【0001】[0001]
【産業上の利用分野】本発明は、測位衛星を利用した3
次元位置測定に関するものである。BACKGROUND OF THE INVENTION The present invention uses a positioning satellite.
It relates to dimensional position measurement.
【0002】[0002]
【従来の技術】従来、測位衛星を利用する方法として
は、GPS(Global Positioning System)等の測位装置
を利用する方法がある。なお、GPS(Global Positio
ning System)による測位法は地球の周囲を包囲する状態
で複数の人工衛星を配置し、これらの電波を受信して測
位を行う。これらの衛星から常に電波が送信されている
ので、24時間測定が可能であること、測定すべき位置
が瞬時に判断できることなどの利点を有している。さら
にGPSは極超短波を使用するために電波の直進性が格
段に良く、安定した高精度の測位が確保されるという特
徴も備えている。そして、この利用方法としては、従
来、単独測位、ディファレンシャル測位、干渉測位など
がある。2. Description of the Related Art Conventionally, as a method of using a positioning satellite, there is a method of using a positioning device such as GPS (Global Positioning System). In addition, GPS (Global Positio
ning System) is a positioning method in which a plurality of artificial satellites are placed in a state of surrounding the earth, and these radio waves are received to perform positioning. Since radio waves are constantly transmitted from these satellites, there are advantages such as that 24-hour measurement is possible and the position to be measured can be instantly determined. Furthermore, since GPS uses ultra-short waves, the straightness of radio waves is remarkably good, and stable and highly accurate positioning is ensured. Conventionally, as a method of using this, there are single positioning, differential positioning, interference positioning, and the like.
【0003】<イ>単独測位 少なくとも4個のGPSの衛星から送信されてくる、C
/Aコードと呼ばれる情報を読み取ることにより、3次
元位置を得ることが出来る。この精度は、数10m乃至
100m程位となる。この装置は一台のGPS受信機で
絶対座標を得ることが出来る。<a> Independent positioning C transmitted from at least four GPS satellites
By reading the information called the / A code, the three-dimensional position can be obtained. This accuracy is on the order of several tens to 100 meters. This device can obtain absolute coordinates with one GPS receiver.
【0004】<ロ>ディファレンシャル測位 上記単独測位のGPS受信機を2台使用する。1台の受
信機は基準位置(既知の座標)に配置する。他の1台は
測定位置に配置して測定する。この方法によると、地球
の電離層や大気層による電波への影響をキャンセル出来
る。即ち、2台の受信機が同時に動作するので、両受信
機とも大気などから同一の影響を受けた電波を受信する
ことになる。したがって、一方の位置が分かっているの
で、他方の位置を知ることが可能となる。<B> Differential Positioning Two GPS receivers for the above independent positioning are used. One receiver is placed at the reference position (known coordinates). The other one is placed at the measurement position for measurement. According to this method, it is possible to cancel the influence of the ionosphere and atmospheric layer of the earth on radio waves. That is, since the two receivers operate at the same time, both receivers receive the radio waves that have the same influence from the atmosphere or the like. Therefore, since one position is known, the other position can be known.
【0005】<ハ>干渉測位 上記ディファレンシャル測位と同様に、2台のGPS受
信機を使用する。この測位方法は、GPS衛星から送信
されてくる電波の搬送波位相の差をとって相対距離を算
出する。そのため、上記2つの測位方法よりも精度が高
くなり、10mm以下の精度で測定ができる。<C> Interferential Positioning Similar to the differential positioning described above, two GPS receivers are used. In this positioning method, the relative distance is calculated by taking the difference between carrier wave phases of radio waves transmitted from GPS satellites. Therefore, the accuracy is higher than the above two positioning methods, and the measurement can be performed with an accuracy of 10 mm or less.
【0006】[0006]
【発明が解決しようとする問題点】しかし、従来の測位
方法では、次のような問題点がある。 <イ>単独測位は、装置が一台で済み、操作が簡単な
上、リアルタイムで算出が出来る利点があるものの、精
度が悪い欠点を有している。 <ロ>ディファレンシャレル測位は、単独測位より精度
が向上するが、既知座標点にある観測点と通信が確保出
来なければならない問題点を有している。 <ハ>干渉測位は、精度は高いが、データ処理が複雑で
あり、リアルタイムに結果を得ることは現状では難し
い。更に、ディファレンシャル測位と同様に通信が確保
出来なければならない問題を有している。However, the conventional positioning method has the following problems. <I> The single positioning has the advantage that only one device is required, the operation is simple, and the calculation can be performed in real time, but the accuracy is low. <B> The differential Charel positioning has higher accuracy than the single positioning, but has a problem that communication with an observation point at a known coordinate point must be secured. <C> Interferometric positioning has high accuracy, but data processing is complicated, and it is difficult to obtain results in real time at present. Furthermore, there is a problem that communication must be secured as in the case of differential positioning.
【0007】[0007]
【本発明の目的】本発明は、測位衛星用受信機を利用し
て、リアルタイムで広範囲な高精度位置計測を可能にす
る装置及び方法を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide an apparatus and a method for enabling a wide range of highly accurate position measurement in real time by using a positioning satellite receiver.
【0008】[0008]
【問題点を解決するための手段】本発明は、測位衛星か
らの測位電波を受信して移動体の位置を測定する3次元
位置測定装置において、測位電波を受信する移動測位衛
星用受信機と、3次元位置の変化を検出する慣性誘導用
ジャイロからの信号を利用してジャイロ変位量データを
作成するジャイロデータ処理装置と、測位電波を受信し
た既知座標基地から送信された補正データを受信する補
正データ受信機と、該移動測位衛星用受信機、該ジャイ
ロデータ処理装置及び該補正データ受信機からのデータ
を受信すると共に、前回測定した3次元座標データを記
憶する補正処理装置を有し、該移動測位衛星用受信機と
該補正データ受信機の受信が共に正常な時、該移動測位
衛星用受信機からの受信データと該補正データ受信機か
らの補正データを用いて移動体の3次元位置座標を求
め、該移動測位衛星用受信機と該補正データ受信機の受
信のいずれかが異常な時、該前回測定した3次元座標デ
ータと、該ジャイロ変位量データを用いて移動体の3次
元座標データを求め、今回測定した3次元座標データを
補正処理装置に記憶することを特徴とする3次元位置測
定装置、及び、測位衛星からの測位電波を受信して移動
体の位置を測定する3次元位置測定方法において、該移
動体に載置された移動測位衛星用受信機が測位電波を受
信し、ジャイロデータ処理装置が3次元位置の変化を検
出する慣性誘導用ジャイロからの信号を利用してジャイ
ロ変位量データを作成し、補正データ受信機が測位電波
を受信した既知座標基地から送信された補正データを受
信し、該移動測位衛星用受信機と該補正データ受信機の
受信が共に正常な時、該移動測位衛星用受信機からの受
信データと該補正データ受信機からの補正データを用い
て移動体の3次元位置座標を求め、該移動測位衛星用受
信機と該補正データ受信機の受信のいずれかが異常な
時、該前回測定した3次元座標データと、該ジャイロ変
位量データを用いて移動体の3次元座標データを求め、
今回測定した3次元座標データを補正処理装置に記憶す
ることを特徴とする3次元位置測定方法にある。The present invention provides a mobile positioning satellite receiver for receiving positioning radio waves in a three-dimensional position measuring apparatus for receiving positioning radio waves from positioning satellites to measure the position of a moving body. A gyro data processing device that creates gyro displacement amount data using a signal from an inertial guidance gyro that detects changes in three-dimensional position, and correction data that is transmitted from a known coordinate base that has received positioning radio waves. A correction data receiver, a mobile positioning satellite receiver, a gyro data processing device, and a correction processing device for receiving data from the correction data receiver and storing three-dimensional coordinate data measured last time, When the reception of the mobile positioning satellite receiver and the correction data receiver are both normal, the received data from the mobile positioning satellite receiver and the correction data from the correction data receiver are received. The three-dimensional position coordinates of the moving body are obtained, and when any of the reception by the mobile positioning satellite receiver and the correction data receiver is abnormal, the previously measured three-dimensional coordinate data and the gyro displacement amount data are displayed. The three-dimensional coordinate data of the moving body is obtained using the three-dimensional coordinate data measured this time, and the three-dimensional coordinate data measured this time is stored in the correction processing device. In a three-dimensional position measuring method for measuring a position of a body, a mobile positioning satellite receiver mounted on the moving body receives a positioning radio wave, and a gyro data processing device detects inertial changes. Gyro displacement amount data is created by using the signal from the gyro, the correction data receiver receives the correction data transmitted from the known coordinate base where the positioning radio wave was received, and the mobile positioning satellite receiver and the supplementary data are received. When the reception of both data receivers is normal, the three-dimensional position coordinates of the moving body are obtained using the received data from the mobile positioning satellite receiver and the correction data from the correction data receiver, When either the receiver or the reception of the correction data receiver is abnormal, the three-dimensional coordinate data of the moving body is obtained using the previously measured three-dimensional coordinate data and the gyro displacement amount data,
A three-dimensional position measuring method is characterized in that the three-dimensional coordinate data measured this time is stored in a correction processing device.
【0009】以下、図面を用いて本発明の実施例を説明
する。位置が分かっている陸上の基地局12に測位衛星
用受信機を配置し、船舶13上に測位衛星用受信機と慣
性誘導用ジャイロを配置する。そして、2台の測位衛星
用受信機によりディファレンシャル測位を行い、正確な
3次元座標を得る。しかし、電波障害等でディファレン
シャル測位が不可能な場合に、前回測定した3次元座標
と慣性誘導用ジャイロで求めた変位量データとを用いて
今回の3次元座標を求める。この方法を取ることによ
り、船舶上でリアルタイムに正確な3次元座標を得るこ
とが出来る。Embodiments of the present invention will be described below with reference to the drawings. A positioning satellite receiver is arranged in the land-based base station 12 whose position is known, and a positioning satellite receiver and an inertial guidance gyro are arranged on the ship 13. Then, differential positioning is performed by the two positioning satellite receivers to obtain accurate three-dimensional coordinates. However, when the differential positioning is impossible due to radio interference or the like, the present three-dimensional coordinates are obtained using the three-dimensional coordinates measured last time and the displacement amount data obtained by the inertial guidance gyro. By using this method, accurate three-dimensional coordinates can be obtained in real time on the ship.
【0010】<イ>固定測位衛星用受信機21 ディファレンシャル測位のために、地球周回軌道を巡回
する少なくとも4個の測位衛星(グロナス、GPSな
ど)11から送信される電波を受信する固定測位衛星用
受信機21を既知座標にある陸上基地局12に配置す
る。陸上基地局12と船舶13で同時に受信した測位電
波は、共に地球の電離層や大気層による同一の影響を受
けているので、これらの影響をキャンセルすることが出
来る。そのために、補正データ送信機22は、補正デー
タを無線通信で船舶13に送る。船舶13には補正デー
タ受信機32を備え、送られてきた補正データを受信す
る。この通信手段として、無線の他に有線通信などでも
よい。<B> Fixed Positioning Satellite Receiver 21 For fixed positioning satellites that receive radio waves transmitted from at least four positioning satellites (Glonas, GPS, etc.) 11 that orbit the earth for differential positioning. The receiver 21 is placed in the land base station 12 at known coordinates. Since the positioning radio waves received by the land base station 12 and the ship 13 at the same time are both affected by the same ionosphere and atmospheric layer of the earth, these effects can be canceled. Therefore, the correction data transmitter 22 sends the correction data to the ship 13 by wireless communication. The ship 13 is provided with a correction data receiver 32, and receives the correction data sent. As the communication means, wired communication may be used in addition to wireless communication.
【0011】<ロ>移動測位衛星用受信機31 移動測位衛星用受信機31は、船舶13に配置され、固
定測位衛星用受信機21と同様に少なくとも4個の測位
衛星11からの測位電波を受信し、固定測位衛星用受信
機21で求めたデータと共に、ディファレンシャル測位
により船舶13の3次元座標を算出する。<B> Mobile Positioning Satellite Receiver 31 The mobile positioning satellite receiver 31 is arranged on the ship 13 and receives positioning radio waves from at least four positioning satellites 11 like the fixed positioning satellite receiver 21. The three-dimensional coordinates of the ship 13 are calculated by differential positioning together with the data received and obtained by the fixed positioning satellite receiver 21.
【0012】<ハ>ジャイロ変位量データ処理装置35 慣性誘導用ジャイロ34は、航空機やロケットの姿勢制
御や誘導装置として広く利用されている。この構成は、
加速度を検出するための精密一軸ジャイロ3個及び演算
回路からなり、3次元の加速度を検出する。ジャイロ変
位量データ処理装置35は、慣性誘導用ジャイロからの
検出データを2回積分することで変位量、即ち、船舶の
移動距離を算出し、ジャイロ変位量データを作成する。
このジャイロ変位量データは、長時間にわたる変位量測
定で誤差の累積が起こり、精度が悪くなる。そこで、前
回の測定と今回の測定の間の変位量を測定し、メモリに
記憶しておく。そのために、長時間にわたる誤差の累積
は生じない。しかも、ジャイロ変位量データ処理装置3
5で得られた変位量データは、ディファレンシャル測位
が不可能な場合に使用される。<C> Gyro Displacement Data Processing Device 35 The inertial guidance gyro 34 is widely used as attitude control and guidance device for aircraft and rockets. This configuration
It consists of three precision uniaxial gyros for detecting acceleration and an arithmetic circuit to detect three-dimensional acceleration. The gyro displacement amount data processing device 35 calculates the displacement amount, that is, the moving distance of the ship by integrating the detection data from the inertial guidance gyro twice, and creates the gyro displacement amount data.
The accuracy of the gyro displacement amount data deteriorates due to the accumulation of errors in the displacement amount measurement over a long period of time. Therefore, the displacement amount between the previous measurement and the current measurement is measured and stored in the memory. Therefore, the error does not accumulate for a long time. Moreover, the gyro displacement amount data processing device 3
The displacement amount data obtained in 5 is used when differential positioning is impossible.
【0013】<ニ>補正処理装置33 補正処理装置33は、移動測位衛星用受信機31、ジャ
イロ変位量データ処理装置35と補正データ受信機32
からの各々のデータを受信している。補正処理装置33
は、移動測位衛星用受信機31と補正データ受信機32
からのデータに基づいて、ディファレンシャル測位法に
よって3次元座標の補正を行う。しかし、移動測位衛星
用受信機31による受信、又は、補正データ受信機32
の受信が異常の場合、ジャイロ変位量データと前回測定
した3次元座標を基に現在の3次元座標を算出する。即
ち、補正処理装置33にあるメモリには、前回測定され
た3次元座標が記憶されている。それゆえ、この前回の
3次元座標を読みだし、前回と今回の測定の間に移動し
た船舶13の座標変化、即ちジャイロ変位量データを加
算する。そして、今回の3次元座標をメモリに記憶す
る。<D> Correction Processing Device 33 The correction processing device 33 includes a mobile positioning satellite receiver 31, a gyro displacement amount data processing device 35, and a correction data receiver 32.
Receiving each data from. Correction processing device 33
Is a mobile positioning satellite receiver 31 and a correction data receiver 32.
The three-dimensional coordinates are corrected by the differential positioning method based on the data from. However, reception by the mobile positioning satellite receiver 31 or correction data receiver 32
Is abnormal, the current three-dimensional coordinates are calculated based on the gyro displacement amount data and the three-dimensional coordinates measured last time. That is, the memory in the correction processing device 33 stores the three-dimensional coordinates measured last time. Therefore, the previous three-dimensional coordinates are read out, and the coordinate change of the ship 13 moved between the previous measurement and the current measurement, that is, the gyro displacement amount data is added. Then, the current three-dimensional coordinates are stored in the memory.
【0014】以下に、座標位置を測定する手順を図2を
用いて説明する。まず、移動測位衛星用受信機31が測
位電波を受信する(S1)。補正処理装置33は、その
受信が正常か異常かを判断する(S2)。正常な場合、
補正処理装置33は、従来の航法メッセージの解読と3
次元座標の算出を行う(S3)。補正処理装置33は、
ディファッレンシャル測位のため、固定測位衛星用受信
機21から得られた補正データを補正データ受信機32
で受信する(S4)。この受信が正常か否かを判定する
(S5)。ここでも正常な場合、移動と固定測位衛星用
受信機31、21とから得た受信データを用いて、ディ
ファレンシャル測位が行われ、精度の高い3次元座標が
得られる(S6)。得られた3次元座標位置を表示器又
はプリンタに出力する(S7)。この3次元座標位置
は、次回の測定で使われる可能性があるので、補正処理
装置33内のメモリに書き込む(S8)。The procedure for measuring the coordinate position will be described below with reference to FIG. First, the mobile positioning satellite receiver 31 receives positioning radio waves (S1). The correction processing device 33 determines whether the reception is normal or abnormal (S2). If normal,
The correction processor 33 decodes the conventional navigation message and
The dimensional coordinates are calculated (S3). The correction processing device 33
For the differential positioning, the correction data obtained from the fixed positioning satellite receiver 21 is used as the correction data receiver 32.
To receive (S4). It is determined whether this reception is normal (S5). If it is normal also here, the differential positioning is performed using the reception data obtained from the mobile and fixed positioning satellite receivers 31 and 21, and highly accurate three-dimensional coordinates are obtained (S6). The obtained three-dimensional coordinate position is output to a display or printer (S7). Since this three-dimensional coordinate position may be used in the next measurement, it is written in the memory in the correction processing device 33 (S8).
【0015】移動測位衛星用受信機31による測位電波
の受信が異常の時(S2),又は、補正データ受信機3
2からの受信が異常の時(S5)、測位衛星からのデー
タは利用できないので、補正処理装置33内のメモリに
記憶されている前回の3次元座標を読み出す(S9)。
更に、ジャイロ変位量処理装置35から前回の測定と今
回の測定の間に生じたジャイロ変位量データを受信する
(S10)。このジャイロ変位量データと前回測定され
た3次元座標を加算して、今回の3次元座標を求める
(S6)。以降手続きは、正常な受信の場合と同様であ
る(S7,S8)。When the reception of the positioning radio wave by the mobile positioning satellite receiver 31 is abnormal (S2), or the correction data receiver 3 is received.
When the reception from 2 is abnormal (S5), since the data from the positioning satellite cannot be used, the previous three-dimensional coordinates stored in the memory in the correction processing device 33 are read (S9).
Furthermore, the gyro displacement amount data generated between the previous measurement and the current measurement is received from the gyro displacement amount processing device 35 (S10). This gyro displacement amount data and the previously measured three-dimensional coordinates are added to obtain the present three-dimensional coordinates (S6). The procedure thereafter is the same as in the case of normal reception (S7, S8).
【0016】本発明の測位方法による応用例として、海
上船舶の誘導、特に、混雑する海峡や港湾での船舶誘
導、接岸時の船舶の誘導、又は、陸上での乗用車、トラ
ック、建設等の重機械の移動の監視等の応用、又は、小
型飛行機により航法装置や、調査用気球の位置追跡シス
テムなどがある。As an application example of the positioning method of the present invention, guidance of a marine vessel, particularly, guidance of a vessel in a congested strait or port, guidance of a vessel when berthed, or heavy load such as a passenger car, a truck, or construction on land. There are applications such as monitoring of movement of machines, navigation devices by small airplanes, and position tracking systems for survey balloons.
【0017】[0017]
【発明の効果】本発明は、以上説明したように次のよう
な格別な効果を得ることができる。 <イ>ディファレンシャル測位の弱点であった通信上の
トラブルに影響されることなく、常に、リアルタイムに
高精度の3次元座標を得ることを可能とした。 <ロ>陸上、海上、航空などの場所に左右されずに、安
定して高精度の3次元位置座標を測定するが可能とな
る。 <ハ>構成がシンプルで、取扱いが簡単となる。As described above, the present invention can obtain the following special effects. <B> It is possible to always obtain highly accurate three-dimensional coordinates in real time without being affected by communication problems, which were the weak points of differential positioning. <B> It is possible to stably measure highly accurate three-dimensional position coordinates without being affected by locations such as land, sea, and aviation. <C> The structure is simple and easy to handle.
【図1】3次元座標測定の説明図FIG. 1 is an explanatory diagram of three-dimensional coordinate measurement.
【図2】3次元座標測定の流れ図[Fig. 2] Flow chart of three-dimensional coordinate measurement
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24398892AJPH0666920A (en) | 1992-08-21 | 1992-08-21 | Three-dimensional position measuring device and method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24398892AJPH0666920A (en) | 1992-08-21 | 1992-08-21 | Three-dimensional position measuring device and method |
| Publication Number | Publication Date |
|---|---|
| JPH0666920Atrue JPH0666920A (en) | 1994-03-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24398892APendingJPH0666920A (en) | 1992-08-21 | 1992-08-21 | Three-dimensional position measuring device and method |
| Country | Link |
|---|---|
| JP (1) | JPH0666920A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999020980A1 (en)* | 1997-10-20 | 1999-04-29 | Churyo Engineering Co., Ltd. | Position measurement method for mobile station |
| US8099873B2 (en) | 2002-04-22 | 2012-01-24 | Hitachi Koki Co., Ltd. | Electric-powered cutting machine with blade holding mechanism |
| US9875492B2 (en) | 2001-05-22 | 2018-01-23 | Dennis J. Dupray | Real estate transaction system |
| JP2019109078A (en)* | 2017-12-15 | 2019-07-04 | 株式会社デンソー | Position detector and position detecting program |
| US10641861B2 (en) | 2000-06-02 | 2020-05-05 | Dennis J. Dupray | Services and applications for a communications network |
| US10684350B2 (en) | 2000-06-02 | 2020-06-16 | Tracbeam Llc | Services and applications for a communications network |
| US10849089B2 (en) | 2010-08-23 | 2020-11-24 | Finetrak, Llc | Resource allocation according to geolocation of mobile communication units |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1999020980A1 (en)* | 1997-10-20 | 1999-04-29 | Churyo Engineering Co., Ltd. | Position measurement method for mobile station |
| US10641861B2 (en) | 2000-06-02 | 2020-05-05 | Dennis J. Dupray | Services and applications for a communications network |
| US10684350B2 (en) | 2000-06-02 | 2020-06-16 | Tracbeam Llc | Services and applications for a communications network |
| US11971491B2 (en) | 2000-06-02 | 2024-04-30 | Mobile Maven Llc | Services and applications for a communications network |
| US9875492B2 (en) | 2001-05-22 | 2018-01-23 | Dennis J. Dupray | Real estate transaction system |
| US11610241B2 (en) | 2001-05-22 | 2023-03-21 | Mobile Maven Llc | Real estate transaction system |
| US8099873B2 (en) | 2002-04-22 | 2012-01-24 | Hitachi Koki Co., Ltd. | Electric-powered cutting machine with blade holding mechanism |
| US10849089B2 (en) | 2010-08-23 | 2020-11-24 | Finetrak, Llc | Resource allocation according to geolocation of mobile communication units |
| US12156165B2 (en) | 2010-08-23 | 2024-11-26 | Finetrak, Llc | Resource allocation according to geolocation of mobile communication units related applications |
| JP2019109078A (en)* | 2017-12-15 | 2019-07-04 | 株式会社デンソー | Position detector and position detecting program |
| Publication | Publication Date | Title |
|---|---|---|
| US4881080A (en) | Apparatus for and a method of determining compass headings | |
| KR940009235B1 (en) | On-board vehicle position detector | |
| US5400254A (en) | Trace display apparatus for a navigation system | |
| US5617317A (en) | True north heading estimator utilizing GPS output information and inertial sensor system output information | |
| US4402049A (en) | Hybrid velocity derived heading reference system | |
| US5293318A (en) | Navigation system | |
| CN101382431B (en) | Positioning system and method thereof | |
| KR910004416B1 (en) | Navigator | |
| US4405986A (en) | GSP/Doppler sensor velocity derived attitude reference system | |
| JP2000502802A (en) | Improved vehicle navigation system and method utilizing GPS speed | |
| JPH04369492A (en) | Gps position measurement device | |
| CN103389092A (en) | Mooring airship attitude measurement device and method | |
| RU2277696C2 (en) | Integrated satellite inertial-navigational system | |
| JP2003532083A (en) | Method and apparatus for instantaneous heading measurement based on positioning signals by satellite | |
| US10948292B2 (en) | Sensor error calculating device, attitude angle calculating apparatus, method of calculating sensor error and method of calculating attitude angle | |
| JP3044357B2 (en) | Gyro device | |
| JPH0613977B2 (en) | Vehicle guidance device | |
| JPH08304092A (en) | Moving body position detection method and device | |
| JPH0666920A (en) | Three-dimensional position measuring device and method | |
| JP2783924B2 (en) | Vehicle position detection device | |
| JP2012202749A (en) | Orientation detection device | |
| KR20000033073A (en) | Automobile navigation device using by mobile communication device and gps receiver | |
| JPH03245075A (en) | Gyroscopic apparatus | |
| JP3251705B2 (en) | Vehicle position correction method | |
| JPH03245076A (en) | Gyroscopic apparatus |