系を水中で用いた場合の
収差曲線図であり、(a)は広角端,(b)は中間倍
率,(c)は望遠端での状態を夫々示した図である。
The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 is a cross-sectional view showing a lens configuration of an optical system according to the present invention when photographing in air, where (a) is a wide-angle end, (b) is an intermediate magnification, and (c) is a telephoto end. It is a figure. FIG. 2 is a cross-sectional view showing a lens configuration of the optical system according to the present invention during underwater photography,
(A) Wide angle end, (b) is an intermediate magnification, (c) is a diagram showing the configuration at the telephoto end, respectively. 3A and 3B are aberration curve diagrams when photographing in air by the optical system of the present invention. FIG. 3A is a wide-angle end, FIG. 3B is an intermediate magnification, and FIG. 3C is a view at a telephoto end. is there. FIG. 4 is an aberration curve diagram during underwater photography by the optical system of the present invention, where (a) is the wide-angle end, (b) is the intermediate magnification, and (c) is the telephoto end. . FIG. 5 is an aberration curve diagram when the optical system shown in FIG. 1 is used in water. (A) shows a state at a wide-angle end, (b) shows an intermediate magnification, and (c) shows a state at a telephoto end. It is a figure.

【0016】撮影時の物体空間が空気である場合には、
本発明の光学系は、図1に示したように、物体側より順
に、負のパワーを有する第一群(G1)と、負のパワー
を有する第二群(G2)と、正のパワーを有する第三群
(G3,G4,G5及びG6)とが配置されて撮影光学
系が構成される。そして、広角端より望遠端への変倍に
際しては、第一群(G1)が始め像方向(図の右側)へ
移動し途中からは物体側(図の左側)へ移動し、更に第
三群(G3,G4,G5及びG6)中のレンズ群がその
焦点距離を減少させるように移動し、而も第三群全体の
前側主点位置を物体側に向かうように移動させて空気中
での撮影を可能にしている。一方、物体空間が水である
場合には、図2に示したように、上記撮影光学系の前方
(物体側)に、負のメニスカスレンズ1aと正のメニス
カスレンズ1bとから構成された補助レンズ系1を装着
すると共に、変倍のために上記撮影光学系を構成してい
る各レンズ群の移動を空気中での撮影の場合とは異なっ
た方法で行うことによって、水中での撮影を可能にして
いる。このように、本発明の光学系は、補助レンズ系1
の着脱のみで、空気中,水中双方の撮影に対処できる。
When the object space at the time of shooting is air,
As shown in FIG. 1, the optical system of the present invention includes, in order from the object side, a first group (G1 ) having negative power, a second group (G2 ) having negative power, and a positive group. The third group having power (G3 , G4 , G5 and G6 ) is arranged to constitute a photographing optical system. During zooming from the wide-angle end to the telephoto end, the first group (G1 )first moves in the image direction (right side in the figure), then moves toward the object side (left side in the figure) from the middle, and then the third group. The lens groups in the groups (G3 , G4 , G5 and G6 ) are moved so as to reduce their focal lengths, and the front principal point position of the entire third group is moved toward the object side. It enables shooting in the air. On the other hand, when the object space is water, as shown in FIG. 2, an auxiliary lens composed of a negative meniscus lens 1a and a positive meniscus lens 1b in front of the photographing optical system (on the object side). It is possible to shoot underwater by mounting the system 1 and moving the lens groups that make up the above-mentioned shooting optical system for zooming by a method different from that in shooting in air. I have to. As described above, the optical system of the present invention includes the auxiliary lens system 1
You can handle both in-air and underwater shooting by simply removing and attaching

【0017】以下、本実施例における数値データを示
す。
Numerical data in this embodiment will be shown below.

【0018】(空気中撮影時) r1=134.7423 d1=2.200 n1=1.74320 ν1=49.31 r2=27.0821 d2=7.000 r3=-435.7754 d3=1.900 n3=1.75700 ν3=47.87 r4=48.3279 d4=0.150 r5=36.7495 d5=4.500 n5=1.84666 ν5=23.78(When photographing in air) r1 = 134.7423 d1 = 2.200 n1 = 1.74320 ν1 = 49.31 r2 = 27.0821 d2 = 7.000 r3 = -435.7754 d3 = 1.900 n3 = 1.75700 ν3 = 47.87r 4 = 48.3279 d 4 = 0.150 r 5 = 36.7495 d 5 = 4.500 n 5 = 1.84666 ν 5 = 23.78

【0019】r6=131.8168 d6=12.5000(広角) ,5.0000 (中間) ,1.3000 (望
遠) r7=62.2161 d7=2.000 n7=1.48749 ν7=70.20 r8=44.1464 d8=36.8939(広角) ,13.3636(中間) ,1.4650 (望
遠) r9=45.5286 d9=1.500 n9=1.84666 ν9=23.78 r10=21.5496 d10=6.500 n10=1.71300 ν10=53.84
R6 = 131.8168 d6 = 12.5000 (wide angle), 5.0000 (middle), 1.3000 (telephoto) r7 = 62.2161 d7 = 2.000 n7 = 1.48749 ν7 = 70.20 r8 = 44.1464 d8 = 36.8939 (wide angle) ), 13.3636 (intermediate), 1.4650 (telephoto) r9 = 45.5286 d9 = 1.500 n9 = 1.84666 ν9 = 23.78 r10 = 21.5496 d10 = 6.500 n10 = 1.71300 ν10 = 53.84

【0020】r11=-97.3091 d11=0.1500 r12=25.2128 d12=4.850 n12=1.48749 ν12=70.20 r13=∞ d13=2.8000 (広角) ,6.7678 (中間) ,12.2407(望
遠) r14=∞ (絞り) d14=1.000 r15=-95.6768 d15=3.500 n15=1.80518 ν15=25.43
R11 = -97.3091 d11 = 0.1500 r12 = 25.2128 d12 = 4.850 n12 = 1.48749 ν12 = 70.20 r13 = ∞ d13 = 2.8000 (wide angle), 6.7678 (intermediate), 12.2407 (telephoto) r14 = ∞ (aperture) d14 = 1.000 r15 = -95.6768 d15 = 3.500 n15 = 1.80518 ν15 = 25.43

【0021】r16=-17.3663 d16=1.400 n16=1.76200 ν16=40.10 r17=39.8484 d17=16.8866(広角) ,9.6571 (中間) ,1.8000 (望
遠) r18=88.5160 d18=4.000 n18=1.53996 ν18=59.57 r19=-39.4021 (非球面) d19=0.150 r20=-97.5417 d20=1.600 n20=1.80518 ν20=25.43 r21=215.6004
R16 = -17.3663 d16 = 1.400 n16 = 1.76200 ν16 = 40.10 r17 = 39.8484 d17 = 16.8866 (wide angle), 9.6571 (middle), 1.8000 (telephoto) r18 = 88.5160 d18 = 4.000 n18 = 1.53996 ν18 = 59.57 r19 = -39.4021 (aspherical surface) d19 = 0.150 r20 = -97.5417 d20 = 1.600 n20 = 1.80518 ν20 = 25.43 r21 = 215.6004

【0022】非球面係数 第19面 P=1.0000 E=0.18670 ×10-4 ,F=0.99813 ×10-8 G=0.58878 ×10-9 ,H=-0.35096×10-11 I=0.15481 ×10-15Aspherical surface coefficient 19th surface P = 1.0000 E = 0.186670 × 10-4 , F = 0.9813 × 10-8 G = 0.58878 × 10-9 , H = -0.35096 × 10-11 I = 0.15481 × 10-15

【0023】(水中撮影時) r1=60.6125 d1=3.000 n1=1.71736 ν1=29.51 r2=43.5032 d2=30.000 r3=38.2972(非球面) d3=10.000 n3=1.49241 ν3=57.66 r4=170.5864 d4=5.0000 (広角) ,20.1159(中間) ,18.5829(望
遠) r5=134.7423 d5=2.200 n5=1.74320 ν5=49.31
(Underwater shooting) r1 = 60.6125 d1 = 3.000 n1 = 1.71736 ν1 = 29.51 r2 = 43.5032 d2 = 30.000 r3 = 38.2972 (aspherical surface) d3 = 10.000 n3 = 1.49241 ν3 = 57.66 r4 = 170.5864 d4 = 5.0000 (wide angle), 20.1159 (middle), 18.5829 (telephoto) r5 = 134.7423 d5 = 2.200 n5 = 1.74320 ν5 = 49.31

【0024】r6=27.0821 d6=7.000 r7=-435.7754 d7=1.900 n7=1.75700 ν7=47.87 r8=48.3279 d8=0.150 r9=36.7495 d9=4.500 n9=1.84666 ν9=23.78 r10=131.8168 d10=1.1928 (広角) ,4.9893 (中間) ,2.7215 (望
遠)
R6 = 27.0821 d6 = 7.000 r7 = -435.7754 d7 = 1.900 n7 = 1.75700 ν7 = 47.87 r8 = 48.3279 d8 = 0.150 r9 = 36.7495 d9 = 4.500 n9 = 1.84666 ν9 = 23.78 r10 = 131.8168 d10 = 1.1928 (wide angle), 4.9893 (middle), 2.7215 (telephoto)

【0025】r11=62.2161 d11=2.000 n11=1.48749 ν11=70.20 r12=44.1464 d12=44.8973(広角) ,13.3146(中間) ,1.0000 (望
遠) r13=45.5286 d13=1.500 n13=1.84666 ν13=23.78 r14=21.5496 d14=6.500 n14=1.71300 ν14=53.84 r15=-97.3091 d15=0.1500
R11 = 62.2161 d11 = 2.000 n11 = 1.48749 ν11 = 70.20 r12 = 44.1464 d12 = 44.8973 (wide angle), 13.3146 (middle), 1.0000 (telephoto) r13 = 45.5286 d13 = 1.500 n13 = 1.84666 ν13 = 23.78 r14 = 21.5496 d14 = 6.500 n14 = 1.71300 ν14 = 53.84 r15 = -97.3091 d15 = 0.1500

【0026】r16=25.2128 d16=4.850 n16=1.48749 ν16=70.20 r17=∞ d17=3.0308 (広角) ,6.5837 (中間) ,11.0338(望
遠) r18=∞ (絞り) d18=1.000 r19=-95.6768 d19=3.500 n19=1.80518 ν19=25.43 r20=-17.3663 d20=1.400 n20=1.76200 ν20=40.10
R16 = 25.2128 d16 = 4.850 n16 = 1.48749 ν16 = 70.20 r17 = ∞ d17 = 3.0308 (wide angle), 6.5837 (middle), 11.0338 (telephoto) r18 = ∞ (aperture) d18 = 1.000 r19 = -95.6768 d19 = 3.500 n19 = 1.80518 ν19 = 25.43 r20 = -17.3663 d20 = 1.400 n20 = 1.76200 ν20 = 40.10

【0027】r21=39.8484 d21=13.1866(広角) ,7.4587 (中間) ,1.0000 (望
遠) r22=88.5160 d22=4.000 n22=1.53996 ν22=59.57 r23=-39.4021 (非球面) d23=0.150 r24=-97.5417 d24=1.600 n24=1.80518 ν24=25.43 r25=215.6004
R21 = 39.8484 d21 = 13.1866 (wide angle), 7.4587 (middle), 1.0000 (telephoto) r22 = 88.5160 d22 = 4.000 n22 = 1.53996 ν22 = 59.57 r23 = -39.4021 (aspherical surface) d23 = 0.150 r24 = -97.5417 d24 = 1.600 n24 = 1.80518 ν24 = 25.43 r25 = 215.6004

【0028】非球面係数 第3面 P=1.0000 E=-0.37639×10-6 ,F=0.22767 ×10-9 G=-0.21435×10-11,H=0.28879 ×10-14 I=-0.13801×10-17 第23面 P=1.0000 E=0.18670 ×10-4 ,F=0.99813 ×10-8 G=0.58878 ×10-9 ,H=-0.35096×10-11 I=0.15481 ×10-15Aspheric surface coefficient Third surface P = 1.0000 E = -0.37639 × 10-6 , F = 0.22767 × 10-9 G = -0.21435 × 10-11 , H = 0.28879 × 10-14 I = -0.13801 × 10-17 23rd surface P = 1.0000 E = 0.186670 × 10-4 , F = 0.9813 × 10-8 G = 0.58878 × 10-9 , H = -0.35096 × 10-11 I = 0.15481 × 10-15

【0029】但し、本実施例において、r1,r2,・
・・・は各レンズ面の曲率半径、d1,d2,・・・・
は各レンズの肉厚又は間隔、n1,n2,・・・・はd
線の屈折率、ν1,ν2・・・・はd線のアッベ数であ
る。尚、本実施例における非球面形状は、光軸方向の非
球面量をx,光軸からの高さをhとしたとき、次式によ
って示される。但し、rは近軸曲率半径、E,F,G,H,Iは夫々非
球面係数である。又、本実施例における上記条件式
(1)の値は、 |(Rf−Rr)/(Rf+Rr)|=0.48 である。
However, in this embodiment, r1, R2・ ・ ・
... is the radius of curvature of each lens surface, d1, D2・ ・ ・ ・ ・ ・
Is the thickness or spacing of each lens, n1, N2, ... is d
Refractive index of line, ν1, Ν2... is the Abbe number of d line
It In addition, the aspherical surface shape in the present embodiment has a non-spherical shape in the optical axis direction.
Assuming that the spherical amount is x and the height from the optical axis is h,
Is shown.However, r is the paraxial radius of curvature, and E, F, G, H, and I are not
It is a spherical coefficient. In addition, the above conditional expression in the present embodiment
The value of (1) is | (Rf-Rr) / (Rf+ Rr) | = 0.48.

【0030】尚、本発明の効果を証明するために、上記
実施例の空気中撮影時の状態のままの光学系を水中で使
用した時の収差を求め、図5(a)乃至(c)に示し
た。この収差図曲線図から明らかなように、空気中撮影
時では良好であった収差性能も水中では悪化し、使用に
耐えられなくなってしまう。又、図5(a)乃至(c)
と図4(a)乃至(c)とを比べれば(但しスケールが
違うことに注意)、本発明の光学系を水中撮影状態に切
り換えることによって、収差性能が数段向上することが
明確であろう。
In order to prove the effect of the present invention, the aberrations when the optical system of the above-mentioned embodiment under the condition of photographing in air as it is is used in water are obtained, and FIGS. It was shown to. As is clear from this aberration diagram curve diagram, the aberration performance, which was good at the time of photographing in the air, deteriorates in water and cannot be used. Also, FIGS. 5 (a) to 5 (c)
4 (a) to 4 (c) (note that the scales are different), it is clear that the aberration performance is improved several times by switching the optical system of the present invention to the underwater photographing state. Let's do it.

【0031】[0031]

【発明の効果】上述のように、本発明による水陸両用カ
メラの光学系は、簡単な構成の補助レンズ系の着脱のみ
で、空気中と水中との撮影状態を相互に切り換えること
ができ、高倍率なズームレンズにおいても高い結像性能
を維持しながら空気中,水中を問わず撮影ができるとい
う実用上優れた利点を有する。
As described above, the optical system of the amphibious camera according to the present invention can switch the shooting state between the air and the water by simply attaching and detaching the auxiliary lens system having a simple structure. Even with a high-power zoom lens, it has the practical advantage of being able to shoot in the air or in the water while maintaining high imaging performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光学系の空気中撮影時におけるレ
ンズ構成を示す断面図であり、(a)は広角端,(b)
は中間倍率,(c)は望遠端での構成を夫々示した図で
ある。
FIG. 1 is a cross-sectional view showing a lens configuration of an optical system according to the present invention when photographing in air, where (a) is a wide-angle end and (b) is a sectional view.
Is a diagram showing the intermediate magnification, and (c) is a diagram showing the configuration at the telephoto end.

【図2】本発明による光学系の水中撮影時におけるレン
ズ構成を示す断面図であり、(a)広角端,(b)は中
間倍率,(c)は望遠端での構成を夫々示した図であ
る。
FIG. 2 is a cross-sectional view showing a lens configuration of an optical system according to the present invention during underwater photography, in which (a) a wide-angle end, (b) an intermediate magnification, and (c) a telephoto end. Is.

【図3】本発明の光学系による空気中撮影時の収差曲線
図であり、(a)は広角端,(b)は中間倍率,(c)
は望遠端での状態を夫々示した図である。
FIG. 3 is an aberration curve diagram when photographing in air by the optical system of the present invention, where (a) is a wide-angle end, (b) is an intermediate magnification, and (c).
[Fig. 3] is a diagram showing states at the telephoto end.

【図4】本発明の光学系による水中撮影時の収差曲線図
であり、(a)は広角端,(b)は中間倍率,(c)は
望遠端での状態を夫々示した図である。
FIG. 4 is an aberration curve diagram during underwater photography by the optical system of the present invention, in which (a) is a wide-angle end, (b) is an intermediate magnification, and (c) is a diagram at a telephoto end. .

【図5】図1に示した光学系を水中で用いた場合の収差
曲線図であり、(a)は広角端,(b)は中間倍率,
(c)は望遠端での状態を夫々示した図である。
5 is an aberration curve diagram when the optical system shown in FIG. 1 is used in water, where (a) is a wide-angle end, (b) is an intermediate magnification, and FIG.
(C) is a figure which respectively showed the state in a telephoto end.

【符号の説明】[Explanation of symbols]

1 補助レンズ系 1a 負のメニスカスレンズ 1b 正のメニスカスレンズ G1 第一群を構成しているレンズ G2 第二群を構成しているレンズ G3,G4,G5,G6 第三群を構成しているレンズ1 Auxiliary lens system 1a Negative meniscus lens 1b Positive meniscus lens G1 Lens forming first group G2 Lens forming second group G3 , G4 , G5 , G6 Third group The lenses that make up

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 物体空間が空気で収差補正された複数の
レンズ群を有し、該レンズ群の移動による焦点距離可変
の撮影光学系において、 撮影時の物体空間が水である場合には、物体側より順に
物体側に凸面を向けた負のメニスカスレンズと物体側に
凸面を向けた正のメニスカスレンズとが配置され且つ最
も物体側に配置されたレンズの曲率半径が最も像側に配
置されたレンズの曲率半径よりも小さくなるように構成
された補助レンズ系を前記撮影光学系の前方に装着する
と共に、変倍のための移動レンズ群を物体空間が空気で
ある場合の撮影時とは異なるように移動させることで水
中撮影を可能とし、更に、以下の条件式を満足するよう
にしたことを特徴とする水陸両用カメラの光学系。 0.1<|(Rf−Rr)/(Rf+Rr)|<0.8 但し、Rfは補助レンズ系の入射面の曲率半径、Rr
補助レンズ系の射出面の曲率半径である。
1. In a photographing optical system having a plurality of lens groups whose object space is air-corrected for aberrations and having a variable focal length by movement of the lens groups, when the object space at the time of photographing is water, A negative meniscus lens with a convex surface facing the object side and a positive meniscus lens with a convex surface facing the object side are arranged in order from the object side, and the radius of curvature of the lens arranged closest to the object side is arranged closest to the image side. The auxiliary lens system configured to be smaller than the radius of curvature of the lens is mounted in front of the photographing optical system, and the moving lens group for zooming is used when photographing in the case where the object space is air. An optical system for an amphibious camera characterized by enabling underwater photography by moving differently, and further satisfying the following conditional expressions. 0.1 <| (Rf −Rr ) / (Rf + Rr ) | <0.8 where Rf is the radius of curvature of the incident surface of the auxiliary lens system, and Rr is the curvature of the exit surface of the auxiliary lens system. Is the radius.
【請求項2】 前記補助レンズ系を構成している正のメ
ニスカスレンズの少なくとも一面を非球面にするように
したことを特徴とする請求項1に記載の水陸両用カメラ
の光学系。
2. The optical system for an amphibious camera according to claim 1, wherein at least one surface of the positive meniscus lens forming the auxiliary lens system is aspherical.
JP30938093A1993-12-091993-12-09 Optical system of amphibious cameraExpired - Fee RelatedJP3429540B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP30938093AJP3429540B2 (en)1993-12-091993-12-09 Optical system of amphibious camera

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP30938093AJP3429540B2 (en)1993-12-091993-12-09 Optical system of amphibious camera

Publications (2)

Publication NumberPublication Date
JPH07159689Atrue JPH07159689A (en)1995-06-23
JP3429540B2 JP3429540B2 (en)2003-07-22

Family

ID=17992314

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP30938093AExpired - Fee RelatedJP3429540B2 (en)1993-12-091993-12-09 Optical system of amphibious camera

Country Status (1)

CountryLink
JP (1)JP3429540B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2001235679A (en)*2000-02-232001-08-31Canon Inc Optical system, optical apparatus having the same, image projection device, and imaging device
US8159532B2 (en)2007-03-232012-04-17Olympus Imaging Corp.Electronic image pickup apparatus
JP2012198273A (en)*2011-03-182012-10-18Nikon CorpImaging device
JP2014232295A (en)*2012-12-282014-12-11株式会社リコーImage display device
JP2014232294A (en)*2012-12-282014-12-11株式会社リコーZoom lens for projection
WO2015107912A1 (en)2014-01-202015-07-23株式会社ニコンOptical system, imaging device, and optical system production method
JP2015135439A (en)*2014-01-202015-07-27株式会社ニコン Amphibious zoom lens, imaging device, and amphibious zoom lens manufacturing method
JP2015138050A (en)*2014-01-202015-07-30株式会社ニコンAmphibian variable magnification lens, imaging device and manufacturing method of amphibian variable magnification lens
JP2016071282A (en)*2014-10-012016-05-09株式会社ニコン Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP2016133572A (en)*2015-01-162016-07-25株式会社ニコンOptical system, imaging device and manufacturing method of optical system
US9638903B2 (en)2012-12-282017-05-02Ricoh Company, Ltd.Projection zoom lens
US9664883B2 (en)2012-12-282017-05-30Ricoh Company, Ltd.Image display device
CN109031625A (en)*2018-09-252018-12-18云南博硕信息技术有限公司The high-definition monitoring camera lens of five megapixels of large aperture day and night
CN110023809A (en)*2016-11-282019-07-16柯尼卡美能达株式会社Imaging optical system, lens unit and photographic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR102232517B1 (en)2014-09-152021-03-26삼성전자주식회사Method for capturing image and image capturing apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2001235679A (en)*2000-02-232001-08-31Canon Inc Optical system, optical apparatus having the same, image projection device, and imaging device
US8159532B2 (en)2007-03-232012-04-17Olympus Imaging Corp.Electronic image pickup apparatus
JP2012198273A (en)*2011-03-182012-10-18Nikon CorpImaging device
US9664883B2 (en)2012-12-282017-05-30Ricoh Company, Ltd.Image display device
JP2014232294A (en)*2012-12-282014-12-11株式会社リコーZoom lens for projection
US10451857B2 (en)2012-12-282019-10-22Ricoh Company, Ltd.Projection zoom lens
JP2014232295A (en)*2012-12-282014-12-11株式会社リコーImage display device
US9638903B2 (en)2012-12-282017-05-02Ricoh Company, Ltd.Projection zoom lens
CN105960605A (en)*2014-01-202016-09-21株式会社尼康 Optical system, imaging device, and manufacturing method of optical system
JP2015138050A (en)*2014-01-202015-07-30株式会社ニコンAmphibian variable magnification lens, imaging device and manufacturing method of amphibian variable magnification lens
JP2015135439A (en)*2014-01-202015-07-27株式会社ニコン Amphibious zoom lens, imaging device, and amphibious zoom lens manufacturing method
US9989742B2 (en)2014-01-202018-06-05Nikon CorporationOptical system, imaging device, and method for manufacturing the optical system
WO2015107912A1 (en)2014-01-202015-07-23株式会社ニコンOptical system, imaging device, and optical system production method
US10545319B2 (en)2014-01-202020-01-28Nikon CorporationOptical system, imaging device, and method for manufacturing the optical system
JP2016071282A (en)*2014-10-012016-05-09株式会社ニコン Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP2016133572A (en)*2015-01-162016-07-25株式会社ニコンOptical system, imaging device and manufacturing method of optical system
CN110023809A (en)*2016-11-282019-07-16柯尼卡美能达株式会社Imaging optical system, lens unit and photographic device
CN109031625A (en)*2018-09-252018-12-18云南博硕信息技术有限公司The high-definition monitoring camera lens of five megapixels of large aperture day and night
CN109031625B (en)*2018-09-252020-10-02云南博硕信息技术有限公司Large-aperture day and night dual-purpose five-million-pixel-level high-definition monitoring lens

Also Published As

Publication numberPublication date
JP3429540B2 (en)2003-07-22

Similar Documents

PublicationPublication DateTitle
JP3584107B2 (en) Zoom lens
JP3652046B2 (en) Compact zoom optical system and camera equipped with the same
JPH05173073A (en)Three-group zoom lens
JP4447680B2 (en) Zoom lens
JP3429540B2 (en) Optical system of amphibious camera
JP3599689B2 (en) Zoom lens
JP3652179B2 (en) Zoom lens
JP4950645B2 (en) Optical system and imaging apparatus having the same
JP3805390B2 (en) Real-image variable magnification viewfinder optical system
US5910860A (en)Zoom lens
JPH06130290A (en)Compact fixed focus lens
JP3619153B2 (en) Zoom lens and optical apparatus using the same
JPH1031155A (en) Zoom lens
JP3431968B2 (en) Optical system of amphibious camera
JP2840283B2 (en) Shooting lens system
JPH0820598B2 (en) Compact zoom lens
JPH08110470A (en) Wide-angle zoom lens
JP2007178769A (en) Zoom lens
JP3706827B2 (en) Zoom lens and optical apparatus having the same
JPH0694997A (en)High variable power and wide angle zoom lens
JP2932603B2 (en) Zoom lens
JPH05107476A (en) Wide-angle zoom lens
JP3919301B2 (en) Rear focus zoom lens and imaging apparatus using the same
JPH03215810A (en)Rear focus type zoom lens
JP2912666B2 (en) Inner focus type small zoom lens device

Legal Events

DateCodeTitleDescription
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20030422

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20080516

Year of fee payment:5

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090516

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100516

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100516

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110516

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120516

Year of fee payment:9

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp