【0001】[0001]
【産業上の利用分野】本発明は遠隔操作によって駆動さ
れて生体内組織部位の観察や処置を行なう手術用マニピ
ュレータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manipulator for surgery which is driven by remote control to observe and treat a tissue part in a living body.
【0002】[0002]
【従来の技術】腹壁等の体壁に穴を開け、この穴を通じ
て内視鏡や処置具を経皮的に体腔内に挿入することによ
り体腔内で様々な処置を行なう内視鏡下手術が従来から
行なわれており、こうした術式は大きな切開を要しない
低侵襲なものとして胆のう摘出手術や肺の一部を摘出除
去する手術等で広く行なわれている。2. Description of the Related Art Endoscopic surgery is performed in which a body wall such as an abdominal wall is perforated and an endoscope or a treatment tool is percutaneously inserted into the body cavity through the hole to perform various treatments in the body cavity. Conventionally, such an operation method is widely performed as a minimally invasive operation that does not require a large incision, such as a cholecystectomy operation and an operation to remove and remove a part of the lung.
【0003】また、内視鏡や処置具を搭載し、遠隔操作
により作動して、前記内視鏡や処置具を用いた手術を術
者に代わって行なう手術用マニピュレータが例えば米国
特許第5217003号に開示されている。こうした手
術用マニピュレータは、通常、内視鏡や処置具を備える
挿入部が多関節構造となっており、各関節をアクチュエ
ータにより動作させることで、体腔内における目的部位
に対するアプローチを容易ならしめている。A surgical manipulator equipped with an endoscope and a treatment tool and operated by remote control to perform surgery using the endoscope and the treatment tool on behalf of the operator is, for example, US Pat. No. 5,217,003. Is disclosed in. In such a manipulator for surgery, an insertion portion including an endoscope and a treatment tool usually has a multi-joint structure, and each joint is operated by an actuator, which facilitates an approach to a target site in a body cavity.
【0004】[0004]
【発明が解決しようとする課題】ところで、前述した内
視鏡下手術にあっては、体壁に開けた穴から体腔内に挿
入される内視鏡や処置具が体腔内の極力広い範囲で動作
できることが望まれる。しかしながら、術者が片手で操
作できる内視鏡や処置具は自由度の少ない直線形状のも
のであり、内視鏡や処置具が目的の位置に届いたとして
も所望のオリエンテーションで処置または観察を行なう
ことが困難であった。例えば、縫合の際に処置具で針を
持って臓器等に針をかけようとする場合に、縫合線に対
し直角に針をかけるのが望ましいが、処置具の自由度不
足が原因で困難な場合があった。By the way, in the above-mentioned endoscopic surgery, an endoscope or a treatment instrument to be inserted into a body cavity through a hole formed in the body wall is used in a wide range within the body cavity. It is desired to be able to operate. However, the endoscope and the treatment tool that can be operated by the operator with one hand have a linear shape with few degrees of freedom, and even if the endoscope or the treatment tool reaches the target position, the treatment or observation can be performed at the desired orientation. It was difficult to do. For example, it is desirable to hang a needle at a right angle to the suture line when trying to hang a needle on an organ or the like with a treatment tool at the time of suturing, but it is difficult due to insufficient flexibility of the treatment tool. There were cases.
【0005】こうした問題は、自由度の大きい多関節構
造の挿入部を備えた前述の手術用マニピュレータを用い
ることで解消されるが、この場合、目的の位置でかつ所
望のオリエンテーションで作業を行なうために多関節構
造の挿入部を動作させると、関節部が目的とする以外の
臓器に接触して無理な力を与える可能性があった。This problem is solved by using the above-mentioned surgical manipulator provided with an insertion portion having a multi-joint structure having a large degree of freedom. In this case, however, the work is performed at a desired position and at a desired orientation. When the insertion part of the multi-joint structure is operated, the joint part may come into contact with an organ other than the intended one and give an excessive force.
【0006】本発明は上記事情に着目してなされたもの
であり、その目的とするところは、体腔内で観察および
処置を行なうのに十分な自由度を有するとともに、それ
らの作業中に目的以外の臓器に接触して無理な力を与え
ることのない手術用マニピュレータを提供することにあ
る。The present invention has been made in view of the above circumstances, and an object thereof is to have a sufficient degree of freedom to perform observation and treatment in a body cavity and to perform other operations during those operations. The purpose of the present invention is to provide a manipulator for surgery that does not apply unreasonable force to the internal organs.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、遠隔操作によって駆動されて生体内組織
部位の観察及びまたは処置を行なう手術用マニピュレー
タにおいて、生体内に挿入可能なストレート状の挿入部
と、この挿入部を進退自在に連結するとともにこの挿入
部の位置決めを行なう位置決め手段を備えたマニピュレ
ータ本体と、屈曲自在な屈曲部を有して前記挿入部の先
端に接続され生体内組織部位の観察及びまたは処置を行
なう作業部とを具備したものである。In order to solve the above problems, the present invention relates to a surgical manipulator which is driven by remote operation to observe and / or treat a tissue part in a living body, which is insertable into the living body. -Shaped insertion part, a manipulator body having a positioning means for connecting the insertion part so as to move back and forth and positioning the insertion part, and a manipulator body having a bendable bending part and connected to the tip of the insertion part. And a working unit for observing and / or treating a tissue part in the body.
【0008】[0008]
【作用】上記構成では、挿入部を所望の位置に位置決め
することで、進退自在な挿入部を直線的に患部にアプロ
ーチさせることができ、その後、作業部を屈曲させれば
安全かつ確実に処置または観察が可能である。この構成
では、作業部を体腔内で複雑に屈曲させる必要がないた
め患部以外の組織を傷付けることがない。また、作業部
の長さを挿入部の長さよりも十分に短くするなど処置に
必要な最小限の長さに設定することにより、さらに安全
に患部のみを処置もしくは観察することができる。In the above structure, by positioning the insertion portion at a desired position, the insertion / removal insertion portion can be linearly approached to the affected area, and then the working portion can be bent for safe and reliable treatment. Or it can be observed. With this configuration, since it is not necessary to bend the working portion intricately within the body cavity, the tissue other than the affected portion is not damaged. Further, by setting the length of the working portion to be sufficiently shorter than the length of the insertion portion to be set to the minimum length necessary for the treatment, it is possible to further safely treat or observe only the affected portion.
【0009】[0009]
【実施例】以下、図面を参照しつつ本発明の実施例を説
明する。図1ないし図4は本発明の第1の実施例を示す
ものである。本実施例の手術用マニピュレータ1は、マ
ニピュレータ本体3と、生体壁90に穿設された挿入孔
8を通じて体腔内に挿入可能なストレート形状の細径挿
入部2とからなる。マニピュレータ本体3は挿入部2の
位置決めを行なう位置決め手段としてのリンク機構およ
び調整機構(いずれも後述する。)を備えたアーム構造
になっており、このマニピュレータ本体3には後述する
ように挿入部2が進退自在に連結されている。また、挿
入部2の先端には作業部としてのエンドエフェクタが屈
曲自在に接続されている。このエンドエフェクタはマニ
ピュレータ1の作業目的によって異なっており、図1に
は内視鏡4と処置具5とが示されている。エンドエフェ
クタとして処置具5を有するマニピュレータの本体3は
図1に示されていないが、内視鏡4を備えたマニピュレ
ータ1と同じ構造を有するものとして省略してある。Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show a first embodiment of the present invention. The surgical manipulator 1 of this embodiment includes a manipulator body 3 and a straight-shaped small-diameter insertion portion 2 that can be inserted into a body cavity through an insertion hole 8 formed in a living body wall 90. The manipulator main body 3 has an arm structure including a link mechanism and an adjusting mechanism (both will be described later) as positioning means for positioning the insertion portion 2. The manipulator main body 3 has an insertion portion 2 as described later. Are connected so that they can move back and forth. An end effector as a working unit is flexibly connected to the tip of the insertion unit 2. This end effector differs depending on the working purpose of the manipulator 1, and FIG. 1 shows an endoscope 4 and a treatment tool 5. Although the main body 3 of the manipulator having the treatment tool 5 as the end effector is not shown in FIG. 1, it is omitted because it has the same structure as the manipulator 1 having the endoscope 4.
【0010】内視鏡4および処置具5と挿入部2との間
には図示のごとく屈曲部が1か所しか設けられていな
い。そして、内視鏡4および処置具5の長さは挿入部2
の長さに比べて十分に小さい。また、内視鏡4は照明手
段および観察手段を有しており、処置具5は生体組織の
把持や剥離、縫合のための針の把持等を行なうための開
閉機構6を有している。Between the endoscope 4 and the treatment instrument 5 and the insertion portion 2, there is only one bent portion as shown in the figure. The length of the endoscope 4 and the treatment instrument 5 is the insertion portion 2
Small enough compared to the length of. The endoscope 4 has an illuminating means and an observing means, and the treatment tool 5 has an opening / closing mechanism 6 for gripping and peeling a living tissue, and a needle for suturing.
【0011】ところで、マニピュレータ1の軸数は、エ
ンドエフェクタの位置及びオリエンテーションに関する
自由度と、挿入孔8の位置に関する拘束条件とから決定
される。前者については、体腔内の任意の位置にある臓
器等を任意のオリエンテーションで観察あるいは処置を
行なうために、一般に、6自由度が必要となる。ただ
し、エンドエフェクタが内視鏡4である場合には観察さ
れた画像の回転を画像処理により補正することで1つ自
由度を減らして5自由度とすることができる。図1に示
すような形状を有する処置具5の場合には6自由度が必
要となる。また、後者については、マニュッピレータ1
が動作した際に生体壁90に開けた挿入孔8内で挿入部
2が移動して生体壁90に無理な力がかからないよう
に、挿入部2を常に一定の位置に保持することが望まし
く、そのためには、3自由度の拘束条件が必要となる。
したがって、両者を加えると、内視鏡4の場合は8自由
度、処置具5の場合は9自由度が必要となる。この自由
度を満足させるために、通常、マニピュレータ1の軸数
も自由度の数だけ必要となるが、図1に示すマニピュレ
ータ1は図3に示すポイントロック機構によってその軸
数を3つ削減することが可能である。By the way, the number of axes of the manipulator 1 is determined from the degree of freedom regarding the position and orientation of the end effector and the constraint condition regarding the position of the insertion hole 8. The former generally requires 6 degrees of freedom in order to observe or treat an organ or the like at an arbitrary position in the body cavity at an arbitrary orientation. However, when the end effector is the endoscope 4, it is possible to reduce one degree of freedom to five degrees of freedom by correcting the rotation of the observed image by image processing. In the case of the treatment tool 5 having a shape as shown in FIG. 1, 6 degrees of freedom are required. Regarding the latter, manipulator 1
It is desirable to always hold the insertion portion 2 at a fixed position so that the insertion portion 2 does not move inside the insertion hole 8 formed in the living body wall 90 when the is operated and an unreasonable force is applied to the living body wall 90. For that purpose, a constraint condition of three degrees of freedom is required.
Therefore, when both are added, the endoscope 4 needs 8 degrees of freedom and the treatment instrument 5 needs 9 degrees of freedom. In order to satisfy this degree of freedom, normally, the number of axes of the manipulator 1 is also required to be the number of degrees of freedom, but the manipulator 1 shown in FIG. 1 reduces the number of axes by three by the point lock mechanism shown in FIG. It is possible.
【0012】すなわち、このポイントロック機構は、2
組の四節回転連鎖が互いに対偶をなすような状態に6本
のリンクを図3に示すように支点ピンを介して連結し、
互いに向き合うリンク同志が平行になるように構成した
ものであり、先端側に位置する第1の平行四節リンク部
9と手元側に位置する第2の平行四節リンク部9´とか
らなる。第2の平行四節リンク部9´の手元側に位置す
る固定リンク12は回転軸10によってその軸心回りに
回転することができる。That is, this point lock mechanism has two
As shown in FIG. 3, the six links are connected via a fulcrum pin in such a manner that a set of four-bar rotation chains are paired with each other.
The links facing each other are configured to be parallel to each other, and are composed of a first parallel four-bar link part 9 located on the tip side and a second parallel four-bar link part 9'located on the hand side. The fixed link 12 located on the proximal side of the second parallel four-bar link section 9'can be rotated about its axis by the rotary shaft 10.
【0013】このようなリンク機構では、第1の平行四
節リンク部9の先端に位置する従動節21の中心線と固
定リンク12の中心線との交点Pがこのリンク機構の動
作(マニピュレータ本体3の振り動作)および回転軸1
0を介した固定リンク12の回転動作によらず常に一定
の位置に固定される。In such a link mechanism, the intersection point P between the center line of the driven link 21 located at the tip of the first parallel four-bar link section 9 and the center line of the fixed link 12 is the operation of the link mechanism (manipulator body). 3 swing motion) and rotating shaft 1
It is always fixed at a fixed position regardless of the rotational movement of the fixed link 12 via 0.
【0014】また、このリンク機構の手元側には固定リ
ンク12の位置や方向を変化させる調整機構が設けられ
ている。この調整機構は、それ自身その軸心回りに回転
(図中C1の方向)可能でかつ上下動(図中C2の方
向)可能な支持部11として構成されている。そして、
この支持部11には回転軸10が回転(図中A1の方
向)かつ進退(図中C3の方向)可能に支持されてい
る。したがって、支持部11を回転させたり上下動させ
たり、あるいは、支持部11に対して回転軸10を進退
させたりすることにより、固定リンク12の位置や方向
を変化させることができ、結果的に交点Pを任意の位置
に移動させることができる。無論、交点Pを所定の位置
に移動させた後に調整機構と固定リンク12の進退動作
とをロックさせれば、第2の平行四節リンク部9´を図
中A2で示す方向に回転させてリンク機構を動作させて
も、また、固定リンク12を回転動作させても、交点P
の位置はその所定位置に固定されたままである。An adjusting mechanism for changing the position and direction of the fixed link 12 is provided on the hand side of the link mechanism. This adjusting mechanism is configured as a supporting portion 11 which is rotatable about its axis (direction C1 in the drawing) and vertically movable (direction C2 in the drawing). And
The rotating shaft 10 is supported by the support portion 11 so as to be rotatable (direction A1 in the drawing) and movable back and forth (direction C3 in the drawing). Therefore, the position or direction of the fixed link 12 can be changed by rotating or vertically moving the support portion 11, or advancing or retracting the rotary shaft 10 with respect to the support portion 11, and as a result, The intersection P can be moved to any position. Of course, if the adjusting mechanism and the forward / backward movement of the fixed link 12 are locked after the intersection point P is moved to a predetermined position, the second parallel four-joint link portion 9'is rotated in the direction indicated by A2 in the figure. Even if the link mechanism is operated or the fixed link 12 is rotated, the intersection P
Position remains fixed in place.
【0015】したがって、交点P(挿入部2上に位置し
ている。)が挿入孔8の位置に一致するように調整機構
を調整すれば、その後にリンク機構を動作させても挿入
孔8内における挿入部2の部位は常に一定の位置に保持
される。つまり、交点Pを挿入孔8の位置にロックさせ
た状態でリンク機構を動作させると、挿入部2は生体壁
90に無理な力を与えることなくその体腔内での位置を
任意に変化させることができる。よって、このポイント
ロック機構によれば、マニュッピレータ1が動作した際
に生体壁90に開けた挿入孔8内で挿入部2が移動して
生体壁90に無理な力がかからないため、前述した3自
由度の拘束条件は不要となる。したがって、本実施例の
マニピュレータ1の場合、本体3のリンク機構と挿入部
2とを合わせても、その軸数はエンドエフェクタを内視
鏡4とした場合で5つ、処置具5とした場合で6つとな
る。Therefore, if the adjusting mechanism is adjusted so that the intersection point P (located on the insertion portion 2) coincides with the position of the insertion hole 8, even if the link mechanism is subsequently operated, the inside of the insertion hole 8 is changed. The portion of the insertion portion 2 in is always held at a fixed position. That is, when the link mechanism is operated in a state where the intersection P is locked at the position of the insertion hole 8, the insertion section 2 can arbitrarily change the position within the body cavity without applying an excessive force to the living body wall 90. You can Therefore, according to this point lock mechanism, when the manipulator 1 is operated, the insertion portion 2 does not move within the insertion hole 8 formed in the living body wall 90 and an unreasonable force is applied to the living body wall 90. The degree constraint condition is unnecessary. Therefore, in the case of the manipulator 1 of the present embodiment, even if the link mechanism of the main body 3 and the insertion portion 2 are combined, the number of axes thereof is 5 when the end effector is the endoscope 4 and when the treatment tool 5 is used. Will be six.
【0016】次に、エンドエフェクタとして内視鏡4を
有する挿入部2の駆動機構について図4を参照しつつ説
明する。図4の(a)に示すように、挿入部2は、円筒
状の直動部7と、直動部7を進退自在に支持するガイド
部24と、ガイド部24を支持し図中A4で示す回転方
向に回転自在な回転部25とからなる。回転部25は前
述した従動節21を有して従動節21と同一の動作を行
なう手元側部91に回転自在に支持されている。Next, a drive mechanism of the insertion section 2 having the endoscope 4 as an end effector will be described with reference to FIG. As shown in (a) of FIG. 4, the insertion portion 2 has a cylindrical linear moving portion 7, a guide portion 24 that supports the linear moving portion 7 so that the linear moving portion 7 can move back and forth, and the guide portion 24 is supported by A4 in the drawing. The rotary unit 25 is rotatable in the rotation direction shown. The rotating portion 25 includes the driven portion 21 described above and is rotatably supported by the hand side portion 91 that performs the same operation as the driven portion 21.
【0017】内視鏡4の図中A5方向の回転を可能にす
る軸心部にはプーリー17が設けられている。このプー
リー17にはワイヤ18が掛けらており、このワイヤ1
8の両端はそれぞれ回転部25に回転自在に支持された
第1のボールねじ19aと第2のボールねじ19bとに
牽引可能に固定されている。また、第1のボールねじ1
9aと第2のボールねじ19bはそれぞれ第1のモータ
20aと第2のモータ20bとによって回転される。プ
ーリー17を支持する直動部7はガイド部24との間に
配設されたスプリング22によって先端方向に付勢され
ており、常にワイヤ18に張力が掛かるようになってい
る。A pulley 17 is provided at the axial center portion of the endoscope 4 which allows the endoscope 4 to rotate in the A5 direction in the figure. A wire 18 is hung on the pulley 17 and the wire 1
Both ends of 8 are fixed to a first ball screw 19a and a second ball screw 19b, which are rotatably supported by a rotating portion 25, so as to be pulled. Also, the first ball screw 1
9a and the 2nd ball screw 19b are rotated by the 1st motor 20a and the 2nd motor 20b, respectively. The linear motion part 7 supporting the pulley 17 is biased in the distal direction by a spring 22 arranged between the linear motion part 7 and the guide part 24 so that the wire 18 is always tensioned.
【0018】モータ20a,20bの駆動によってボー
ルねじ19a,19bがワイヤ18のそれぞれの端部を
右側に牽引すると、ワイヤ18の各端部の移動量の和の
半分に相当する距離だけ直動部7が図中A3で示す右側
方向に移動し、ワイヤ18の各端部の移動量の差分だけ
先端にある軸(プーリー)17が図中A5で示す回転方
向に回転する。When the ball screws 19a and 19b pull the respective ends of the wire 18 to the right by the driving of the motors 20a and 20b, the linear motion portion is moved by a distance corresponding to half the sum of the movement amounts of the respective ends of the wire 18. 7 moves to the right as indicated by A3 in the figure, and the shaft (pulley) 17 at the tip rotates by the difference in the amount of movement of each end of the wire 18 in the direction of rotation indicated by A5 in the figure.
【0019】回転部25は、ベアリング22により支持
されており、第3のモータ20cにより平歯車23,2
3を介して回転される。ガイド部24は回転部25にボ
ルト26等の結合部材によって固定されている。このボ
ルト26を外して、さらに、ワイヤ18をボールねじ1
9a,19bから取り外すことにより、ガイド部24を
含めた体腔内に挿入される挿入部2の部分を取り外すこ
とができ(図4の(b)参照)、これらの部分を単独に
洗浄・消毒・滅菌することができる。The rotating portion 25 is supported by a bearing 22, and the spur gears 23, 2 are driven by a third motor 20c.
It is rotated through 3. The guide portion 24 is fixed to the rotating portion 25 by a connecting member such as a bolt 26. Remove the bolt 26, and further wire 18 to the ball screw 1
By removing from 9a and 19b, the part of the insertion part 2 including the guide part 24 that is inserted into the body cavity can be removed (see (b) of FIG. 4), and these parts can be individually washed / disinfected / disinfected. It can be sterilized.
【0020】上記構成では、A1〜A6の回転もしくは
進退動作を可能とさせる全ての軸が駆動手段としてアク
チュエータと駆動伝達要素とを有しており、これらの駆
動手段はマニピュレータ1の図示しない制御装置におい
て演算された動作指令に基づいて動作する。動作指令を
決定する手段として、マニピュレータ1の前記制御装置
に予めプログラムされた動作パターンを呼び出して実行
させるいわゆるプレイバック方式の他に、図2に示すマ
スターアーム14を操作者が手で動作させるとその動き
を制御装置により計測した後にマニピュレータ1の動作
指令を演算して実行させるいわゆるマスタースレーブ方
式がある。マスターアーム14は、マニピュレータ1に
相当する自由度を持つ関節機構15と、各関節に設けた
エンコーダ16とを有する。In the above structure, all the shafts that enable the rotation or forward / backward movement of A1 to A6 have actuators and drive transmission elements as driving means, and these driving means are control devices (not shown) of the manipulator 1. It operates based on the operation command calculated in. As a means for determining an operation command, in addition to a so-called playback method in which a control device of the manipulator 1 calls and executes a pre-programmed operation pattern, when the operator manually operates the master arm 14 shown in FIG. There is a so-called master-slave system in which the movement of the manipulator 1 is calculated and executed after the movement is measured by the control device. The master arm 14 has a joint mechanism 15 having a degree of freedom equivalent to that of the manipulator 1, and an encoder 16 provided at each joint.
【0021】このように、本実施例のマニピュレータ1
は、エンドエフェクタとして内視鏡4を用いた場合には
A1〜A5の5つの自由度を有し、また、エンドエフェ
クタとして処置具5を用いた場合には先端の回転A6を
含めた6つの自由度を有しており、前述した調整機構と
リンク機構とによって挿入部2の位置決めを行なうこと
ができる。すなわち、調整機構(C1〜C3)によって
交点Pを挿入孔8に位置固定させた状態で、今度はリン
ク機構を動作させる(A1〜A2)ことにより、体腔内
における挿入部2の位置決めが行なえる。In this way, the manipulator 1 of this embodiment is
Has five degrees of freedom A1 to A5 when the endoscope 4 is used as the end effector, and six rotations A6 including the tip rotation A6 when the treatment instrument 5 is used as the end effector. It has a degree of freedom, and the insertion portion 2 can be positioned by the adjusting mechanism and the link mechanism described above. That is, with the intersection mechanism P fixed in position in the insertion hole 8 by the adjustment mechanism (C1 to C3), the link mechanism is operated this time (A1 to A2) to position the insertion portion 2 in the body cavity. .
【0022】また、このように挿入部2を位置決めした
後の目的部位へのアプローチは、A3,A4、A5によ
って直線的かつ屈曲的に行なうことができる。つまり、
本実施例の挿入部2は、円筒形状の直動部7とその先端
に屈曲自在に支持されるエンドエフェクタとを有する構
造となっており、直動部7が直線状でかつ細く、回動軸
17からエンドエフェクタの先端までの長さが直動部7
の長さに比べて十分に小さいことが特徴である。したが
って、この構成では、細長い直動部7により挿入孔8か
ら目的とする部位まで直線状にアプローチし、屈曲する
エンドエフェクタの姿勢により目的とする部位における
所望のオリエンテーションを得ることができる。この
際、直動部7は直線状であるため、直線的なアプローチ
の際に目的とする以外の臓器に接触することがない。ま
た、挿入部2はエンドエフェクタをも含めてその屈曲部
が1か所のみであり且つエンドエフェクタの長さが直動
部7の長さに比べて十分に小さいため、エンドエフェク
タの屈曲動作の際にも目的とする以外の臓器に接触しに
くい。Further, the approach to the target site after positioning the insertion portion 2 in this way can be performed linearly and flexibly by A3, A4 and A5. That is,
The insertion portion 2 of the present embodiment has a structure having a cylindrical linear motion portion 7 and an end effector that is flexibly supported at the tip thereof, and the linear motion portion 7 is linear and thin, and can rotate. The length from the shaft 17 to the tip of the end effector is the linear motion part 7.
The feature is that it is sufficiently smaller than the length. Therefore, in this configuration, the slender linear motion section 7 linearly approaches from the insertion hole 8 to a target site, and a desired orientation can be obtained in the target site depending on the posture of the bending end effector. At this time, since the linearly moving portion 7 has a linear shape, it does not come into contact with an organ other than the intended organ during the linear approach. In addition, since the insertion portion 2 includes only one bending portion including the end effector and the length of the end effector is sufficiently smaller than the length of the linear motion portion 7, the bending movement of the end effector can be prevented. Also, it is difficult to make contact with organs other than the intended one.
【0023】以上のように、本実施例の手術用マニピュ
レータ1は、挿入部2のエンドエフェクタが体腔内の広
い範囲に対してアプローチできるとともに、その際に挿
入部2とエンドエフェクタとが目的とする以外の臓器に
接触しにくい構造となっている。つまり、体腔内で観察
および処置を行なうのに十分な自由度を有するととも
に、それらの作業中に目的以外の臓器に接触して無理な
力を与えることがない。As described above, in the surgical manipulator 1 of this embodiment, the end effector of the insertion section 2 can approach a wide range in the body cavity, and at that time, the purpose of the insertion section 2 and the end effector is to aim. It has a structure that makes it difficult to contact organs other than those that do. In other words, it has a sufficient degree of freedom to perform observation and treatment in the body cavity, and does not apply unreasonable force by contacting organs other than the target during those operations.
【0024】なお、本実施例の場合、屈曲部17からエ
ンドエフェクタの先端までの長さは直動部7の長さに対
し5分の1以下であることが望ましい。図5は本発明の
第2の実施例を示すものである。本実施例のマニピュレ
ータ1aは、エンドエフェクタとして、生体組織の把持
や剥離の他に図4に示すように縫合のための針27の把
持を行なう処置具5aを用いたものであり、その他の構
成は第1の実施例と同一である。なお、マニピュレータ
1aの動作指令を決定するための手段も、第1の実施例
と同様に、プレイバック方式の他、図2に示すマスター
アーム14を操作者が手で動作させることによるいわゆ
るマスタースレーブ方式が可能である。In the present embodiment, the length from the bent portion 17 to the tip of the end effector is preferably not more than 1/5 of the length of the linear motion portion 7. FIG. 5 shows a second embodiment of the present invention. The manipulator 1a of the present embodiment uses, as an end effector, a treatment tool 5a for gripping and peeling a living tissue and gripping a needle 27 for suturing as shown in FIG. 4, and other configurations. Is the same as in the first embodiment. The means for determining the operation command of the manipulator 1a is also a so-called master slave in which the operator manually operates the master arm 14 shown in FIG. 2 in addition to the playback method, as in the first embodiment. A method is possible.
【0025】本実施例の場合、処置具5aは緩やかな曲
線を描いて湾曲する湾曲部28を有しており、この湾曲
部28が円筒形状の直動部7に接続された構造となって
いる。したがって、細長い直動部7により挿入孔8から
目的とする部位まで直線状にアプローチし、湾曲部28
により目的とする部位における所望のオリエンテーショ
ンを得ることができる。この構成の場合も、直動部7は
直線状であるため、その途中で目的とする以外の臓器に
接触することがない。また、湾曲部28は緩やかに湾曲
するため、目的とする以外の臓器に接触しても無理な力
がかかることがない。なお、湾曲部28の長さは直動部
7の長さに対し3分の1以下であることが望ましい。In the case of the present embodiment, the treatment instrument 5a has a curved portion 28 that curves in a gentle curve, and this curved portion 28 is connected to the cylindrical linear motion portion 7. There is. Therefore, the slender linear motion portion 7 linearly approaches from the insertion hole 8 to a target portion, and the curved portion 28
The desired orientation can be obtained at the target site. Also in this configuration, since the linearly moving portion 7 is linear, it does not come into contact with an organ other than the intended organ during the movement. In addition, since the bending portion 28 is gently bent, even if it contacts an organ other than the intended one, an unreasonable force is not applied. The length of the curved portion 28 is preferably one third or less of the length of the linear motion portion 7.
【0026】図6は本発明の第3の実施例を示すもので
ある。本実施例の手術用マニピュレータ1bは、エンド
エフェクタが2つの処置具5b,5bから成り、縫合を
行なう際に針27の受け渡しを行なうことができるよう
になっている。その他の構成は第1の実施例と同一であ
る。この構成の場合も、マニピュレータ1bの動作指令
を決定するための手段として、図6の(b)に示すよう
にマスターアーム14を操作者が手で動作させることに
よるいわゆるマスタースレーブ方式を採用することがで
きる。FIG. 6 shows a third embodiment of the present invention. In the surgical manipulator 1b of this embodiment, the end effector is composed of two treatment tools 5b, 5b, and the needle 27 can be delivered and received when performing suturing. The other structure is the same as that of the first embodiment. Also in the case of this configuration, as a means for determining the operation command of the manipulator 1b, the so-called master-slave method in which the operator manually operates the master arm 14 as shown in FIG. 6B is adopted. You can
【0027】図7は本発明の第4の実施例を示すもので
ある。本実施例のマニピュレータ1cは腎臓60の摘出
作業を行なうためのものである。腎臓60を摘出する場
合、一般に、背側からアプローチする方法と、腹側から
アプローチする方法とがある。背側からアプローチする
方が腎臓60に到達するのに近いが、開腹せずに内視鏡
や処置具を挿入して手術を行なういわゆる内視鏡下手術
においては、体腔内において十分な術野確保できないと
いう問題があった。FIG. 7 shows a fourth embodiment of the present invention. The manipulator 1c of the present embodiment is for performing the excision work of the kidney 60. When removing the kidney 60, generally, there are a method of approaching from the back side and a method of approaching from the ventral side. Approaching from the dorsal side is closer to reaching the kidney 60, but in so-called endoscopic surgery in which an operation is performed by inserting an endoscope or a treatment tool without opening the abdomen, a sufficient surgical field in the body cavity is obtained. There was a problem that it could not be secured.
【0028】本実施例のマニピュレータ1cは、直線状
の挿入部30と、挿入部30の周囲に設けた透明バルー
ン31と、挿入部30の先端に設けた立体視内視鏡29
と、同じく挿入部30の先端に設けた双腕多自由度アー
ム32とからなり、背側からアプローチする際にも術野
を確保することができるとともに、双腕多関節アーム3
2が処置を行なう際に目的とする以外の臓器に接触する
ことなく腎臓60を摘出することができる。すなわち、
まず、挿入部30を後腹膜61を通じて体腔内に挿入し
たら、それと同時に生理食塩水でバルーン31を膨らま
せて後腹膜腔を拡張し、十分な視野を確保する。これに
より、双腕多関節アーム32は、周囲の臓器から距離を
離すことができ、関節部33が目的とする臓器に接触し
にくくなる。さらに、立体内視鏡29の視野を十分広く
取り、その視野の中に双腕多関節アーム32全体を納め
ることにより関節部33が周囲の臓器に接触しようとす
るのを観察できるため、目的以外の臓器への接触を事前
に防ぐことができる。そして、腎臓60を尿管62、腎
動脈63および腎静脈64から切離した後に挿入孔8か
ら摘出する。なお、マニピュレータ1cの本体部の構成
は第1の実施例と同一である。The manipulator 1c of this embodiment has a linear insertion portion 30, a transparent balloon 31 provided around the insertion portion 30, and a stereoscopic endoscope 29 provided at the tip of the insertion portion 30.
And a dual-arm multi-degree-of-freedom arm 32 also provided at the distal end of the insertion section 30, so that the operative field can be secured even when approaching from the back side, and the dual-arm multi-joint arm 3
When performing treatment, the kidney 60 can be removed without contacting an organ other than the intended organ. That is,
First, after the insertion section 30 is inserted into the body cavity through the retroperitoneum 61, at the same time, the balloon 31 is inflated with physiological saline to expand the retroperitoneal cavity and secure a sufficient visual field. As a result, the double-armed articulated arm 32 can be separated from the surrounding organs, and the joint portion 33 is less likely to contact the target organ. Furthermore, since the field of view of the stereoscopic endoscope 29 is set sufficiently wide and the entire dual-arm articulated arm 32 is housed within the field of view, it is possible to observe that the joint 33 is trying to contact the surrounding organs. It is possible to prevent contact with other organs in advance. Then, the kidney 60 is separated from the ureter 62, the renal artery 63, and the renal vein 64, and then removed from the insertion hole 8. The structure of the main body of the manipulator 1c is the same as that of the first embodiment.
【0029】図8および図9は本発明の第5の実施例を
示すものである。本実施例のマニピュレータ1dも腎臓
60の摘出作業を行なうためのものである。本実施例の
マニピュレータ1dは、直線状の挿入部34と、挿入部
34の周囲に設けられて体腔内への挿入後にパラソル状
に開く体腔内視野拡張具35(複数の拡張部材35a…
から成る。)と、体腔内視野拡張具35の内側に設けた
臓器摘出用組織粉砕器36と、立体視内視鏡37と、挿
入部34の先端に設けられた剥離鉗子・圧排子用のマイ
クロマニピュレータ38,38と、縫合・結紮用の双腕
マイクロマニピュレータ70,70とからなり、双腕マ
イクロマニピュレータ70,70の把持面には触覚セン
サ39が設けられている。尿管、腎動脈および腎動脈か
ら切離されて挿入孔8を通じて摘出される腎臓60はそ
のままの大きさでは挿入孔8を通ることができないの
で、体腔内視野拡張具35で腎臓60を包んだ後にこの
腎臓60を臓器摘出用組織粉砕器36によって粉砕す
る。そのため、臓器摘出用組織粉砕器36には強力超音
波振動子と吸引装置とが備えられている。8 and 9 show a fifth embodiment of the present invention. The manipulator 1d of the present embodiment is also for excising the kidney 60. The manipulator 1d of the present embodiment is provided with a linear insertion portion 34 and a body cavity visual field expander 35 (a plurality of expansion members 35a ...) which is provided around the insertion portion 34 and opens like a parasol after insertion into the body cavity.
Consists of. ), A tissue crusher 36 for organ excision provided inside the intracorporeal field-of-view expander 35, a stereoscopic endoscope 37, and a micromanipulator 38 for detaching forceps / exclude provided at the tip of the insertion portion 34. , 38 and dual-arm micromanipulators 70, 70 for suturing / ligating, and a tactile sensor 39 is provided on the gripping surface of the dual-arm micromanipulators 70, 70. The kidney 60 separated from the ureter, the renal artery and the renal artery and removed through the insertion hole 8 cannot pass through the insertion hole 8 with the same size. Therefore, the kidney 60 is wrapped with the intracorporeal visual field dilator 35. After that, the kidney 60 is crushed by the tissue crusher 36 for organ excision. Therefore, the tissue excision device 36 for organ excision is equipped with a powerful ultrasonic vibrator and a suction device.
【0030】図9は腎臓を切り離す際に縫合・結紮用の
双腕マイクロマニピュレータ70,70により腎動脈6
3の結紮を行なう動作を示したものである。図示のよう
に、腎動脈63に糸40をかけ(図9の(a)(b)参
照)、この糸40によって腎動脈63を結紮する(図9
の(c)(d)参照)といった繁雑な一連の作業は、予
めプログラムされたシーケンスに従い、双腕マイクロマ
ニピュレータ70,70により自動的に行なわれる。な
お、マニピュレータ1dの本体部の構成は第1の実施例
と同一であるが、異なった構成であっても良い。FIG. 9 shows the renal artery 6 by means of a dual-arm micromanipulator 70, 70 for suturing and ligating when the kidney is cut off.
3 shows an operation of performing ligation of No. 3. As shown in the drawing, a thread 40 is applied to the renal artery 63 (see (a) and (b) of FIG. 9), and the renal artery 63 is ligated by this thread 40 (FIG. 9).
The complicated series of operations (see (c) and (d)) are automatically performed by the dual-arm micromanipulators 70, 70 according to a preprogrammed sequence. The main body of the manipulator 1d has the same structure as that of the first embodiment, but may have a different structure.
【0031】本実施例においては、気腹作業を行なうこ
となく体腔内術野拡張具35が十分な術野を確保すると
同時に体腔の内壁を保護し、また、触覚センサ39によ
り臓器への損傷を防ぐことができるため、マイクロマニ
ピュレータ38,70が目的とする以外の臓器に接触す
ることが少ない上に、接触しても体腔内術野拡張具35
で保護されているため、臓器に無理な力を及ぼすことが
ない。In the present embodiment, the intracorporeal operative field expander 35 secures a sufficient operative field without performing pneumoperitoneum, and at the same time protects the inner wall of the body cavity, and the tactile sensor 39 prevents damage to the organ. Since it can be prevented, the micromanipulators 38 and 70 rarely come into contact with organs other than the intended one, and even if they do come in contact with the intracorporeal surgical field expander 35.
Since it is protected by, it does not exert excessive force on the organs.
【0032】図10は、前述した各実施例におけるマニ
ピュレータ1の操作手段として、操作者の腕の筋電位を
使用する場合を示している。操作者の腕に複数の筋電位
電極41を配列した筋電アレイセンサ42を取り付け、
操作者が手を動かしたときに筋肉から発生する筋電位信
号を検出する。検出処理回路43は、手の動きと検出さ
れた筋電位の分布との相関関係を予め求めておくことに
より、検出された筋電位の分布からどのように手を動か
したかを認識することが可能である。本実施例では、手
の開閉時と手首の振り動作との際に発生する筋電位の分
布を予め求めておき、これらの筋電位の分布が発生した
ときに、マニピュレータ1の処置具5の開閉及び湾曲部
28の湾曲動作が操作者の手の動きと一致するように、
マニピュレータ制御回路44が動作指令を発する。FIG. 10 shows a case where the myoelectric potential of the operator's arm is used as the operating means of the manipulator 1 in each of the above-described embodiments. The myoelectric array sensor 42 in which a plurality of myoelectric potential electrodes 41 are arranged is attached to the operator's arm,
The myoelectric potential signal generated from the muscle when the operator moves the hand is detected. The detection processing circuit 43 can recognize how the hand is moved from the detected myoelectric potential distribution by previously obtaining the correlation between the hand movement and the detected myoelectric potential distribution. Is. In the present embodiment, the distribution of myoelectric potentials generated when the hand is opened and closed and when the wrist is swung is obtained in advance, and when the distribution of these myoelectric potentials is generated, the treatment tool 5 of the manipulator 1 is opened and closed. And so that the bending motion of the bending portion 28 matches the movement of the operator's hand,
The manipulator control circuit 44 issues an operation command.
【0033】図11は、操作者が前述のマスタースレー
ブ方式あるいは筋電アレイセンサを用いて体腔内に挿入
されたマニピュレータ1を操作する場合に、体腔内の観
察像をマニピュレータ1の本体であるアーム部3に取り
付けた小型ディスプレイ47で見ながら行なうことがで
きるようになっているものである。第4の実施例のよう
に挿入部34の先端に取り付けられた内視鏡37の光軸
と小型ディスプレイ47の法線とが平行となるように小
型ディスプレイ47がマニピュレータ1のアーム部3に
取り付けられている。これにより、マニピュレータ1が
動作して視野が変化しても小型ディスプレイ47もこれ
に伴って動作するため、観察方向と表示される方向とが
常に一致し、操作者は観察方向を感覚的に把握しながら
マニピュレータ1を操作することができる。FIG. 11 shows an arm which is the main body of the manipulator 1 when the operator operates the manipulator 1 inserted into the body cavity by using the master-slave system or the myoelectric array sensor described above. The operation can be performed while watching the small display 47 attached to the section 3. As in the fourth embodiment, the small display 47 is attached to the arm portion 3 of the manipulator 1 so that the optical axis of the endoscope 37 attached to the tip of the insertion portion 34 and the normal line of the small display 47 are parallel to each other. Has been. As a result, even if the manipulator 1 operates and the field of view changes, the small display 47 also operates accordingly, so that the observation direction and the displayed direction always match, and the operator perceptually grasps the observation direction. While manipulator 1 can be operated.
【0034】図12は、前立腺摘除術(TUR−P)の
ロボットシステムの全体構成図を示している。本システ
ムは、レゼクトスコープ48を取り付けたロボット49
と、超音波スコープ50を取り付けたロボット51と、
レゼクトスコープ48に取り付けたカメラ52と、カメ
ラ52で撮影した画像と超音波エコー像とを同時に表示
するモニタ53と、2台のロボット49,51を操作す
るための操作部54と、ロボット制御装置55とを備え
ている。また、レゼクトスコープ48の先端にはロープ
形状の高周波電極56が設けられている。FIG. 12 shows the overall configuration of a robot system for prostatectomy (TUR-P). This system consists of a robot 49 with a resectoscope 48 attached.
And a robot 51 to which the ultrasonic scope 50 is attached,
A camera 52 attached to the resectoscope 48, a monitor 53 that simultaneously displays an image captured by the camera 52 and an ultrasonic echo image, an operation unit 54 for operating the two robots 49, 51, and robot control And a device 55. A rope-shaped high-frequency electrode 56 is provided at the tip of the resectoscope 48.
【0035】この構成にあっては、操作者はモニタに映
しだされた前立腺80の切除対象を観察しながらロボッ
ト49,51を操作し、レゼクトスコープ48の先端を
切除対象に向け、高周波電極56を尿道48の開口側に
引きながら前立腺80を切除することができる。この
際、高周波電極56は常にレゼクトスコープ48の視野
の中に納まってモニタ53に映しだされているため、操
作者は誤って目的とする以外の部位を切除することがな
い。In this structure, the operator operates the robots 49 and 51 while observing the ablation target of the prostate 80 displayed on the monitor, directing the tip of the resectoscope 48 toward the ablation target, and the high frequency electrode. The prostate 80 can be resected while pulling 56 toward the open side of the urethra 48. At this time, since the high-frequency electrode 56 is always contained in the field of view of the resectoscope 48 and is displayed on the monitor 53, the operator does not accidentally cut off a portion other than the intended one.
【0036】[0036]
【発明の効果】以上説明したように、本発明の手術用マ
ニピュレータは、体腔内で観察および処置を行なうのに
十分な自由度を有するとともに、それらの作業中に目的
以外の臓器に接触して無理な力を与えることがない。As described above, the surgical manipulator of the present invention has a sufficient degree of freedom to perform observation and treatment in a body cavity, and also makes contact with an organ other than the target during those operations. It does not give undue force.
【図1】本発明の第1の実施例を示す手術用マニピュレ
ータの全体構成図である。FIG. 1 is an overall configuration diagram of a surgical manipulator showing a first embodiment of the present invention.
【図2】手術用マニピュレータの動作指令を決定するた
めのマスターアームを有するマスタースレーブ方式の構
成図である。FIG. 2 is a configuration diagram of a master-slave system having a master arm for determining an operation command of the surgical manipulator.
【図3】図1の手術用マニピュレータのポイントロック
機構の構成図である。3 is a configuration diagram of a point lock mechanism of the surgical manipulator of FIG. 1. FIG.
【図4】図1の手術用マニピュレータの挿入部の駆動機
構を示す断面図である。4 is a cross-sectional view showing a drive mechanism of an insertion portion of the surgical manipulator of FIG.
【図5】(a)は本発明の第2の実施例を示す手術用マ
ニピュレータの全体構成図、(b)は(a)の手術用マ
ニピュレータの動作指令を決定するためのマスターアー
ムを有するマスタースレーブ方式の構成図である。5A is an overall configuration diagram of a surgical manipulator showing a second embodiment of the present invention, and FIG. 5B is a master having a master arm for determining an operation command of the surgical manipulator of FIG. It is a block diagram of a slave system.
【図6】(a)は本発明の第3の実施例を示す手術用マ
ニピュレータの全体構成図、(b)は(a)の手術用マ
ニピュレータの動作指令を決定するためのマスターアー
ムを有するマスタースレーブ方式の構成図である。FIG. 6A is an overall configuration diagram of a surgical manipulator showing a third embodiment of the present invention, and FIG. 6B is a master having a master arm for determining an operation command of the surgical manipulator of FIG. It is a block diagram of a slave system.
【図7】本発明の第4の実施例を示す手術用マニピュレ
ータの挿入部を腎臓にアプローチさせた状態を示す状態
図である。FIG. 7 is a state diagram showing a state in which the insertion portion of the surgical manipulator showing the fourth embodiment of the present invention is made to approach the kidney.
【図8】本発明の第5の実施例を示す手術用マニピュレ
ータの挿入部を腎臓にアプローチさせた状態を示す状態
図である。FIG. 8 is a state diagram showing a state in which the insertion portion of the surgical manipulator showing the fifth embodiment of the present invention is made to approach the kidney.
【図9】図8の手術用マニピュレータのエンドエフェク
タを用いた動脈の結紮作業を作業工程別に示した工程図
である。FIG. 9 is a process diagram showing an arterial ligation work using the end effector of the surgical manipulator of FIG. 8 for each work process.
【図10】操作者の腕の筋電位を用いたマニピュレータ
操作方法の概略構成図である。FIG. 10 is a schematic configuration diagram of a manipulator operating method using the myoelectric potential of the operator's arm.
【図11】小型ディスプレイで体腔内の観察像を見なが
ら作業を行なうことが可能な好適な構成例を示す斜視図
である。FIG. 11 is a perspective view showing a preferred configuration example in which work can be performed while observing an observation image inside a body cavity on a small display.
【図12】前立腺摘除術(TUR−P)のロボットシス
テムの全体構成図である。FIG. 12 is an overall configuration diagram of a robot system for prostatectomy (TUR-P).
1,1a,1b,1c,1d…手術用マニピュレータ、
2…挿入部、4,5…エンドエフェクタ(作業部)、3
…マニピュレータ本体、11…支持部。1, 1a, 1b, 1c, 1d ... Manipulator for surgery,
2 ... insertion part, 4, 5 ... end effector (working part), 3
… Manipulator body, 11… Supporting part.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28520693AJP3476878B2 (en) | 1993-11-15 | 1993-11-15 | Surgical manipulator |
| US08/940,613US5876325A (en) | 1993-11-02 | 1997-09-30 | Surgical manipulation system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28520693AJP3476878B2 (en) | 1993-11-15 | 1993-11-15 | Surgical manipulator |
| Publication Number | Publication Date |
|---|---|
| JPH07136173Atrue JPH07136173A (en) | 1995-05-30 |
| JP3476878B2 JP3476878B2 (en) | 2003-12-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28520693AExpired - Fee RelatedJP3476878B2 (en) | 1993-11-02 | 1993-11-15 | Surgical manipulator |
| Country | Link |
|---|---|
| JP (1) | JP3476878B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH1199124A (en)* | 1997-09-26 | 1999-04-13 | Technol Res Assoc Of Medical & Welfare Apparatus | Guide manipulator and work support device |
| JP2000037390A (en)* | 1998-07-22 | 2000-02-08 | Olympus Optical Co Ltd | Endoscopic therapeutic instrument |
| JP2001161640A (en)* | 1999-10-05 | 2001-06-19 | Ethicon Endo Surgery Inc | Surgical operation apparatus with integrated image censor |
| JP2001161711A (en)* | 1999-12-14 | 2001-06-19 | Olympus Optical Co Ltd | Endoscopic surgery system |
| JP2001277157A (en)* | 2000-03-31 | 2001-10-09 | Toshiba Corp | Medical manipulator |
| JP2002263109A (en)* | 2001-03-12 | 2002-09-17 | Olympus Optical Co Ltd | Surgical treating tool |
| JP2002306500A (en)* | 2001-04-18 | 2002-10-22 | Mamoru Mitsuishi | Bone cutting equipment |
| JP2003053684A (en)* | 2001-08-10 | 2003-02-26 | Toshiba Corp | Medical manipulator system |
| JP2003230565A (en)* | 2002-02-12 | 2003-08-19 | Univ Tokyo | Active trocar |
| JP2004208922A (en)* | 2002-12-27 | 2004-07-29 | Olympus Corp | Medical apparatus, medical manipulator and control process for medical apparatus |
| JP2004298458A (en)* | 2003-03-31 | 2004-10-28 | Olympus Corp | Stereoscopic observation system |
| JP2004351231A (en)* | 2004-09-09 | 2004-12-16 | Toshiba Corp | Medical manipulator |
| JP2005516786A (en)* | 2002-02-06 | 2005-06-09 | ザ ジョンズ ホプキンズ ユニバーシティ | Remote robotic system and method |
| WO2006057247A1 (en)* | 2004-11-24 | 2006-06-01 | Toshihiko Sato | Suture assisting instrument and operation method |
| JP2006187410A (en)* | 2005-01-05 | 2006-07-20 | Thk Co Ltd | Positioning unit of surgical implement |
| JP2007054642A (en)* | 1995-06-07 | 2007-03-08 | Sri Internatl | Surgical manipulator for teleoperated robot system |
| JP2007260405A (en)* | 2006-03-29 | 2007-10-11 | Ethicon Endo Surgery Inc | Ultrasonic surgical system and method |
| WO2008108289A1 (en)* | 2007-03-01 | 2008-09-12 | Tokyo Institute Of Technology | Maneuvering system having inner force sense presenting function |
| WO2008103212A3 (en)* | 2007-02-20 | 2008-12-18 | Univ Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
| JP2009045499A (en)* | 2008-12-03 | 2009-03-05 | Gyrus Acmi Inc | Flexible endoscope |
| JP2009056131A (en)* | 2007-08-31 | 2009-03-19 | Olympus Corp | Multiflexible forceps |
| JP2009112795A (en)* | 2007-10-05 | 2009-05-28 | Tyco Healthcare Group Lp | Surgical stapler having articulation mechanism |
| JP2009112783A (en)* | 2007-04-17 | 2009-05-28 | Tyco Healthcare Group Lp | Flexible endoluminal surgical instrument |
| US7572253B2 (en) | 2003-03-31 | 2009-08-11 | Japan Science And Technology Agency | Surgical operation device |
| JP2009273877A (en)* | 2008-05-14 | 2009-11-26 | Olympus Medical Systems Corp | Electric bending operation device and medical treatment system |
| JP2010253162A (en)* | 2009-04-28 | 2010-11-11 | Terumo Corp | Medical robot system |
| JP2010269392A (en)* | 2009-05-20 | 2010-12-02 | Tokyo Institute Of Technology | Musculoskeletal system |
| JP2011509729A (en)* | 2008-01-17 | 2011-03-31 | カルディオプレシジョン リミテッド | Retractor |
| US8062288B2 (en) | 2004-09-30 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator for robotic surgery |
| JP2012527276A (en)* | 2009-05-22 | 2012-11-08 | ユニベルシタート ポリテクニカ デ カタルーニャ | Robot system for laparoscopic surgery |
| US8394115B2 (en) | 2006-03-22 | 2013-03-12 | Ethicon Endo-Surgery, Inc. | Composite end effector for an ultrasonic surgical instrument |
| JP2013081870A (en)* | 1996-05-20 | 2013-05-09 | Intuitive Surgical Inc | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
| JP2013141560A (en)* | 2012-01-12 | 2013-07-22 | Kiyohara Optics Inc | Optical system |
| JP2014004655A (en)* | 2012-06-25 | 2014-01-16 | Univ Of Tsukuba | Manipulation system |
| US8834488B2 (en) | 2006-06-22 | 2014-09-16 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic surgical devices and related methods |
| US8840628B2 (en) | 1995-06-07 | 2014-09-23 | Intuitive Surgical Operations, Inc. | Surgical manipulator for a telerobotic system |
| US8897916B2 (en) | 2007-03-01 | 2014-11-25 | Tokyo Institute Of Technology | Maneuvering system having inner force sense presenting function |
| US8894633B2 (en) | 2009-12-17 | 2014-11-25 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
| US8968267B2 (en) | 2010-08-06 | 2015-03-03 | Board Of Regents Of The University Of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
| JP2015042234A (en)* | 2013-08-26 | 2015-03-05 | オリンパス株式会社 | Medical manipulator |
| US8974440B2 (en) | 2007-08-15 | 2015-03-10 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
| USD724207S1 (en) | 2010-09-21 | 2015-03-10 | Cardioprecision Limited | Surgical retractor |
| US9010214B2 (en) | 2012-06-22 | 2015-04-21 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
| JP2015107340A (en)* | 1996-05-20 | 2015-06-11 | インテュイティブ サージカル インコーポレイテッド | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
| US9060781B2 (en) | 2011-06-10 | 2015-06-23 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
| US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| JP2015150124A (en)* | 2014-02-13 | 2015-08-24 | オリンパス株式会社 | manipulator and manipulator system |
| WO2015129395A1 (en)* | 2014-02-28 | 2015-09-03 | オリンパス株式会社 | Exclusion device and robot system |
| US9179981B2 (en) | 2007-06-21 | 2015-11-10 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
| US9261172B2 (en) | 2004-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Multi-ply strap drive trains for surgical robotic arms |
| JP2016505314A (en)* | 2012-12-11 | 2016-02-25 | バイオボット サージカル ピーティーイー リミテッドBiobot Surgical Pte. Ltd. | Devices and methods for biopsy and treatment |
| US9403281B2 (en) | 2003-07-08 | 2016-08-02 | Board Of Regents Of The University Of Nebraska | Robotic devices with arms and related methods |
| JP2016529961A (en)* | 2013-07-17 | 2016-09-29 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic surgical device, system and related methods |
| US9498292B2 (en) | 2012-05-01 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
| JP2017099912A (en)* | 2012-02-29 | 2017-06-08 | プロセプト バイオロボティクス コーポレイション | Automated image-guided tissue resection and treatment |
| US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
| US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| WO2018003925A1 (en)* | 2016-06-30 | 2018-01-04 | 国立大学法人宇都宮大学 | Manipulator capable of supporting endoscopic medical treatment, medical implement provided with same, and method of evaluating workability of manipulator |
| US9888966B2 (en) | 2013-03-14 | 2018-02-13 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
| JP2018504201A (en)* | 2015-01-23 | 2018-02-15 | マッケ・ゲゼルシャフトミットベシュレンクターハフトゥング | Device for holding and moving the laparoscope during surgery |
| JP2018061853A (en)* | 2012-06-01 | 2018-04-19 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator |
| US9956043B2 (en) | 2007-07-12 | 2018-05-01 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and procedures |
| WO2018179140A1 (en)* | 2017-03-29 | 2018-10-04 | オリンパス株式会社 | Medical treatment instrument |
| JP2018533450A (en)* | 2015-09-09 | 2018-11-15 | オーリス ヘルス インコーポレイテッド | Instrument Manipulator for Surgical Assist Robot System |
| US10335024B2 (en) | 2007-08-15 | 2019-07-02 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment and delivery devices and related methods |
| US10342561B2 (en) | 2014-09-12 | 2019-07-09 | Board Of Regents Of The University Of Nebraska | Quick-release end effectors and related systems and methods |
| US10376322B2 (en) | 2014-11-11 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
| US10433960B1 (en) | 2015-05-07 | 2019-10-08 | Cardioprecision Limited | Method and system for transcatheter intervention |
| US10524822B2 (en) | 2009-03-06 | 2020-01-07 | Procept Biorobotics Corporation | Image-guided eye surgery apparatus |
| US10582973B2 (en) | 2012-08-08 | 2020-03-10 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US10595948B2 (en) | 2004-09-30 | 2020-03-24 | Intuitive Surgical Operations, Inc. | Methods and apparatus for stacked electro-mechancial straps in robotic arms |
| JP2020509798A (en)* | 2017-02-23 | 2020-04-02 | ヒューマン エクステンションズ リミテッド | Surgical instrument controller |
| CN111012298A (en)* | 2019-12-27 | 2020-04-17 | 深圳市越疆科技有限公司 | Ureteroscope fixture and ureteroscope robot |
| US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US10695536B2 (en) | 2001-02-15 | 2020-06-30 | Auris Health, Inc. | Catheter driver system |
| US10702347B2 (en) | 2016-08-30 | 2020-07-07 | The Regents Of The University Of California | Robotic device with compact joint design and an additional degree of freedom and related systems and methods |
| US10722319B2 (en) | 2016-12-14 | 2020-07-28 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
| CN111467038A (en)* | 2012-06-01 | 2020-07-31 | 直观外科手术操作公司 | Surgical instrument manipulator aspects |
| US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| US10779898B2 (en) | 2017-12-11 | 2020-09-22 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
| US10792112B2 (en) | 2013-03-15 | 2020-10-06 | Auris Health, Inc. | Active drive mechanism with finite range of motion |
| US10806538B2 (en) | 2015-08-03 | 2020-10-20 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US10820947B2 (en) | 2018-09-28 | 2020-11-03 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
| US10820954B2 (en) | 2018-06-27 | 2020-11-03 | Auris Health, Inc. | Alignment and attachment systems for medical instruments |
| US10820952B2 (en) | 2013-03-15 | 2020-11-03 | Auris Heath, Inc. | Rotational support for an elongate member |
| US10888386B2 (en) | 2018-01-17 | 2021-01-12 | Auris Health, Inc. | Surgical robotics systems with improved robotic arms |
| US10903725B2 (en) | 2016-04-29 | 2021-01-26 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
| WO2021096741A1 (en) | 2019-11-11 | 2021-05-20 | Procept Biorobotics Corporation | Surgical probes for tissue resection with robotic arms |
| US11013564B2 (en) | 2018-01-05 | 2021-05-25 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
| US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
| US11033330B2 (en) | 2008-03-06 | 2021-06-15 | Aquabeam, Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
| US11051894B2 (en) | 2017-09-27 | 2021-07-06 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
| US11147637B2 (en) | 2012-05-25 | 2021-10-19 | Auris Health, Inc. | Low friction instrument driver interface for robotic systems |
| US11173617B2 (en) | 2016-08-25 | 2021-11-16 | Board Of Regents Of The University Of Nebraska | Quick-release end effector tool interface |
| US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
| US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
| JP2022518870A (en)* | 2019-01-25 | 2022-03-16 | 李漢忠 | Transurethral Resectoscope Surgical Robot System |
| US11278703B2 (en) | 2014-04-21 | 2022-03-22 | Auris Health, Inc. | Devices, systems, and methods for controlling active drive systems |
| US11284958B2 (en) | 2016-11-29 | 2022-03-29 | Virtual Incision Corporation | User controller with user presence detection and related systems and methods |
| CN114469285A (en)* | 2022-03-31 | 2022-05-13 | 真健康(北京)医疗科技有限公司 | Connecting rod type five-degree-of-freedom puncture robot |
| US11350964B2 (en) | 2007-01-02 | 2022-06-07 | Aquabeam, Llc | Minimally invasive treatment device for tissue resection |
| US11350998B2 (en) | 2014-07-01 | 2022-06-07 | Auris Health, Inc. | Medical instrument having translatable spool |
| US11357595B2 (en) | 2016-11-22 | 2022-06-14 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
| US11376085B2 (en) | 2013-03-15 | 2022-07-05 | Auris Health, Inc. | Remote catheter manipulator |
| US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
| US11452844B2 (en) | 2013-03-14 | 2022-09-27 | Auris Health, Inc. | Torque-based catheter articulation |
| US11504195B2 (en) | 2013-03-15 | 2022-11-22 | Auris Health, Inc. | Active drive mechanism for simultaneous rotation and translation |
| US11517717B2 (en) | 2013-03-14 | 2022-12-06 | Auris Health, Inc. | Active drives for robotic catheter manipulators |
| US11564759B2 (en) | 2016-08-31 | 2023-01-31 | Auris Health, Inc. | Length conservative surgical instrument |
| US11571229B2 (en) | 2015-10-30 | 2023-02-07 | Auris Health, Inc. | Basket apparatus |
| US11638618B2 (en) | 2019-03-22 | 2023-05-02 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
| US11690977B2 (en) | 2014-05-15 | 2023-07-04 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
| US11737845B2 (en) | 2019-09-30 | 2023-08-29 | Auris Inc. | Medical instrument with a capstan |
| US11779414B2 (en) | 2013-03-14 | 2023-10-10 | Auris Health, Inc. | Active drive for robotic catheter manipulators |
| US11883065B2 (en) | 2012-01-10 | 2024-01-30 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and insertion |
| US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
| US11903658B2 (en) | 2019-01-07 | 2024-02-20 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
| US11950872B2 (en) | 2019-12-31 | 2024-04-09 | Auris Health, Inc. | Dynamic pulley system |
| US12089907B2 (en) | 2019-03-07 | 2024-09-17 | Procept Biorobotics Corporation | Robotic arms and methods for tissue resection and imaging |
| US12108964B2 (en) | 2007-01-02 | 2024-10-08 | Aquabeam, Llc | Minimally invasive tissue treatment device |
| US12150722B2 (en) | 2020-07-06 | 2024-11-26 | Virtual Incision Corporation | Surgical robot positioning system and related devices and methods |
| US12156710B2 (en) | 2011-10-03 | 2024-12-03 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| US12178537B2 (en) | 2020-06-26 | 2024-12-31 | Procept Biorobotics Corporation | Systems for defining and modifying range of motion of probe used in patient treatment |
| US12295680B2 (en) | 2012-08-08 | 2025-05-13 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
| US12440235B2 (en) | 2023-08-23 | 2025-10-14 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008259701A (en)* | 2007-04-12 | 2008-10-30 | Olympus Corp | Apparatus inserted into living body |
| US20160081753A1 (en)* | 2014-09-18 | 2016-03-24 | KB Medical SA | Robot-Mounted User Interface For Interacting With Operation Room Equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993013916A1 (en)* | 1992-01-21 | 1993-07-22 | Sri International | Teleoperator system and method with telepresence |
| JPH06261911A (en)* | 1992-10-30 | 1994-09-20 | Internatl Business Mach Corp <Ibm> | Manipulator device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993013916A1 (en)* | 1992-01-21 | 1993-07-22 | Sri International | Teleoperator system and method with telepresence |
| JPH06261911A (en)* | 1992-10-30 | 1994-09-20 | Internatl Business Mach Corp <Ibm> | Manipulator device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013121513A (en)* | 1995-06-07 | 2013-06-20 | Sri Internatl | Surgical manipulator for telerobotic system |
| JP2013078651A (en)* | 1995-06-07 | 2013-05-02 | Sri Internatl | Surgical manipulator for teleoperated robot system |
| JP2010269162A (en)* | 1995-06-07 | 2010-12-02 | Sri Internatl | Surgical manipulator for teleoperated robot system |
| JP2008289902A (en)* | 1995-06-07 | 2008-12-04 | Sri Internatl | Surgical manipulator for teleoperated robot system |
| JP2013099556A (en)* | 1995-06-07 | 2013-05-23 | Sri Internatl | Surgical manipulator for telerobotic system |
| US8840628B2 (en) | 1995-06-07 | 2014-09-23 | Intuitive Surgical Operations, Inc. | Surgical manipulator for a telerobotic system |
| JP2007054642A (en)* | 1995-06-07 | 2007-03-08 | Sri Internatl | Surgical manipulator for teleoperated robot system |
| JP2013099554A (en)* | 1995-06-07 | 2013-05-23 | Sri Internatl | Surgical manipulator for telerobotic system |
| JP2013135850A (en)* | 1995-06-07 | 2013-07-11 | Sri Internatl | Surgical manipulator for telerobotic system |
| JP2013126712A (en)* | 1995-06-07 | 2013-06-27 | Sri Internatl | Surgical manipulator for telerobotic system |
| JP2015037549A (en)* | 1995-06-07 | 2015-02-26 | エスアールアイ インターナショナルSRI International | Surgical manipulator for telerobotic system |
| JP2013099555A (en)* | 1995-06-07 | 2013-05-23 | Sri Internatl | Surgical manipulator for telerobotic system |
| JP2015107340A (en)* | 1996-05-20 | 2015-06-11 | インテュイティブ サージカル インコーポレイテッド | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
| JP2013081870A (en)* | 1996-05-20 | 2013-05-09 | Intuitive Surgical Inc | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
| US9999473B2 (en) | 1996-05-20 | 2018-06-19 | Intuitive Surgical Operations, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
| US9510915B2 (en) | 1996-05-20 | 2016-12-06 | Intuitive Surgical Operations, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
| JPH1199124A (en)* | 1997-09-26 | 1999-04-13 | Technol Res Assoc Of Medical & Welfare Apparatus | Guide manipulator and work support device |
| JP2000037390A (en)* | 1998-07-22 | 2000-02-08 | Olympus Optical Co Ltd | Endoscopic therapeutic instrument |
| JP2001161640A (en)* | 1999-10-05 | 2001-06-19 | Ethicon Endo Surgery Inc | Surgical operation apparatus with integrated image censor |
| JP2001161711A (en)* | 1999-12-14 | 2001-06-19 | Olympus Optical Co Ltd | Endoscopic surgery system |
| JP2001277157A (en)* | 2000-03-31 | 2001-10-09 | Toshiba Corp | Medical manipulator |
| US10695536B2 (en) | 2001-02-15 | 2020-06-30 | Auris Health, Inc. | Catheter driver system |
| JP2002263109A (en)* | 2001-03-12 | 2002-09-17 | Olympus Optical Co Ltd | Surgical treating tool |
| JP2002306500A (en)* | 2001-04-18 | 2002-10-22 | Mamoru Mitsuishi | Bone cutting equipment |
| JP2003053684A (en)* | 2001-08-10 | 2003-02-26 | Toshiba Corp | Medical manipulator system |
| JP2005516786A (en)* | 2002-02-06 | 2005-06-09 | ザ ジョンズ ホプキンズ ユニバーシティ | Remote robotic system and method |
| JP2003230565A (en)* | 2002-02-12 | 2003-08-19 | Univ Tokyo | Active trocar |
| JP2004208922A (en)* | 2002-12-27 | 2004-07-29 | Olympus Corp | Medical apparatus, medical manipulator and control process for medical apparatus |
| US7572253B2 (en) | 2003-03-31 | 2009-08-11 | Japan Science And Technology Agency | Surgical operation device |
| JP2004298458A (en)* | 2003-03-31 | 2004-10-28 | Olympus Corp | Stereoscopic observation system |
| US9403281B2 (en) | 2003-07-08 | 2016-08-02 | Board Of Regents Of The University Of Nebraska | Robotic devices with arms and related methods |
| JP2004351231A (en)* | 2004-09-09 | 2004-12-16 | Toshiba Corp | Medical manipulator |
| US9261172B2 (en) | 2004-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Multi-ply strap drive trains for surgical robotic arms |
| US8062288B2 (en) | 2004-09-30 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator for robotic surgery |
| EP2253288B1 (en)* | 2004-09-30 | 2019-03-27 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator |
| EP3372184A1 (en)* | 2004-09-30 | 2018-09-12 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator |
| US8256319B2 (en) | 2004-09-30 | 2012-09-04 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator for robotic surgery |
| EP3199120A1 (en)* | 2004-09-30 | 2017-08-02 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator |
| EP2253289A3 (en)* | 2004-09-30 | 2012-06-27 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator |
| US9803727B2 (en) | 2004-09-30 | 2017-10-31 | Intuitive Surgical Operations, Inc. | Strap guide system and methods thereof for robotic surgical arms |
| US11160626B2 (en) | 2004-09-30 | 2021-11-02 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator for robotic surgery |
| EP3753522A1 (en)* | 2004-09-30 | 2020-12-23 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator |
| US9797484B2 (en) | 2004-09-30 | 2017-10-24 | Intuitive Surgical Operations, Inc. | Methods for robotic arms with strap drive trains |
| US10595948B2 (en) | 2004-09-30 | 2020-03-24 | Intuitive Surgical Operations, Inc. | Methods and apparatus for stacked electro-mechancial straps in robotic arms |
| US8562594B2 (en) | 2004-09-30 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Offset remote center manipulator for robotic surgery |
| WO2006057247A1 (en)* | 2004-11-24 | 2006-06-01 | Toshihiko Sato | Suture assisting instrument and operation method |
| JP2006187410A (en)* | 2005-01-05 | 2006-07-20 | Thk Co Ltd | Positioning unit of surgical implement |
| US8394115B2 (en) | 2006-03-22 | 2013-03-12 | Ethicon Endo-Surgery, Inc. | Composite end effector for an ultrasonic surgical instrument |
| US9675375B2 (en) | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
| JP2007260405A (en)* | 2006-03-29 | 2007-10-11 | Ethicon Endo Surgery Inc | Ultrasonic surgical system and method |
| US10617482B2 (en) | 2006-03-29 | 2020-04-14 | Ethicon Llc | Ultrasonic surgical system and method |
| US12108999B2 (en) | 2006-03-29 | 2024-10-08 | Cilag Gmbh International | Ultrasonic surgical system and method |
| US10307199B2 (en) | 2006-06-22 | 2019-06-04 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices and related methods |
| US10376323B2 (en) | 2006-06-22 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
| US9883911B2 (en) | 2006-06-22 | 2018-02-06 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
| US8968332B2 (en) | 2006-06-22 | 2015-03-03 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic surgical devices and related methods |
| US8834488B2 (en) | 2006-06-22 | 2014-09-16 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic surgical devices and related methods |
| US10959790B2 (en) | 2006-06-22 | 2021-03-30 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
| US11350964B2 (en) | 2007-01-02 | 2022-06-07 | Aquabeam, Llc | Minimally invasive treatment device for tissue resection |
| US12290277B2 (en) | 2007-01-02 | 2025-05-06 | Aquabeam, Llc | Tissue resection with pressure sensing |
| US12108964B2 (en) | 2007-01-02 | 2024-10-08 | Aquabeam, Llc | Minimally invasive tissue treatment device |
| US11478269B2 (en) | 2007-01-02 | 2022-10-25 | Aquabeam, Llc | Minimally invasive methods for multi-fluid tissue ablation |
| WO2008103212A3 (en)* | 2007-02-20 | 2008-12-18 | Univ Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
| US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
| JP5327687B2 (en)* | 2007-03-01 | 2013-10-30 | 国立大学法人東京工業大学 | Maneuvering system with haptic function |
| US8700213B2 (en) | 2007-03-01 | 2014-04-15 | Tokyo Institute Of Technology | Maneuvering system having inner force sense presenting function |
| US8897916B2 (en) | 2007-03-01 | 2014-11-25 | Tokyo Institute Of Technology | Maneuvering system having inner force sense presenting function |
| WO2008108289A1 (en)* | 2007-03-01 | 2008-09-12 | Tokyo Institute Of Technology | Maneuvering system having inner force sense presenting function |
| JP2009112783A (en)* | 2007-04-17 | 2009-05-28 | Tyco Healthcare Group Lp | Flexible endoluminal surgical instrument |
| US9179981B2 (en) | 2007-06-21 | 2015-11-10 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
| US10695137B2 (en) | 2007-07-12 | 2020-06-30 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and procedures |
| US9956043B2 (en) | 2007-07-12 | 2018-05-01 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and procedures |
| US10335024B2 (en) | 2007-08-15 | 2019-07-02 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment and delivery devices and related methods |
| US8974440B2 (en) | 2007-08-15 | 2015-03-10 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
| JP2009056131A (en)* | 2007-08-31 | 2009-03-19 | Olympus Corp | Multiflexible forceps |
| JP2009112795A (en)* | 2007-10-05 | 2009-05-28 | Tyco Healthcare Group Lp | Surgical stapler having articulation mechanism |
| US9232886B2 (en) | 2008-01-17 | 2016-01-12 | Cardioprecision Limited | Retractor |
| US9420944B2 (en) | 2008-01-17 | 2016-08-23 | Cardioprecision Limited | Method of performing a minimally-invasive intervention |
| JP2011509729A (en)* | 2008-01-17 | 2011-03-31 | カルディオプレシジョン リミテッド | Retractor |
| JP2014138725A (en)* | 2008-01-17 | 2014-07-31 | Cardioprecision Ltd | Retractor |
| US11172986B2 (en) | 2008-03-06 | 2021-11-16 | Aquabeam Llc | Ablation with energy carried in fluid stream |
| US12318137B2 (en) | 2008-03-06 | 2025-06-03 | Aquabeam, Llc | Controlled tissue treatment with energy and control circuitry |
| US12102383B2 (en) | 2008-03-06 | 2024-10-01 | Aquabeam, Llc | Tissue resection device with motors and control circuitry |
| US11033330B2 (en) | 2008-03-06 | 2021-06-15 | Aquabeam, Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
| US11759258B2 (en) | 2008-03-06 | 2023-09-19 | Aquabeam, Llc | Controlled ablation with laser energy |
| JP2009273877A (en)* | 2008-05-14 | 2009-11-26 | Olympus Medical Systems Corp | Electric bending operation device and medical treatment system |
| JP2009045499A (en)* | 2008-12-03 | 2009-03-05 | Gyrus Acmi Inc | Flexible endoscope |
| US10524822B2 (en) | 2009-03-06 | 2020-01-07 | Procept Biorobotics Corporation | Image-guided eye surgery apparatus |
| JP2010253162A (en)* | 2009-04-28 | 2010-11-11 | Terumo Corp | Medical robot system |
| JP2010269392A (en)* | 2009-05-20 | 2010-12-02 | Tokyo Institute Of Technology | Musculoskeletal system |
| JP2012527276A (en)* | 2009-05-22 | 2012-11-08 | ユニベルシタート ポリテクニカ デ カタルーニャ | Robot system for laparoscopic surgery |
| US9119653B2 (en) | 2009-05-22 | 2015-09-01 | Universitat Politecnica De Catalunya | Robotic system for laparoscopic surgery |
| EP2433585A4 (en)* | 2009-05-22 | 2015-11-04 | Uni Politècnica De Catalunya | Robotic system for laparoscopic surgery |
| US8894633B2 (en) | 2009-12-17 | 2014-11-25 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
| US8968267B2 (en) | 2010-08-06 | 2015-03-03 | Board Of Regents Of The University Of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
| US9002159B2 (en) | 2010-09-21 | 2015-04-07 | Cardioprecision Ltd | Optical switch |
| USD724207S1 (en) | 2010-09-21 | 2015-03-10 | Cardioprecision Limited | Surgical retractor |
| US11065050B2 (en) | 2011-06-10 | 2021-07-20 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
| US11832871B2 (en) | 2011-06-10 | 2023-12-05 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
| US9060781B2 (en) | 2011-06-10 | 2015-06-23 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
| US9757187B2 (en) | 2011-06-10 | 2017-09-12 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
| US10350000B2 (en) | 2011-06-10 | 2019-07-16 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to surgical end effectors |
| US11032125B2 (en) | 2011-07-11 | 2021-06-08 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
| US11909576B2 (en) | 2011-07-11 | 2024-02-20 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| US10111711B2 (en) | 2011-07-11 | 2018-10-30 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| US12323289B2 (en) | 2011-07-11 | 2025-06-03 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| US11595242B2 (en) | 2011-07-11 | 2023-02-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
| US12156710B2 (en) | 2011-10-03 | 2024-12-03 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| US11883065B2 (en) | 2012-01-10 | 2024-01-30 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical access and insertion |
| JP2013141560A (en)* | 2012-01-12 | 2013-07-22 | Kiyohara Optics Inc | Optical system |
| US11737776B2 (en) | 2012-02-29 | 2023-08-29 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
| US10653438B2 (en) | 2012-02-29 | 2020-05-19 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
| JP2017099912A (en)* | 2012-02-29 | 2017-06-08 | プロセプト バイオロボティクス コーポレイション | Automated image-guided tissue resection and treatment |
| US11464536B2 (en) | 2012-02-29 | 2022-10-11 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
| JP2024097857A (en)* | 2012-02-29 | 2024-07-19 | プロセプト バイオロボティクス コーポレイション | Automated Image-Guided Tissue Ablation and Treatment |
| US10219870B2 (en) | 2012-05-01 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
| US12171512B2 (en) | 2012-05-01 | 2024-12-24 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
| US9498292B2 (en) | 2012-05-01 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
| US11529201B2 (en) | 2012-05-01 | 2022-12-20 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
| US11819299B2 (en) | 2012-05-01 | 2023-11-21 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
| US11147637B2 (en) | 2012-05-25 | 2021-10-19 | Auris Health, Inc. | Low friction instrument driver interface for robotic systems |
| US11490977B2 (en) | 2012-06-01 | 2022-11-08 | Intuitive Surgical Operations, Inc. | Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator |
| JP2018061853A (en)* | 2012-06-01 | 2018-04-19 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator |
| CN111467038A (en)* | 2012-06-01 | 2020-07-31 | 直观外科手术操作公司 | Surgical instrument manipulator aspects |
| US10973598B2 (en) | 2012-06-01 | 2021-04-13 | Intuitive Surgical Operations, Inc. | Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator |
| CN111467038B (en)* | 2012-06-01 | 2023-06-16 | 直观外科手术操作公司 | Surgical instrument manipulator aspects |
| US10470828B2 (en) | 2012-06-22 | 2019-11-12 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
| US9010214B2 (en) | 2012-06-22 | 2015-04-21 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
| US11484374B2 (en) | 2012-06-22 | 2022-11-01 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
| JP2014004655A (en)* | 2012-06-25 | 2014-01-16 | Univ Of Tsukuba | Manipulation system |
| US11051895B2 (en) | 2012-08-08 | 2021-07-06 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| US11832902B2 (en) | 2012-08-08 | 2023-12-05 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
| US10624704B2 (en) | 2012-08-08 | 2020-04-21 | Board Of Regents Of The University Of Nebraska | Robotic devices with on board control and related systems and devices |
| US10582973B2 (en) | 2012-08-08 | 2020-03-10 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US12295680B2 (en) | 2012-08-08 | 2025-05-13 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
| US11617626B2 (en) | 2012-08-08 | 2023-04-04 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
| JP2016505314A (en)* | 2012-12-11 | 2016-02-25 | バイオボット サージカル ピーティーイー リミテッドBiobot Surgical Pte. Ltd. | Devices and methods for biopsy and treatment |
| US9888966B2 (en) | 2013-03-14 | 2018-02-13 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
| US12336777B2 (en) | 2013-03-14 | 2025-06-24 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
| US11517717B2 (en) | 2013-03-14 | 2022-12-06 | Auris Health, Inc. | Active drives for robotic catheter manipulators |
| US12070282B2 (en) | 2013-03-14 | 2024-08-27 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
| US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
| US11452844B2 (en) | 2013-03-14 | 2022-09-27 | Auris Health, Inc. | Torque-based catheter articulation |
| US11779414B2 (en) | 2013-03-14 | 2023-10-10 | Auris Health, Inc. | Active drive for robotic catheter manipulators |
| US11806097B2 (en) | 2013-03-14 | 2023-11-07 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
| US10743949B2 (en) | 2013-03-14 | 2020-08-18 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
| US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
| US10603121B2 (en) | 2013-03-14 | 2020-03-31 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
| US11660153B2 (en) | 2013-03-15 | 2023-05-30 | Auris Health, Inc. | Active drive mechanism with finite range of motion |
| US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US11504195B2 (en) | 2013-03-15 | 2022-11-22 | Auris Health, Inc. | Active drive mechanism for simultaneous rotation and translation |
| US11376085B2 (en) | 2013-03-15 | 2022-07-05 | Auris Health, Inc. | Remote catheter manipulator |
| US12114943B2 (en) | 2013-03-15 | 2024-10-15 | Auris Health, Inc. | Remote catheter manipulator |
| US11633253B2 (en) | 2013-03-15 | 2023-04-25 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US10820952B2 (en) | 2013-03-15 | 2020-11-03 | Auris Heath, Inc. | Rotational support for an elongate member |
| US10792112B2 (en) | 2013-03-15 | 2020-10-06 | Auris Health, Inc. | Active drive mechanism with finite range of motion |
| US10966700B2 (en) | 2013-07-17 | 2021-04-06 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| JP2016529961A (en)* | 2013-07-17 | 2016-09-29 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic surgical device, system and related methods |
| US11826032B2 (en) | 2013-07-17 | 2023-11-28 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| US10245114B2 (en) | 2013-08-26 | 2019-04-02 | Olympus Corporation | Medical manipulator |
| JP2015042234A (en)* | 2013-08-26 | 2015-03-05 | オリンパス株式会社 | Medical manipulator |
| WO2015029804A1 (en)* | 2013-08-26 | 2015-03-05 | オリンパス株式会社 | Medical manipulator |
| JP2015150124A (en)* | 2014-02-13 | 2015-08-24 | オリンパス株式会社 | manipulator and manipulator system |
| WO2015129395A1 (en)* | 2014-02-28 | 2015-09-03 | オリンパス株式会社 | Exclusion device and robot system |
| US11278703B2 (en) | 2014-04-21 | 2022-03-22 | Auris Health, Inc. | Devices, systems, and methods for controlling active drive systems |
| US11690977B2 (en) | 2014-05-15 | 2023-07-04 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
| US11350998B2 (en) | 2014-07-01 | 2022-06-07 | Auris Health, Inc. | Medical instrument having translatable spool |
| US12390240B2 (en) | 2014-09-12 | 2025-08-19 | Virtual Incision Corporation | Quick-release end effectors and related systems and methods |
| US11576695B2 (en) | 2014-09-12 | 2023-02-14 | Virtual Incision Corporation | Quick-release end effectors and related systems and methods |
| US10342561B2 (en) | 2014-09-12 | 2019-07-09 | Board Of Regents Of The University Of Nebraska | Quick-release end effectors and related systems and methods |
| US12096999B2 (en) | 2014-11-11 | 2024-09-24 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
| US11406458B2 (en) | 2014-11-11 | 2022-08-09 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
| US10376322B2 (en) | 2014-11-11 | 2019-08-13 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and related systems and methods |
| JP2018504201A (en)* | 2015-01-23 | 2018-02-15 | マッケ・ゲゼルシャフトミットベシュレンクターハフトゥング | Device for holding and moving the laparoscope during surgery |
| US11589990B2 (en) | 2015-05-07 | 2023-02-28 | Cardio Precision Limited | Method and system for transcatheter intervention |
| US10433960B1 (en) | 2015-05-07 | 2019-10-08 | Cardioprecision Limited | Method and system for transcatheter intervention |
| US10806538B2 (en) | 2015-08-03 | 2020-10-20 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US11872090B2 (en) | 2015-08-03 | 2024-01-16 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
| US10631949B2 (en) | 2015-09-09 | 2020-04-28 | Auris Health, Inc. | Instrument device manipulator with back-mounted tool attachment mechanism |
| US10786329B2 (en) | 2015-09-09 | 2020-09-29 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
| EP3346899A4 (en)* | 2015-09-09 | 2019-10-30 | Auris Health, Inc. | INSTRUMENT MANIPULATOR FOR SURGICAL ROBOTIC SYSTEM |
| JP2018533450A (en)* | 2015-09-09 | 2018-11-15 | オーリス ヘルス インコーポレイテッド | Instrument Manipulator for Surgical Assist Robot System |
| US11771521B2 (en) | 2015-09-09 | 2023-10-03 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
| US11571229B2 (en) | 2015-10-30 | 2023-02-07 | Auris Health, Inc. | Basket apparatus |
| US10903725B2 (en) | 2016-04-29 | 2021-01-26 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
| US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| US12383355B2 (en) | 2016-05-18 | 2025-08-12 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| US11826014B2 (en) | 2016-05-18 | 2023-11-28 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
| JPWO2018003925A1 (en)* | 2016-06-30 | 2019-04-04 | 国立大学法人宇都宮大学 | MANIPULATOR SUPPORTING MICROSCOPY MEDICAL, MEDICAL EQUIPMENT HAVING THE SAME, AND METHOD OF EVALUATING MANIPULATOR WORKABILITY |
| WO2018003925A1 (en)* | 2016-06-30 | 2018-01-04 | 国立大学法人宇都宮大学 | Manipulator capable of supporting endoscopic medical treatment, medical implement provided with same, and method of evaluating workability of manipulator |
| US11173617B2 (en) | 2016-08-25 | 2021-11-16 | Board Of Regents Of The University Of Nebraska | Quick-release end effector tool interface |
| US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
| US12274517B2 (en) | 2016-08-30 | 2025-04-15 | Board Of Regents Of The University Of Nebraska | Robotic device with compact joint design and an additional degree of freedom and related systems and methods |
| US10702347B2 (en) | 2016-08-30 | 2020-07-07 | The Regents Of The University Of California | Robotic device with compact joint design and an additional degree of freedom and related systems and methods |
| US11564759B2 (en) | 2016-08-31 | 2023-01-31 | Auris Health, Inc. | Length conservative surgical instrument |
| US12109079B2 (en) | 2016-11-22 | 2024-10-08 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
| US11357595B2 (en) | 2016-11-22 | 2022-06-14 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
| US11813124B2 (en) | 2016-11-22 | 2023-11-14 | Board Of Regents Of The University Of Nebraska | Gross positioning device and related systems and methods |
| US11284958B2 (en) | 2016-11-29 | 2022-03-29 | Virtual Incision Corporation | User controller with user presence detection and related systems and methods |
| US10722319B2 (en) | 2016-12-14 | 2020-07-28 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
| US11786334B2 (en) | 2016-12-14 | 2023-10-17 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
| JP2020509798A (en)* | 2017-02-23 | 2020-04-02 | ヒューマン エクステンションズ リミテッド | Surgical instrument controller |
| WO2018179140A1 (en)* | 2017-03-29 | 2018-10-04 | オリンパス株式会社 | Medical treatment instrument |
| US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
| US11832907B2 (en) | 2017-06-28 | 2023-12-05 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
| US12343098B2 (en) | 2017-09-27 | 2025-07-01 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
| US11051894B2 (en) | 2017-09-27 | 2021-07-06 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
| US11974824B2 (en) | 2017-09-27 | 2024-05-07 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
| US11839439B2 (en) | 2017-12-11 | 2023-12-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
| US10779898B2 (en) | 2017-12-11 | 2020-09-22 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
| US11013564B2 (en) | 2018-01-05 | 2021-05-25 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
| US12303221B2 (en) | 2018-01-05 | 2025-05-20 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
| US11504196B2 (en) | 2018-01-05 | 2022-11-22 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
| US11950867B2 (en) | 2018-01-05 | 2024-04-09 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
| US10888386B2 (en) | 2018-01-17 | 2021-01-12 | Auris Health, Inc. | Surgical robotics systems with improved robotic arms |
| US12329477B2 (en) | 2018-01-17 | 2025-06-17 | Auris Health, Inc. | Surgical robotics systems with improved robotic arms |
| US12364557B2 (en) | 2018-06-27 | 2025-07-22 | Auris Health, Inc. | Alignment and attachment systems for medical instruments |
| US10820954B2 (en) | 2018-06-27 | 2020-11-03 | Auris Health, Inc. | Alignment and attachment systems for medical instruments |
| US11864842B2 (en) | 2018-09-28 | 2024-01-09 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
| US10820947B2 (en) | 2018-09-28 | 2020-11-03 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
| US11903658B2 (en) | 2019-01-07 | 2024-02-20 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
| JP2022518870A (en)* | 2019-01-25 | 2022-03-16 | 李漢忠 | Transurethral Resectoscope Surgical Robot System |
| US12089907B2 (en) | 2019-03-07 | 2024-09-17 | Procept Biorobotics Corporation | Robotic arms and methods for tissue resection and imaging |
| US11638618B2 (en) | 2019-03-22 | 2023-05-02 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
| US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
| US11737845B2 (en) | 2019-09-30 | 2023-08-29 | Auris Inc. | Medical instrument with a capstan |
| EP4057907A4 (en)* | 2019-11-11 | 2024-03-13 | PROCEPT BioRobotics Corporation | SURGICAL PROBE FOR TISSUE SECTION WITH ROBOT ARMS |
| WO2021096741A1 (en) | 2019-11-11 | 2021-05-20 | Procept Biorobotics Corporation | Surgical probes for tissue resection with robotic arms |
| JP2022554422A (en)* | 2019-11-11 | 2022-12-28 | プロセプト バイオロボティクス コーポレイション | Surgical probe for tissue excision using a robotic arm |
| US12419701B2 (en) | 2019-11-11 | 2025-09-23 | Procept Biorobotics Corporation | Surgical probes for tissue resection with robotic arms |
| CN111012298A (en)* | 2019-12-27 | 2020-04-17 | 深圳市越疆科技有限公司 | Ureteroscope fixture and ureteroscope robot |
| US11950872B2 (en) | 2019-12-31 | 2024-04-09 | Auris Health, Inc. | Dynamic pulley system |
| US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
| US12178537B2 (en) | 2020-06-26 | 2024-12-31 | Procept Biorobotics Corporation | Systems for defining and modifying range of motion of probe used in patient treatment |
| US12150722B2 (en) | 2020-07-06 | 2024-11-26 | Virtual Incision Corporation | Surgical robot positioning system and related devices and methods |
| CN114469285A (en)* | 2022-03-31 | 2022-05-13 | 真健康(北京)医疗科技有限公司 | Connecting rod type five-degree-of-freedom puncture robot |
| US12440235B2 (en) | 2023-08-23 | 2025-10-14 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
| Publication number | Publication date |
|---|---|
| JP3476878B2 (en) | 2003-12-10 |
| Publication | Publication Date | Title |
|---|---|---|
| JP3476878B2 (en) | Surgical manipulator | |
| JP4169142B2 (en) | Endoscopic surgical device | |
| US8105235B2 (en) | Stabilizer for robotic beating-heart surgery | |
| US6817972B2 (en) | Heart stabilizer | |
| US10736702B2 (en) | Activating and rotating surgical end effectors | |
| US20230190398A1 (en) | Medical devices having three tool members | |
| US7217240B2 (en) | Heart stabilizer | |
| US6936001B1 (en) | Heart stabilizer | |
| US8795325B2 (en) | Handle assembly for articulated endoscopic instruments | |
| US20110112434A1 (en) | Kits and procedures for natural orifice translumenal endoscopic surgery | |
| EP3366227A1 (en) | Surgical suturing instruments | |
| US12201391B2 (en) | Medical devices having multiple blades and methods of use | |
| JP2005507679A (en) | Platform joint wrist | |
| WO1995031139A1 (en) | Laparoscopic instrument assembly | |
| JP2006516910A (en) | Intraluminal tool deployment system | |
| EP2976020B1 (en) | A miniature robotic device applicable to a flexible endoscope for the surgical dissection of gastro-intestinal tract surface neoplasms | |
| US20240349992A1 (en) | Imaging device with elongate arm and pivotable camera | |
| WO2023026074A1 (en) | Imaging device with elongate arm and pivotable camera | |
| EP3756555A1 (en) | Surgical suturing instruments | |
| KR20110012822A (en) | Surgical Robot | |
| JPH04146097A (en) | Robot for surgical operation | |
| KR20200083018A (en) | Surgical robot apparatus | |
| US11523817B2 (en) | Endoluminal pursestring device | |
| WO2003049659A1 (en) | A heart stabilizer |
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20030318 | |
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20030902 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080926 Year of fee payment:5 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080926 Year of fee payment:5 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090926 Year of fee payment:6 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090926 Year of fee payment:6 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100926 Year of fee payment:7 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110926 Year of fee payment:8 | |
| LAPS | Cancellation because of no payment of annual fees |