【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、基板上に連続した超薄
膜、または連続した超薄膜を積層した多層薄膜を形成す
る法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a continuous ultrathin film or a multilayer thin film in which continuous ultrathin films are laminated on a substrate.
【0002】[0002]
【従来の技術】一般に、基板上に薄膜を形成する際、成
膜初期の膜厚が極めて薄い、例えば数100オングスト
ローム(以下、オングストロームをAとする)段階にお
いて薄膜は多数の分離した島状構造となるため、連続し
た薄膜を形成することが難しい。これは、熱力学的な平
衡状態において薄膜の表面張力(表面エネルギー)の影
響により、蒸着物質が凝縮して島状構造となることに起
因する。したがって、前記島状化を防ししなければ、数
100A以下の膜厚の連続した超薄膜を形成することが
できない。前記薄膜の島状化を防止するために、従来よ
り以下に説明する薄膜形成方法が知られている。 (1)基板材料として薄膜形成物質より表面エネルギー
の大きな物質を選び、相対的に薄膜形成物質の表面エネ
ルギーを低下させて薄膜形成を行う方法。 (2)成膜時の基板温度を低くし、熱力学的に不平衡状
態にして薄膜形成を行う方法。 (3)成膜速度を増加させて過飽和度を増大させること
により有効な成膜温度を低下させ、熱力学的に不平衡状
態にして薄膜形成を行う方法。2. Description of the Related Art Generally, when a thin film is formed on a substrate, the film thickness at the initial stage of film formation is extremely thin, for example, several hundred angstroms (hereinafter, angstrom is referred to as A), the thin film has a large number of island-shaped structures. Therefore, it is difficult to form a continuous thin film. This is because in the thermodynamic equilibrium state, the vapor deposition substance is condensed into an island structure due to the influence of the surface tension (surface energy) of the thin film. Therefore, unless the island formation is prevented, a continuous ultra-thin film having a film thickness of several 100 A or less cannot be formed. In order to prevent island formation of the thin film, a thin film forming method described below has been conventionally known. (1) A method of forming a thin film by selecting a substance having a surface energy larger than that of a thin film forming substance as a substrate material and relatively lowering the surface energy of the thin film forming substance. (2) A method of forming a thin film by lowering the substrate temperature during film formation and making it thermodynamically unbalanced. (3) A method of forming a thin film in which the effective film forming temperature is lowered by increasing the film forming speed to increase the degree of supersaturation to bring the film into a thermodynamically unbalanced state.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記
(1)の薄膜形成方法では薄膜形成物質よりも表面エネ
ルギーが大きく、かつ他の特性も成膜に適した基板材料
を見出だすことが困難であり、仮にそのような材料が存
在したとしても基板の選択が限定されるという問題があ
る。However, in the thin film forming method (1), it is difficult to find a substrate material having a surface energy larger than that of the thin film forming substance and having other characteristics suitable for film formation. However, even if such a material is present, there is a problem that the selection of the substrate is limited.
【0004】前記(2)、(3)の薄膜形成方法は、い
ずれも成膜温度を低くするため、成膜時の薄膜形成物質
の拡散による移動が不十分となる。その結果、単結晶薄
膜を形成しようとしても多結晶化が生じたり、或るは単
結晶、多結晶の薄膜のいずれでも薄膜中の転位、空孔な
どの格子欠陥密度が高くなり、膜質劣化を招く。また、
層状成長による連続薄膜を形成するためには基板温度を
室温以下に下げる必要があるが、かかる場合には複雑か
つ高価な基板冷却機構が必要になるという問題を生じ
る。In both of the thin film forming methods (2) and (3), the film forming temperature is lowered, so that the movement of the thin film forming substance due to diffusion during film formation becomes insufficient. As a result, even if an attempt is made to form a single crystal thin film, polycrystallization occurs, or in some single crystal or polycrystal thin films, the density of dislocations, vacancies, etc. in the thin film becomes high, and the film quality deteriorates. Invite. Also,
In order to form a continuous thin film by layered growth, it is necessary to lower the substrate temperature to room temperature or lower, but in such a case, a complicated and expensive substrate cooling mechanism is required.
【0005】本発明は、上記従来の問題点を解決するた
めになされたもので、基板の材質に依存せず、層状成長
された連続した超薄膜またはこれらを積層した多層薄膜
を容易に形成し得る方法を提供しようとするものであ
る。The present invention has been made in order to solve the above-mentioned conventional problems, and can easily form a continuous ultra-thin film grown in layers or a multi-layered thin film obtained by laminating these, regardless of the material of the substrate. It is meant to provide a way to get.
【0006】[0006]
【課題を解決するための手段】本発明は、基板または前
記基板上の下地層の表面に薄膜を連続的に形成するに際
し、前記基板または下地層の表面に前記薄膜形成物質の
表面エネルギーよりも低い偏析形成物質を1/100原
子層以上の膜厚で成膜した後、薄膜形成物質を成膜する
と共に、前記各物質の成膜時の温度を下記式(1)、
(2)に示す下限温度(TLC)と上限温度(TUC)の範
囲に設定することを特徴とする連続薄膜の形成方法。 TLC=QS/{R・ln(DOS/a・r)}…(1) TUC=QV/{R・ln(DOV/a・r)}…(2) ただし、TLC;成膜温度の下限(°K) TUC;成膜温度の上限(°K) QS;偏析形成物質の薄膜形成物質上または偏析形成物
質上における表面拡散エネルギー(J/mol) QV;偏析形成物質の薄膜形成物質中における体積拡散
エネルギー(J/mol) R;気体定数(J/mol/°K) DOS;偏析形成物質の薄膜形成物質上または偏析形成物
質上における表面拡散係数の振動数項(m2/s) DOV;偏析形成物質の薄膜形成物質中の体積拡散の振動
数項(m2/s) a;偏析形成物質の格子定数(m) r;平均成膜速度(m/s)According to the present invention, when a thin film is continuously formed on the surface of a substrate or an underlayer on the substrate, the surface energy of the thin film-forming substance is higher than the surface energy of the thin film forming substance on the surface of the substrate or the underlayer. After depositing a low segregation-forming substance in a film thickness of 1/100 atomic layer or more, a thin-film forming substance is formed, and the temperature at the time of forming each of the substances is expressed by the following formula (1):
A method for forming a continuous thin film, comprising setting the temperature range to a lower limit temperature (TLC ) and an upper limit temperature (TUC ) shown in (2). TLC = QS / {R · ln (DOS /a·r)}...(1) TUC = QV / {R · ln (DOV / a · r)}… (2) However, TLC The lower limit of the film forming temperature (° K) TUC ; the upper limit of the film forming temperature (° K) QS ; the surface diffusion energy (J / mol) QV of the segregation forming substance on the thin film forming substance or the segregation forming substance; Volume diffusion energy (J / mol) R of the segregation-forming substance in the thin film-forming substance R; Gas constant (J / mol / ° K) DOS ; Surface diffusion coefficient of the segregation-forming substance on the thin-film forming substance or on the segregation-forming substance Frequency term (m2 / S) DOV ; Frequency term of volume diffusion of the segregation-forming substance in the thin-film forming substance (m2 / S) a: Lattice constant of segregation-forming substance (m) r; Average film formation rate (m / s)
【0007】前記偏析形成物質は、前記薄膜形成物質の
表面エネルギーよりも低いものであれば、いかなるもの
でもよく、特に制限されない。また、前記偏析形成物質
は前記基板との関係で表面エネルギーが前記基板と同等
かもしくはそれより低いことが望ましいが、前記薄膜形
成物質との関係でその表面エネルギーより低ければ、前
記基板との関係を満たさなくてもよい。The segregation-forming substance may be any substance as long as it is lower than the surface energy of the thin-film forming substance, and is not particularly limited. Further, it is desirable that the segregation-forming substance has a surface energy equal to or lower than that of the substrate in relation to the substrate, but if it is lower than the surface energy in relation to the thin-film forming substance, relation to the substrate. Does not have to be satisfied.
【0008】前記偏析形成物質の成膜時の膜厚を限定し
たのは、その膜厚を1/100原子層未満にすると、前
記薄膜の基板への成膜初期に前記基板の表面エネルギー
を十分に低くできなくなり、連続した薄膜を形成できな
くなるからである。ただし、前記偏析形成物質の膜厚を
厚くすると、薄膜の成膜後において前記偏析形成物質が
すべて薄膜表面に偏析せず、前記基板の界面に残存す
る。このため、特に前記偏析形成物質の成膜厚さを1/
100原子層〜2原子層の範囲にすると、薄膜の成膜時
に前記基板の界面に前記偏析形成物質が残存することな
く薄膜表面にすべて偏析することが可能となる。したが
って、超薄膜の積層の後にスパッタエッチング等のエッ
チングを施して表面に偏析層を除去することにより偏析
物質が存在しない薄膜形成物質のみからなる多層薄膜の
形成が可能となる。The film thickness of the segregation-forming substance is limited when the film is formed. When the film thickness is less than 1/100 atomic layer, the surface energy of the substrate is sufficiently high at the initial stage of film formation of the thin film on the substrate. This is because it cannot be made too low and a continuous thin film cannot be formed. However, when the film thickness of the segregation-forming substance is increased, the segregation-forming substance does not all segregate on the surface of the thin film after forming the thin film, and remains at the interface of the substrate. Therefore, in particular, the film thickness of the segregation-forming substance is 1 /
When it is in the range of 100 atomic layers to 2 atomic layers, it becomes possible to segregate all of the segregation on the surface of the thin film without leaving the segregation-forming substance at the interface of the substrate during film formation. Therefore, it is possible to form a multi-layered thin film composed only of a thin film forming substance free of segregated substances by removing the segregated layer on the surface by performing etching such as sputter etching after stacking ultrathin films.
【0009】前記偏析形成物質および薄膜形成物質の成
膜に際しての温度範囲を限定したのは、次のような理由
によるものである。前記成膜温度を下限温度(TLC)未
満にすると、前記偏析形成物質を基板表面に成膜し、薄
膜形成物質を成膜した後において、前記物質を薄膜表面
に偏析させることができなくなり、前記基板の表面エネ
ルギーを十分に低減できず、連続した超薄膜を形成でき
なくなる。このため、超薄膜を積層する際にも、その前
の超薄膜の表面エネルギーを十分に低減できず、連続し
た多層薄膜を形成できなくなる。一方、前記成膜温度が
上限温度(TUC)を越えると、薄膜形成物質の成膜後に
おいて前記偏析形成物質が前記薄膜中に拡散し、偏析状
態を維持できなくなって前記薄膜の表面エネルギーを低
減できなくなり、この後の薄膜形成物質の成膜に際して
島状化が生じて層状の連続した多層薄膜を形成できなく
なる。The reason why the temperature range during the film formation of the segregation forming substance and the thin film forming substance is limited is as follows. When the film forming temperature is lower than the lower limit temperature (TLC ), the segregation-forming substance cannot be segregated on the thin film surface after forming the thin film forming substance on the substrate surface. The surface energy of the substrate cannot be sufficiently reduced and a continuous ultra-thin film cannot be formed. Therefore, even when super-thin films are stacked, the surface energy of the super-thin film before that cannot be sufficiently reduced, and a continuous multi-layer thin film cannot be formed. On the other hand, when the film forming temperature exceeds the upper limit temperature (TUC ), the segregation forming substance diffuses into the thin film after forming the thin film forming substance, and the segregation state cannot be maintained, so that the surface energy of the thin film is reduced. It cannot be reduced, and island formation occurs during the subsequent film formation of the thin film forming substance, making it impossible to form a continuous multi-layered thin film in the form of a layer.
【0010】[0010]
【作用】本発明によれば、基板または基板上の下地層の
表面に薄膜形成物質の表面エネルギーより低い偏析形成
物質を前記式(1)、(2)に示す下限温度(TLC)と
上限温度(TUC)の範囲の温度で成膜することによっ
て、前記基板の表面に前記物質が偏析できるため、その
後の薄膜形成物質の成膜により島状化がなされることな
く、連続した(層状の)超薄膜を形成できる。According to the present invention, a segregation-forming substance having a surface energy lower than the surface energy of the thin-film forming substance on the surface of the substrate or the underlayer on the substrate is used as the lower limit temperature (TLC ) and the upper limit of the formulas (1) and (2). By forming the film at a temperature in the range of temperature (TUC ), the substance can be segregated on the surface of the substrate. Therefore, the film formation of the thin film forming substance thereafter does not cause island formation, and the film is continuously formed (layered). Ultra thin film can be formed.
【0011】また、前記超薄膜の成膜を前記下限温度
(TLC)と上限温度(TUC)の範囲の温度で続行する
と、前記偏析形成物質と前記超薄膜の表面エネルギーの
差を駆動力として前記薄膜表面に前記物質が偏析するた
め、薄膜の有効表面エネルギーを薄膜本来の表面エネル
ギーからそれより低い偏析物質の表面エネルギーに変化
させることができる。その結果、次の薄膜形成物質の成
膜に際して、島状成長が阻止され、層状成長が促進され
て連続した多層薄膜を形成できる。Further, when the film formation of the ultrathin film is continued at a temperature in the range of the lower limit temperature (TLC ) and the upper limit temperature (TUC ), the difference in the surface energy between the segregation-forming substance and the ultrathin film is a driving force. As the substance is segregated on the surface of the thin film, the effective surface energy of the thin film can be changed from the original surface energy of the thin film to a lower surface energy of the segregated substance. As a result, the island-shaped growth is prevented and the layer-shaped growth is promoted during the film formation of the next thin-film forming material, so that a continuous multilayer thin film can be formed.
【0012】[0012]
【実施例】以下、本発明の実施例を詳細に説明する。 実施例1EXAMPLES Examples of the present invention will be described in detail below. Example 1
【0013】まず、表面が(100)面のMgO単結晶
基板を清浄化した後、超高真空の真空チャンバ内にて前
記基板を室温に保持してFeを電子ビーム蒸着を行って
厚さ10AのFe下地層を成膜した。つづいて、同超高
真空の真空チャンバ内にて偏析形成物質であるAg(表
面エネルギー;1.302J/m2)を電子ビーム蒸着
して厚さ10Aの偏析層を成膜した後、前記基板を40
0℃に加熱し、薄膜形成物質であるFe(表面エネルギ
ー;2.939J/m2)を電子ビーム蒸着により1A
/sの速度で500A成膜した。 比較例1First, a MgO single crystal substrate having a (100) surface is cleaned, and then the substrate is kept at room temperature in an ultrahigh vacuum vacuum chamber to carry out electron beam evaporation of Fe to a thickness of 10 A. Fe underlayer was deposited. Subsequently, Ag (surface energy; 1.302 J / m2) which is a segregation-forming substance in the ultrahigh vacuum vacuum chamber. ) By electron beam evaporation to form a segregation layer having a thickness of 10 A,
After heating to 0 ° C., a thin film forming material Fe (surface energy; 2.939 J / m2 ) By electron beam evaporation
A film of 500 A was formed at a speed of / s. Comparative Example 1
【0014】実施例1と同様なFe下地層が形成された
MgO基板を400℃に加熱し、薄膜形成物質であるF
eを電子ビーム蒸着により1A/sの速度で500A厚
さに直接成膜した。A MgO substrate on which an Fe underlayer similar to that used in Example 1 was formed was heated to 400 ° C.
e was directly deposited by electron beam evaporation at a rate of 1 A / s to a thickness of 500 A.
【0015】実施例1及び比較例1のFe薄膜表面を、
2×104倍の走査電子顕微鏡により調べた。その結
果、実施例1で歯平坦で異物が観察されず、層状の連続
したFe薄膜が形成されていることが観察された。これ
に対し、比較例1のFe薄膜ではファセット状の島状構
造が観察された。The Fe thin film surfaces of Example 1 and Comparative Example 1 were
2 x 104 It was examined by a scanning electron microscope at a magnification of 2.times. As a result, in Example 1, it was observed that the teeth were flat and no foreign matter was observed, and a continuous layered Fe thin film was formed. On the other hand, in the Fe thin film of Comparative Example 1, a facet-shaped island structure was observed.
【0016】また、前記Ag、Feについて前記式
(1)、(2)に基づいて成膜時の下限温度(TLC)と
上限温度(TUC)を求めると、それぞれ−26.4℃、
563℃であり、前記成膜時の条件をTLCとTUCの範囲
内で行なうことによって、連続したFe薄膜を形成でき
ることがわかる。 実施例2Further, when the lower limit temperature (TLC ) and the upper limit temperature (TUC ) at the time of film formation are calculated for the Ag and Fe based on the equations (1) and (2), they are respectively −26.4 ° C. and
It is 563 ° C., and it can be seen that a continuous Fe thin film can be formed by carrying out the film formation conditions within the range of TLC and TUC . Example 2
【0017】表面が(111)面のSi単結晶基板を清
浄化した後、超高真空の真空チャンバ内にて前記基板を
150℃に加熱し、偏析形成物質であるPb(表面エネ
ルギー;0.534J/m2)を電子ビーム蒸着して厚
さ2Aの偏析層を成膜した後、前記基板を室温とし、薄
膜形成物質であるAg(表面エネルギー;1.302J
/m2)を電子ビーム蒸着により1A/sの速度で30
0A成膜した。 比較例2After cleaning a Si single crystal substrate having a (111) surface, the substrate is heated to 150 ° C. in a vacuum chamber of ultrahigh vacuum, and Pb (surface energy; 534 J / m2 ) By electron beam evaporation to form a segregation layer having a thickness of 2 A, the substrate is brought to room temperature, and Ag (surface energy; 1.302J) which is a thin film forming substance.
/ M2 ) By electron beam evaporation at a rate of 1 A / s for 30
A 0A film was formed. Comparative example 2
【0018】表面が(111)面のSi単結晶基板を清
浄化した後、超高真空の真空チャンバ内にて前記基板を
150℃に加熱し、薄膜形成物質であるAgを電子ビー
ム蒸着により1A/sの速度で300A厚さに直接成膜
した。After cleaning a Si single crystal substrate having a (111) surface, the substrate is heated to 150 ° C. in an ultrahigh vacuum vacuum chamber, and Ag, which is a thin film forming material, is deposited by electron beam evaporation to 1 A. The film was directly formed to a thickness of 300 A at a speed of / s.
【0019】実施例2及び比較例2の薄膜形成後のSi
基板を、前記真空チャンバに連結している分析室に搬送
し、オージェ電子分光器を用いて表面分析を行った。そ
の結果、実施例2ではPb及びAgが検出され、基板の
材料であるSiは検出されなかった。また、Arイオン
により薄膜表面を約1分間スパッタエッチングを行な
い、再度表面分析を行った。その結果、Agのみが検出
された。これにより、連続したAg薄膜が形成され、そ
の表面にPbが偏析していることがわかった。これに対
し、比較例2では薄膜形成物質であるAgのみならずS
iが検出された。これは、Ag薄膜が島状成長したた
め、一部露出している基板のSiがAg薄膜の隙間から
検出されたものと考えられる。Si after thin film formation in Example 2 and Comparative Example 2
The substrate was transferred to an analysis chamber connected to the vacuum chamber, and surface analysis was performed using an Auger electron spectrometer. As a result, in Example 2, Pb and Ag were detected, and Si as the material of the substrate was not detected. Further, the surface of the thin film was sputter-etched for about 1 minute by Ar ions, and the surface analysis was performed again. As a result, only Ag was detected. As a result, it was found that a continuous Ag thin film was formed and Pb was segregated on the surface thereof. On the other hand, in Comparative Example 2, not only Ag which is a thin film forming material but also S
i was detected. This is presumably because Si of the substrate, which is partially exposed, was detected from the gap of the Ag thin film because the Ag thin film grew in an island shape.
【0020】また、実施例2の薄膜の表面をArイオン
により基板表面近傍までスパッタエッチングを行ない、
再度表面分析を行った。その結果、Agのみが検出さ
れ、偏析形成物質であるPbは検出されなかった。これ
により、Pbを前記膜厚で基板表面に成膜することによ
り、PbのすべてがAg薄膜表面に順次偏析されて、基
板の界面に残存しないことがわかる。Further, the surface of the thin film of Example 2 is sputter-etched by Ar ions to the vicinity of the substrate surface,
The surface analysis was performed again. As a result, only Ag was detected and Pb, which is a segregation-forming substance, was not detected. This shows that by forming Pb on the surface of the substrate with the above film thickness, all of Pb is segregated sequentially on the surface of the Ag thin film and does not remain at the interface of the substrate.
【0021】更に、前記Pb、Agについて前記式
(1)、(2)に基づいて成膜時の下限温度(TLC)と
上限温度(TUC)を求めると、それぞれ−153℃、3
28℃であり、前記成膜時の条件をTLCとTUCの範囲内
で行なうことによって、連続したAg薄膜を形成できる
ことがわかる。Further, when the lower limit temperature (TLC ) and the upper limit temperature (TUC ) at the time of film formation are calculated for Pb and Ag based on the equations (1) and (2), they are −153 ° C. and 3 respectively.
It can be seen that a continuous Ag thin film can be formed at 28 ° C. and by performing the film formation condition within the range of TLC and TUC .
【0022】[0022]
【発明の効果】以上詳述した如く、本発明によれば基板
の材質に依存せず、単結晶、多結晶で膜質が良好な層状
の連続した超薄膜またはこれらを積層した多層薄膜を容
易に形成し得る方法を提供できる。As described in detail above, according to the present invention, it is possible to easily form a layered continuous ultrathin film which is a single crystal or polycrystal and has a good film quality, or a multilayer thin film in which these are laminated, irrespective of the material of the substrate. A method of forming the same can be provided.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 純三 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (72)発明者 米本 隆治 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (72)発明者 藤長 政志 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 (72)発明者 宮川 亜夫 東京都港区西新橋1丁目7番2号 株式会 社ライムズ内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Junzo Takahashi 1-7-2 Nishishimbashi, Minato-ku, Tokyo Inside Rhymes Co., Ltd. (72) Inventor Ryuji Yonemoto 1-7-shi Nishishinbashi, Minato-ku, Tokyo No. 2 In Limes Co., Ltd. (72) Inventor Masashi Fujinaga 1-7-2 Nishishinbashi, Minato-ku, Tokyo No. 2 In Limes Co., Ltd. (72) Inoue Miyagawa 1-7-2 Nishishinbashi, Minato-ku, Tokyo No. Stock Company Limes
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5161591AJPH07109032B2 (en) | 1991-03-15 | 1991-03-15 | Method of forming continuous thin film |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5161591AJPH07109032B2 (en) | 1991-03-15 | 1991-03-15 | Method of forming continuous thin film |
| Publication Number | Publication Date |
|---|---|
| JPH04285167A JPH04285167A (en) | 1992-10-09 |
| JPH07109032B2true JPH07109032B2 (en) | 1995-11-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5161591AExpired - LifetimeJPH07109032B2 (en) | 1991-03-15 | 1991-03-15 | Method of forming continuous thin film |
| Country | Link |
|---|---|
| JP (1) | JPH07109032B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6620723B1 (en) | 2000-06-27 | 2003-09-16 | Applied Materials, Inc. | Formation of boride barrier layers using chemisorption techniques |
| US6551929B1 (en) | 2000-06-28 | 2003-04-22 | Applied Materials, Inc. | Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques |
| US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
| US7405158B2 (en) | 2000-06-28 | 2008-07-29 | Applied Materials, Inc. | Methods for depositing tungsten layers employing atomic layer deposition techniques |
| US6765178B2 (en) | 2000-12-29 | 2004-07-20 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6998579B2 (en) | 2000-12-29 | 2006-02-14 | Applied Materials, Inc. | Chamber for uniform substrate heating |
| US6951804B2 (en) | 2001-02-02 | 2005-10-04 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
| US6878206B2 (en) | 2001-07-16 | 2005-04-12 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
| US6734020B2 (en) | 2001-03-07 | 2004-05-11 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
| US7211144B2 (en) | 2001-07-13 | 2007-05-01 | Applied Materials, Inc. | Pulsed nucleation deposition of tungsten layers |
| US7085616B2 (en) | 2001-07-27 | 2006-08-01 | Applied Materials, Inc. | Atomic layer deposition apparatus |
| US6936906B2 (en) | 2001-09-26 | 2005-08-30 | Applied Materials, Inc. | Integration of barrier layer and seed layer |
| US7049226B2 (en) | 2001-09-26 | 2006-05-23 | Applied Materials, Inc. | Integration of ALD tantalum nitride for copper metallization |
| US6916398B2 (en) | 2001-10-26 | 2005-07-12 | Applied Materials, Inc. | Gas delivery apparatus and method for atomic layer deposition |
| US6911391B2 (en) | 2002-01-26 | 2005-06-28 | Applied Materials, Inc. | Integration of titanium and titanium nitride layers |
| US6833161B2 (en) | 2002-02-26 | 2004-12-21 | Applied Materials, Inc. | Cyclical deposition of tungsten nitride for metal oxide gate electrode |
| US7439191B2 (en) | 2002-04-05 | 2008-10-21 | Applied Materials, Inc. | Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications |
| US7262133B2 (en) | 2003-01-07 | 2007-08-28 | Applied Materials, Inc. | Enhancement of copper line reliability using thin ALD tan film to cap the copper line |
| US7211508B2 (en) | 2003-06-18 | 2007-05-01 | Applied Materials, Inc. | Atomic layer deposition of tantalum based barrier materials |
| JP6748611B2 (en)* | 2017-07-12 | 2020-09-02 | 株式会社Joled | Organic EL device, organic EL display panel, and method for manufacturing organic EL display panel |
| Publication number | Publication date |
|---|---|
| JPH04285167A (en) | 1992-10-09 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH07109032B2 (en) | Method of forming continuous thin film | |
| US5968877A (en) | High Tc YBCO superconductor deposited on biaxially textured Ni substrate | |
| CN1185689C (en) | Semiconductor structure with crystallzed alkaline-earth metal silicon-nitrogen compound/oxide and silicon interface | |
| CN1167105C (en) | Method for fabricating semiconductor structures having stable crystalline interfaces with silicon | |
| US5846667A (en) | Process for growing a film epitaxially upon a MGO surface and structures formed with the process | |
| Molleja et al. | AlN thin films deposited by DC reactive magnetron sputtering: effect of oxygen on film growth | |
| KR102802746B1 (en) | A method for controlling defect density and texture in sputtered alxsc1-xn films | |
| JP2795002B2 (en) | Method for producing HgCdTe thin film | |
| EP0410868B1 (en) | Superconducting thin film of compound oxide and process for preparing the same | |
| Ghonge et al. | Microstructure of c‐axis oriented lead titanate thin films by pulsed laser ablation | |
| EP0412199B1 (en) | Single-crystal wafer having a superconductive ceramic thin film formed thereon | |
| JPS61274328A (en) | Epitaxial insulating film for semiconductor devices and its manufacturing method | |
| Gao et al. | Effects of substrate orientation and cooling rate on microstructure of PbTiO3 thin films grown by metal-organic chemical vapor deposition | |
| Blank et al. | A new approach in layer-by-layer growth of oxide materials by pulsed laser deposition | |
| JP3470068B2 (en) | Method of forming dielectric film | |
| US5565030A (en) | Method for the preparation of a superlattice multilayered film | |
| Hwang et al. | Epitaxial relations between in situ superconducting YBa2Cu3O 7− x thin films and BaTiO3/MgAl2O4/Si substrates | |
| US6998661B2 (en) | Integrated circuit structure including electrodes with PGO ferroelectric thin film thereon | |
| GB2314348A (en) | Thin film formation of a dielectric | |
| JP2590142B2 (en) | Superconductor | |
| WO2025071476A1 (en) | Stacked arrangement, micro-electromechanical device and methods of forming the same | |
| JP3485601B2 (en) | Manufacturing method of superconducting composite thin film | |
| JP2574768B2 (en) | Magneto-optical recording medium | |
| JPH10275896A (en) | Memory element | |
| JP2821885B2 (en) | Superconducting thin film forming method |