【0001】[0001]
【産業上の利用分野】本発明は表面ゲート構造の高周波
用静電誘導型トランジスタ(StaticInduct
ion Transistor;以下、高周波用SIT
と略称する)の電極構造及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency static induction transistor (StaticInduct) having a surface gate structure.
Ion Transistor; High frequency SIT
Abbreviated as “) and an electrode manufacturing method.
【0002】[0002]
【従来の技術】従来表面ゲート構造の高周波用SITを
製造するに際しては、Si3N4膜とSiO2膜との組合せ
によるセルフアライメント手法が不可欠とされていた。
更に特に緻密なSi3N4膜を形成するためには高価なC
VD(Chemical Vapor Deposit
ion)装置が必要であった。又、各電極層の選択開孔
に際しても高精度のアライメント装置を必要としてい
た。更にゲート電極層の選択拡散に際しても、イオン注
入装置のような異方性拡散の手段が必要であり、これら
高価な設備が備わっていなければ到底高周波用SITを
製造実現できないものであった。2. Description of the Related Art Conventionally, in manufacturing a high frequency SIT having a surface gate structure, a self-alignment method using a combination of a Si3 N4 film and a SiO2 film has been indispensable.
Furthermore, in order to form a particularly dense Si3 N4 film, expensive C
VD (Chemical Vapor Deposition)
Ion) equipment was required. In addition, a highly accurate alignment device is required for selective opening of each electrode layer. Further, even in the selective diffusion of the gate electrode layer, a means for anisotropic diffusion such as an ion implantation device is required, and it is impossible to manufacture and realize a high frequency SIT unless these expensive facilities are provided.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記した従
来のような高価な製造設備と複雑な製造工程を用いない
で、独自のセルフアライメント手法を組み合わせること
により極めて安定に高周波用静電誘導型トランジスタ
(高周波用SIT)を作成できる方法を提供することを
目的とするものである。SUMMARY OF THE INVENTION The present invention is extremely stable in electrostatic induction for high frequencies by combining a unique self-alignment technique without using the above-mentioned conventional expensive manufacturing equipment and complicated manufacturing process. An object of the present invention is to provide a method capable of forming a type transistor (high frequency SIT).
【0004】[0004]
【課題を解決するための手段】本発明は、上述の課題を
解決するため、くし目形状のソース領域とゲート領域と
を、該くし目が入り組むように対向して配置し、該ソー
ス領域と該ゲート領域各々の電極が、各々の領域の両端
から取出す構成とした。更に上記ソース領域の電極取出
しに際して、くし目形状のゲート領域の高不純物濃度
層、又は電極金属層を絶縁膜で被覆した後、該ソース領
域全域を束ねる様に構成して平板状ソース金属電極を形
成する。更に周囲がゲート領域にとり囲まれた複数の孤
立した前記ソース領域を束ねるのに、該ゲート領域の高
不純物濃度層又は電極金属層を絶縁膜で被覆した後、各
ソース領域が連結される様にソース電極金属層を形成す
る。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention arranges a comb-shaped source region and a gate region so as to face each other so that the comb is intricate. The electrodes in each of the gate regions are taken out from both ends of each region. Further, when extracting the electrode of the source region, after covering the high impurity concentration layer of the comb-shaped gate region or the electrode metal layer with an insulating film, a flat source metal electrode is formed by bundling the entire source region. Form. Further, in order to bundle the plurality of isolated source regions surrounded by the gate region, the source regions are connected after the high impurity concentration layer or the electrode metal layer of the gate region is covered with an insulating film. A source electrode metal layer is formed.
【0005】更に前記ソース電極層にシリコン基板と同
一導電型の高不純物濃度層を形成しておき、該高不純物
濃度層を選択的にエッチングすることにより、庇状の酸
化膜が付いたソース電極層を形成し、引き続いて薄い金
属膜をその上に形成し、庇状のソース電極層を酸化膜と
金属膜の二層で構成するようにする。しかる後ポジタイ
プフォトレジストを、該ソース電極層の主表面全体に塗
布し全面露光、現像を行うことにより、ソース電極層間
の中心にゲート電極層窓を開孔できるセルフアライメン
ト手法の製造方法を備える。Further, a high impurity concentration layer having the same conductivity type as that of the silicon substrate is formed on the source electrode layer, and the high impurity concentration layer is selectively etched to form a source electrode having an eaves-like oxide film. A layer is formed, a thin metal film is subsequently formed thereon, and the eave-shaped source electrode layer is composed of two layers of an oxide film and a metal film. Then, a positive type photoresist is applied to the entire main surface of the source electrode layer, and the entire surface is exposed and developed to provide a method of manufacturing a self-alignment method capable of forming a gate electrode layer window in the center between the source electrode layers. .
【0006】更に電極金属膜の形成に際して、ソース電
極層の主表面への金属膜形成に引続き、ネガタイプフォ
トレジストの回連塗布、ベーキングの一連の処理による
ソース電極層肩部の選択開孔を実現するセルフアライメ
ント手法の製造方法を備える。更にゲート電極層の選択
拡散に際し、拡散雰囲気を酸素を含んだ気体にし、くし
目形状のゲート電極層を酸化膜で埋込んだ構造とする。
更に拡散雰囲気を不活性ガスに選ぶことにより、くし目
形状のゲート電極層のくし目の各々が開孔され、電極金
属膜が形成できる製造方法とする。Further, in forming the electrode metal film, subsequent to the formation of the metal film on the main surface of the source electrode layer, the selective opening of the shoulder portion of the source electrode layer is realized by a series of negative type photoresist coating and baking. And a manufacturing method of a self-alignment method. Further, in the selective diffusion of the gate electrode layer, the diffusion atmosphere is a gas containing oxygen, and the comb-shaped gate electrode layer is filled with an oxide film.
Further, by selecting an inert gas as the diffusion atmosphere, each of the combs of the comb-shaped gate electrode layer is opened, and the electrode metal film can be formed.
【0007】[0007]
【作用】上記したように、くし目形状のソース領域、ゲ
ート領域の電極構成並びに各々の電極構造等の製造法を
セルフアライメント手法を備えた製造工程を採用したの
で、特性バラツキの少ない安定した高周波用SITが提
供できる。更に拡散雰囲気を酸素を含んだ気体、或は不
活性ガスを採用したので安価で品質の良い高周波用SI
Tが提供できる。As described above, since the manufacturing process including the self-alignment method is adopted as the manufacturing method for the electrode configuration of the comb-shaped source region and the gate region, and the respective electrode structures, a stable high frequency with little characteristic variation is adopted. SIT can be provided. Furthermore, since a gas containing oxygen or an inert gas is used as the diffusion atmosphere, it is inexpensive and of high quality SI for high frequencies.
T can provide.
【0008】[0008]
【実施例】以下図面を参照しながら本発明の内容を詳述
する。図1(a)から(p)は、複数のくし目形状のソ
ース層211とゲート層8との各々に電極金属が配線さ
れている構造の高周波用SITの一部分の断面図による
製造工程略図を示す。又、図2(a)から(o)では、
くし目形状のゲート層8は、電極金属が配されずSiO2
膜4で埋込まれた構造の高周波用SITの一部分の断面
図による製造工程略図である。図1(a)は比抵抗ρが
50〜100Ωcm程度のN形シリコン基板1であり、
図1(b)は表面濃度Nsが1〜10×1019cm-3、
拡散深さ1μm程度のリン拡散層2,21を一般的な例
えばPOCl3拡散源を用いた関管液体拡散源拡散を11
00℃の温度でN形シリコン基板1に施した状態を示
す。図1(c)は1100℃の水蒸気酸化によってSi
O2膜3を、該N形シリコン基板1上に形成した状態を
示し、図1(d)はネガタイプフォトレジストを用いた
一般的なフォトリソグラフィー手法による選択開孔と、
緩衡フッ酸による選択エッチングにより、部分的にSi
O2膜31が残された状態を示している。図1(e)は
例えばフッ酸,硝酸,酢酸の容積比が5:100:1の
シリコンエッチング液で、SiO2膜31をマスクとして
リン拡散層2を選択エッチングした状態を示す。不純物
濃度が高い程エッチング速度が大きい為、本実施例では
N+ソース層211がN-形シリコン基板(ドレイン層)
1の約2倍のエッチング速度である。選択エッチング後
SiO2膜31は庇状の形状として残る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be described in detail below with reference to the drawings. 1A to 1P are schematic manufacturing process diagrams of a part of a high-frequency SIT having a structure in which an electrode metal is wired in each of a plurality of comb-shaped source layers 211 and gate layers 8. Show. 2 (a) to (o),
In the comb-shaped gate layer 8, no electrode metal is provided and SiO2
4 is a schematic manufacturing process diagram with a cross-sectional view of a part of a high frequency SIT having a structure embedded with a film 4. FIG. 1A shows an N-type silicon substrate 1 having a specific resistance ρ of about 50 to 100 Ωcm,
FIG. 1B shows that the surface concentration Ns is 1 to 10 × 1019 cm−3 ,
The phosphorus diffusion layers 2 and 21 having a diffusion depth of about 1 μm are used as a general liquid diffusion source diffusion source 11 using, for example, a POCl3 diffusion source.
It shows a state where the N-type silicon substrate 1 is applied at a temperature of 00 ° C. Figure 1 (c) shows that Si is oxidized by steam oxidation at 1100 ° C.
FIG. 1D shows a state in which the O2 film 3 is formed on the N-type silicon substrate 1. FIG. 1D shows selective holes formed by a general photolithography method using a negative type photoresist.
Selective etching with buffered hydrofluoric acid results in partial Si
The state where the O2 film 31 is left is shown. FIG. 1E shows a state in which the phosphorus diffusion layer 2 is selectively etched with a SiO2 film 31 as a mask with a silicon etching solution in which the volume ratio of hydrofluoric acid, nitric acid and acetic acid is 5: 100: 1. Since the higher the impurity concentration is, the higher the etching rate is, the N+ source layer 211 is an N− -type silicon substrate (drain layer) in this embodiment.
The etching rate is about twice that of 1. After the selective etching, the SiO2 film 31 remains as an eaves-like shape.
【0009】図1(f)は、図1(e)の状態で100
0A゜程度のSiO2の熱酸化膜41を、全面形成した後
500〜1000A゜程度の厚さでアルミ層5,51を
真空蒸着で形成した状態を示す。庇状の形状がアルミ層
とSiO2の2層膜になっている。図1(g)は図1
(f)の状態に、例えば東京応化(株)製のポジタイプ
フォトレジストOFPR−II(25cp)6を、30
00rpmで20秒間、回転塗布により形成し、全面に
水銀灯の紫外線7を照射した状態を示す。図1(h)は
紫外線7が当たった部分のポジタイプフォトレジスト膜
61は現像により溶解してしまうが、庇状の裏に相当す
る部分が、表面のアルミ層5,51により紫外線7が透
過できない為、ポジタイプフォトレジスト膜61が庇状
の下の部分にだけ残っている状態を示している。図1
(i)は、アルミ層5,51とSiO2の熱酸化膜41と
を図1(h)の状態から選択エッチングした状態を示
す。図1(j)は図1(i)の状態で、拡散源をBBr
3として、1100℃の温度でP+ゲート層8,81を選
択拡散した状態を示す。拡散雰囲気はN2ガスを使用し
た為、P+ゲート層8,81の表面は露呈された状態の
ままである。図1(k)は、図1(j)の状態で前述と
同様のポジタイプフォトレジストOFPR−IIを回転
塗布した後、全面紫外線71の露光を施した状態であ
る。FIG. 1 (f) shows 100 in the state of FIG. 1 (e).
A state in which a thermal oxide film 41 of SiO2 of about 0 A ° is formed over the entire surface and then aluminum layers 5 and 51 are formed by vacuum evaporation to a thickness of about 500 to 1000 A ° is shown. The eaves-like shape is a two-layer film of an aluminum layer and SiO2 . 1 (g) is shown in FIG.
In the state of (f), for example, a positive type photoresist OFPR-II (25 cp) 6 manufactured by Tokyo Ohka Co., Ltd.
It shows a state in which it is formed by spin coating at 00 rpm for 20 seconds, and the entire surface is irradiated with ultraviolet rays 7 of a mercury lamp. In FIG. 1 (h), the positive type photoresist film 61 in the portion exposed to the ultraviolet rays 7 is dissolved by the development, but the portion corresponding to the eaves-shaped back surface transmits the ultraviolet rays 7 by the aluminum layers 5 and 51 on the surface. Since it is not possible, the positive type photoresist film 61 is shown only in the lower portion of the eaves shape. Figure 1
(I) shows a state in which the aluminum layers 5, 51 and the thermal oxide film 41 of SiO2 are selectively etched from the state of FIG. 1 (h). FIG. 1 (j) shows the state of FIG. 1 (i) in which the diffusion source is BBr.
3 shows a state in which the P+ gate layers 8 and 81 are selectively diffused at a temperature of 1100 ° C. Since N2 gas was used for the diffusion atmosphere, the surfaces of the P+ gate layers 8 and 81 remain exposed. FIG. 1K shows a state in which the same positive type photoresist OFPR-II as described above is spin-coated in the state of FIG.
【0010】図1(l)は、図1(k)の現像後の状態
を示し、SiO2膜31のみ露呈している。紫外線71の
照射時間を短めにするか、現像時間を短めにすることで
図1(l)のごとくポジタイプフォトレジストOFPR
−IIの表層のみを除去することが可能である。実施例
では、露光時間10秒、現像時間3分とした。図1
(m)は、図1(l)の状態で緩衡フッ酸でSiO2膜3
1を除去した所であり、図1(n)は約2μmのアルミ
蒸着膜10を全面に施した状態である。図1(o)は東
京応化(株)製のフォトレジストOMR83(40c
p)12を3000rpm、20秒間、回転塗布し、即
座に160℃の温度でベーキングした状態を示す。台形
のソース電極部の肩の部分のみアルミ蒸着膜10が露呈
する。図1(p)は、図1(o)の状態でアルミ用エッ
チング液でエッチングし、ソース電極アルミ膜101と
ゲート電極アルミ膜102とを分離した状態を示してい
る。この一連の製造工程によって請求項1,請求項2,
請求項3の高周波用SITが請求項4,請求項5により
製造され基本構造が完成する。FIG. 1 (l) shows the state after the development of FIG. 1 (k), and only the SiO2 film 31 is exposed. By shortening the irradiation time of the ultraviolet ray 71 or the developing time, the positive type photoresist OFPR can be obtained as shown in FIG.
It is possible to remove only the surface layer of -II. In the example, the exposure time was 10 seconds and the development time was 3 minutes. Figure 1
In the state of FIG. 1 (l), (m) is SiO2 film 3 with buffer hydrofluoric acid.
1 is removed, and FIG. 1 (n) shows a state in which the aluminum vapor deposition film 10 of about 2 μm is applied to the entire surface. FIG. 1 (o) shows a photoresist OMR83 (40c manufactured by Tokyo Ohka Co., Ltd.).
p) 12 is spin coated at 3000 rpm for 20 seconds and immediately baked at a temperature of 160 ° C. The aluminum vapor deposition film 10 is exposed only on the shoulder portion of the trapezoidal source electrode portion. FIG. 1 (p) shows a state in which the source electrode aluminum film 101 and the gate electrode aluminum film 102 are separated by etching with the aluminum etching solution in the state of FIG. 1 (o). Claim 1, claim 2, and claim 2 by this series of manufacturing steps.
The high frequency SIT according to claim 3 is manufactured according to claims 4 and 5, and the basic structure is completed.
【0011】図2は、同じく本発明になる高周波静電誘
導型SITの別の製造方法を説明するものである。図2
(a)から(i)までは図1(a)から(i)の実施例
と同じ製造工程である。工程図2(j)において、P+
ゲート層8,81の形成に際して、拡散雰囲気を酸素ガ
ス中で行うことにより、P+ゲート層8,81の表面が
SiO2膜4で被覆され、P+ゲート層8,81はSiO2
膜4で埋込まれた形になっている。図2(k)(l)
(m)は、図1(k)(l)(m)と同様の製造条件で
進められる。但し図2(m)において、ゲート電極取出
し部81は、通常のフォトリソグラフィー手法で選択開
孔される。図2(n)は、図2(m)の状態のシリコン
ウェハーの両面に真空蒸着等により、2μm程度のアル
ミ膜10,11を形成した状態を示す。図2(o)は、
通常のフォトリソグラフィー手法により、ソース電極2
11を束ねるような形で、ソース電極アルミ膜101と
ゲート電極アルミ膜102を分離した状態である。本実
施例では東京応化製のポジタイプフォトレジストOFP
R−IIによるパターン形成に引続き、リン酸と硝酸と
が100:1の容量比のアルミエッチング液に浸漬する
手段を用いた。FIG. 2 illustrates another method of manufacturing the high frequency electrostatic induction type SIT according to the present invention. Figure 2
The steps (a) to (i) are the same as those of the embodiment shown in FIGS. 1 (a) to (i). In the process chart 2 (j), P+
In forming the gate layer 8, 81, by performing diffusion atmosphere in oxygen gas, the surface of the P+ gate layer 8, 81 is covered with the SiO2 film 4, P+ gate layer 8, 81 is SiO2
It is in the form of being embedded with the film 4. 2 (k) (l)
(M) is processed under the same manufacturing conditions as in FIGS. 1 (k) (l) (m). However, in FIG. 2 (m), the gate electrode extraction portion 81 is selectively opened by a normal photolithography method. 2 (n) shows a state in which aluminum films 10 and 11 of about 2 μm are formed on both surfaces of the silicon wafer in the state of FIG. 2 (m) by vacuum deposition or the like. Figure 2 (o)
The source electrode 2 is formed by an ordinary photolithography method.
The source electrode aluminum film 101 and the gate electrode aluminum film 102 are separated from each other in the form of bundling 11. In this embodiment, positive type photoresist OFP manufactured by Tokyo Ohka Co., Ltd.
Following the pattern formation by R-II, a means of immersing phosphoric acid and nitric acid in an aluminum etching solution having a volume ratio of 100: 1 was used.
【0012】図2の実施例では、P+ゲート層8の表面
はSiO2膜4で被覆されアルミ電極は省略された構造に
なっている。図3は、図1の製造工程による工程図のう
ち図1(p)に該当する断面図図3(a)と平面図図3
(b)との関係を示している。図3(b)図のA−A断
面が図3(a)図に対応する。各ゲート電極アルミ膜1
02とソース電極アルミ膜101とがくし目形状で互い
に入りくんだ形で分離されて配置されている。もちろん
この構造は、実施例図、図2の工程による高周波用SI
Tにおいても適用できる。図4は、実施例図、図2の工
程による高周波用SITの工程図2(o)に該当する断
面図図4(a)(b)と平面図図4(c)との関係を示
している。図4(c)図のB−B断面が図4(a)図に
対応する。SiO2膜4で覆われた各P+ゲート層8の上
に、各ソース電極211を連結する形で平板状のソース
電極アルミ膜101がゲート電極アルミ膜102と肩の
部分で分離して形成されている。本構造も又、図1の構
造の高周波用SITの製造工程にも適用可能であり、同
図図4(b)は、図1(p)に該当する製造工程の高周
波用SITに対応したB−B断面図である。上記と同じ
く肩の部分で分離された構造である。In the embodiment of FIG. 2, the surface of the P+ gate layer 8 is covered with the SiO2 film 4 and the aluminum electrode is omitted. FIG. 3 is a sectional view corresponding to FIG. 1 (p) among process drawings of the manufacturing process of FIG.
The relationship with (b) is shown. An AA cross section of FIG. 3B corresponds to that of FIG. Aluminum film for each gate electrode 1
02 and the source electrode aluminum film 101 are separated from each other in a comb shape in a comb shape. Of course, this structure is used for high frequency SI by the process of the embodiment diagram and FIG.
It is also applicable to T. FIG. 4 shows the relationship between the cross-sectional views 4 (a) and (b) and the plan view 4 (c) corresponding to the process drawing 2 (o) of the high-frequency SIT according to the process of FIG. There is. The BB cross section of FIG. 4C corresponds to FIG. 4A. On each P+ gate layer 8 covered with the SiO2 film 4, a plate-shaped source electrode aluminum film 101 is formed separately from the gate electrode aluminum film 102 at the shoulder portion so as to connect each source electrode 211. Has been done. This structure is also applicable to the manufacturing process of the high frequency SIT having the structure of FIG. 1, and FIG. 4 (b) corresponds to the high frequency SIT of the manufacturing process corresponding to FIG. 1 (p). It is a -B sectional view. As in the above, the structure is separated at the shoulder.
【0013】図5は、特許請求範囲3項に記載された本
発明になる高周波用SITの内容を示すもので、平面図
図5(b)のC−C断面が図5(a)に示されている。
又、平面図図5(b)のD−D断面が図5(c)に示さ
れている。図1,図2の場合と異なりソース電極アルミ
膜13は、独立したソース領域で、又はその上にあらか
じめ形成されたソース電極アルミ膜101の少なくとも
一部を一本の連結用ソース電極アルミ膜13で束ねた形
になっている。ソース電極の取出しはこのソース電極ア
ルミ膜13の任意の部分から導出されることになる。FIG. 5 shows the contents of the high-frequency SIT according to the present invention as set forth in claim 3, and a sectional view taken along the line C--C of FIG. 5 (b) is shown in FIG. 5 (a). Has been done.
5D is a cross-sectional view taken along the line DD of FIG. 5B. Unlike the case of FIG. 1 and FIG. 2, the source electrode aluminum film 13 has at least a part of the source electrode aluminum film 101 formed in advance in the independent source region or on the source region. It is in the form of a bundle. The extraction of the source electrode is derived from any part of the source electrode aluminum film 13.
【0014】以上のような本実施例による方法で作られ
た高周波用SITの特性例として、素子寸法3×3mm
2のもので、実施例図、図1の製造工程で造られた高周
波用SITは、最大動作周波数fmax、120MHzで
許容損失は50Wの物が得られた。オン抵抗Ronは2
5Ω、耐圧は450Vであった。又、実施例図、図2に
示す製造工程で造られた高周波用SITは、fmaxは8
0MHzであり、他の特性は前記特性と同程度であっ
た。このように本発明によるセルフアライメント手法と
電極構造を採用することにより、極めて容易に安定して
高周波用SITを得ることができるのである。本実施例
においては、Nチャンネル高周波用SITに関してのみ
述べたが、Pチャンネル高周波用SITでも同じ製造工
程の採用は可能であり、又高周波用SITに限定せずに
このセルフアライメント手法は、広く種々のデバイス製
造に応用できるものである。例えば、表面波デバイスや
インダクター等で金属の微細パターンを形成するような
場合でも応用可能である。As a characteristic example of the high frequency SIT manufactured by the method according to the present embodiment as described above, the element size is 3 × 3 mm.
The high frequency SIT manufactured by the manufacturing process shown in the embodiment diagram and FIG. 1 has a maximum operating frequency fmax of 120 MHz and an allowable loss of 50 W. ON resistance Ron is 2
The resistance was 5Ω and the breakdown voltage was 450V. Further, the high-frequency SIT manufactured by the manufacturing process shown in the embodiment diagram and FIG. 2 has fmax of 8
It was 0 MHz, and other characteristics were similar to the above characteristics. As described above, by adopting the self-alignment method and the electrode structure according to the present invention, a high frequency SIT can be obtained extremely easily and stably. Although only the N-channel high-frequency SIT is described in the present embodiment, the same manufacturing process can be adopted for the P-channel high-frequency SIT, and the self-alignment method is not limited to the high-frequency SIT, and various self-alignment methods can be used. It can be applied to device manufacturing. For example, it can be applied to the case of forming a fine metal pattern with a surface wave device or an inductor.
【0015】[0015]
【発明の効果】本発明になるゲート電極,ソース電極の
構造をもつ高周波用SIT、並びに本発明の高周波用S
ITをセルフアライメント手法の製造工程により製造す
ることで、高出力特性をもち、且つ高周波特性の良い高
周波用SITを安価に提供できる。The high frequency SIT having the structure of the gate electrode and the source electrode according to the present invention, and the high frequency SIT of the present invention.
By manufacturing IT by the manufacturing process of the self-alignment method, it is possible to inexpensively provide a high frequency SIT having high output characteristics and good high frequency characteristics.
【図1】本発明の特許請求範囲、請求項4,5,6項の
実施例を説明するための、高周波用SITの断面図によ
る製造工程図。FIG. 1 is a manufacturing process diagram by a cross-sectional view of a high-frequency SIT for explaining the embodiments of the claims and claims 4, 5, and 6 of the present invention.
【図2】同じく請求項6項の実施例を説明するための、
高周波用SITの断面図による製造工程図。[FIG. 2] Similarly, for explaining the embodiment of claim 6,
The manufacturing process figure by the cross section of high frequency SIT.
【図3】特許請求範囲、請求項1項の実施例をを説明す
るための、高周波用SITの断面図並びに平面図。3A and 3B are a cross-sectional view and a plan view of a high-frequency SIT for explaining the embodiments of the claims and claims.
【図4】特許請求範囲、請求項2項の実施例を説明する
ための、高周波用SITの断面図並びに平面図。4A and 4B are a cross-sectional view and a plan view of a high-frequency SIT for explaining the embodiments of claims and claim 2;
【図5】特許請求範囲、請求項3項の実施例を説明する
ための、高周波用SITの断面図並びに平面図。5A and 5B are a cross-sectional view and a plan view of a high frequency SIT for explaining the embodiments of claims and claim 3;
1 N型シリコン基板 2 リン拡散層 211 ソース層(N+拡散層)(N+ソース層)(ソ
ース電極) 3,31,4 SiO2膜 41 SiO2の熱酸化膜 5,51 アルミ層 6 ポジタイプフォトレジスト 61 ポジタイプフォトレジスト膜 7,71 紫外線(Hg灯光) 8,81 ゲート層(P+拡散層)(P+ゲート層) 10 アルミ蒸着膜 101,13 ソース電極アルミ膜 102 ゲート電極アルミ膜 11 ドレイン電極アルミ膜 12 フォトレジストOMR831 N-type silicon substrate 2 Phosphorous diffusion layer 211 Source layer (N+ diffusion layer) (N+ source layer) (source electrode) 3, 31, 4 SiO2 film 41 Thermal oxide film of SiO5 , 51 Aluminum layer 6 Positive Type photoresist 61 Positive type photoresist film 7,71 Ultraviolet (Hg lamp light) 8,81 Gate layer (P+ diffusion layer) (P+ gate layer) 10 Aluminum vapor deposition film 101, 13 Source electrode aluminum film 102 Gate electrode aluminum film 11 Drain Electrode Aluminum Film 12 Photoresist OMR83
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/812 7376−4M H01L 29/80 L─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl.6 Identification code Internal reference number FI Technical indication H01L 29/812 7376-4M H01L 29/80 L
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31607793AJPH07147417A (en) | 1993-11-22 | 1993-11-22 | High-frequency electrostatic induction transistor and its manufacture |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31607793AJPH07147417A (en) | 1993-11-22 | 1993-11-22 | High-frequency electrostatic induction transistor and its manufacture |
| Publication Number | Publication Date |
|---|---|
| JPH07147417Atrue JPH07147417A (en) | 1995-06-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP31607793APendingJPH07147417A (en) | 1993-11-22 | 1993-11-22 | High-frequency electrostatic induction transistor and its manufacture |
| Country | Link |
|---|---|
| JP (1) | JPH07147417A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013042117A (en)* | 2011-07-15 | 2013-02-28 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013042117A (en)* | 2011-07-15 | 2013-02-28 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
| Publication | Publication Date | Title |
|---|---|---|
| US4543320A (en) | Method of making a high performance, small area thin film transistor | |
| JPS5946107B2 (en) | Manufacturing method of MIS type semiconductor device | |
| US4620208A (en) | High performance, small area thin film transistor | |
| JPH07147417A (en) | High-frequency electrostatic induction transistor and its manufacture | |
| JPH06140421A (en) | Manufacture of thin film transistor | |
| JPH06232152A (en) | Field effect transistor and method of manufacturing the same | |
| JPH0831601B2 (en) | Method for manufacturing semiconductor device | |
| JP3487724B2 (en) | Method of forming tunnel junction | |
| JPS6123363A (en) | Semiconductor device and manufacture of the same | |
| JPS6143484A (en) | Formation of electrode in semiconductor device | |
| JP3342260B2 (en) | Semiconductor device and method of manufacturing the same | |
| JPH01201963A (en) | Manufacture of semiconductor device | |
| JPS5922381B2 (en) | Handout Taisoshino Seizouhouhou | |
| JPH06204240A (en) | Method for manufacturing semiconductor device | |
| JP3277806B2 (en) | Semiconductor device and manufacturing method thereof | |
| JPH0247853B2 (en) | ||
| KR850000037B1 (en) | The method of mos with self alignment metal electroid | |
| JPH09162390A (en) | Method for manufacturing semiconductor device | |
| JPH065622A (en) | Manufacture of polyside gate structure of semiconductor device | |
| JPH05315624A (en) | Manufacture of semiconductor nonvolatile memory element | |
| JPS6341076A (en) | Manufacture of semiconductor device | |
| JPS62248222A (en) | Manufacture of semiconductor device | |
| JPH0685267A (en) | Manufacture of power mosfet | |
| JPH02139936A (en) | Bipolar semiconductor device manufacturing method | |
| JPS6051275B2 (en) | Manufacturing method of semiconductor device |