【発明の詳細な説明】 産業上の利用分野 本発明は、種々の生体試料中の特定成分を迅速かつ容易
に定量することのできるバイオセンサに関するものであ
る。TECHNICAL FIELD The present invention relates to a biosensor capable of rapidly and easily quantifying a specific component in various biological samples.
従来例の構成とその問題点 近年、酵素の有する特異的触媒作用を利用した種々のバ
イオセンサが開発され、特に臨床検査分野への応用が試
みられている。検査項目及び検体数が増加している現
在、迅速に精度よく測定できるバイオセンサが望まれて
いる。Configuration of Conventional Example and Problems Thereof In recent years, various biosensors utilizing the specific catalytic action of an enzyme have been developed, and their application to the clinical examination field has been attempted. As the number of test items and the number of specimens increase, biosensors that can measure rapidly and accurately are desired.
グルコースセンサに例をとると、糖尿病の増加が激しい
今日、血液中の血糖値を測定し管理するには、以前のよ
うに血液を遠心分離し血漿にして測定するのでは非常に
時間がかかるため、全血で測定できるセンサが要求され
ている。簡易型としては、尿検査の時に使用されている
検査紙と同様に、スティック状の支持体に糖(グルコー
ス)にのみ反応する酵素および酵素反応時又は酵素反応
の生成物により変化する色素を含有する担体を設置した
ものがある。この担体の血液を添加し、一定時間後の色
素の変化を目又は光により測定する方式であるが、血液
中の色素による妨害が大きく精度は低い。Taking a glucose sensor as an example, in today's rapidly increasing diabetes, measuring and managing blood glucose levels in blood takes a very long time as in the case of centrifuging blood into plasma as before. There is a demand for a sensor that can measure whole blood. As a simple type, similar to the test paper used for urinalysis, a stick-shaped support contains an enzyme that reacts only with sugar (glucose) and a dye that changes during the enzyme reaction or the product of the enzyme reaction. Some have a carrier installed. Blood is added to this carrier, and the change in the dye after a certain period of time is measured by eye or light, but the dye in the blood causes a large interference and the accuracy is low.
そこで、第1図のような多層式の分析担体が開発されて
いる。透明な支持体1の上に試薬層2,展開層3,防水
層4,過層5が順に積層した構造となっている。血液
サンプルを上部から滴下すると、まず過層5により血
液中の赤血球,血小板などの固形成分が除去され、防水
層4にある小孔4aから展開層3へ均一に浸透し、試薬
層2において反応が進行する。反応終了後、透明な支持
体を通して矢印の方向から光をあて、分光分析により基
質濃度を測定する方式である。従来の簡易なスティック
状の担体にくらべ、複雑な構造であるが、血球除去など
により精度は向上した。しかし、血液の浸透および反応
に時間がかかるため、サンプルの乾燥を防ぐ防水層4が
必要となったり、反応を速めるために高温でインキュベ
ートする必要があり、装置および担体が複雑化するとい
う問題がある。Therefore, a multi-layer type analytical carrier as shown in FIG. 1 has been developed. It has a structure in which a reagent layer 2, a spreading layer 3, a waterproof layer 4, and an overlayer 5 are sequentially laminated on a transparent support 1. When the blood sample is dropped from the upper part, first, the solid components such as red blood cells and platelets in the blood are removed by the overlayer 5, and the solid components such as the small holes 4a in the waterproof layer 4 uniformly permeate into the spreading layer 3 and react in the reagent layer 2. Progresses. After completion of the reaction, the substrate concentration is measured by spectroscopic analysis by shining light through the transparent support in the direction of the arrow. The structure is more complicated than the conventional simple stick-shaped carrier, but the accuracy is improved by removing blood cells. However, since it takes time for blood to permeate and react, a waterproof layer 4 for preventing the sample from drying is required, and it is necessary to incubate at a high temperature in order to accelerate the reaction, which complicates the device and the carrier. is there.
最近、酵素反応と電極反応を結びつけて基質濃度を測定
するバイオセンサが開発されている。グルコースセンサ
に例をとると、第2図のように、グルコースオキシダー
ゼ固定化電極6を容器7に入れ、緩衝液8で満たし、ス
ターラ9で撹拌している中に試料液を添加する。グルコ
ースオキシダーゼ固定化電極6には定電圧が印加されて
おり、試料中のグルコースと反応して生成した過酸化水
素を検知して電流が流れ、グルコース濃度が測定でき
る。この方式を用いれば、血液中の色素などに妨害され
ず迅速に測定できる。しかし、撹拌装置が不可欠なため
泡が発生したり、液の乱れが精度に影響するという問題
があった。又希釈しているため、緩衝液の量や試料の添
加量に精度が要求され、操作が複雑化する不都合があっ
た。Recently, a biosensor has been developed that measures the substrate concentration by combining an enzyme reaction and an electrode reaction. Taking a glucose sensor as an example, as shown in FIG. 2, the glucose oxidase-immobilized electrode 6 is placed in a container 7, filled with a buffer solution 8, and a sample solution is added while stirring with a stirrer 9. A constant voltage is applied to the glucose oxidase-immobilized electrode 6, and hydrogen peroxide generated by reacting with glucose in the sample is detected, an electric current flows, and the glucose concentration can be measured. By using this method, the measurement can be performed quickly without being disturbed by the dye in the blood. However, since the stirring device is indispensable, there are problems that bubbles are generated and the turbulence of the liquid affects accuracy. Further, since it is diluted, precision is required for the amount of the buffer solution and the amount of the sample added, and the operation becomes complicated.
発明の目的 本発明は、上記の問題点を克服し、生体試料中の特定成
分を小型で簡易に、しかも安定に精度よく測定できるバ
イオセンサを得ることを目的とする。OBJECT OF THE INVENTION It is an object of the present invention to overcome the above-mentioned problems and to obtain a biosensor capable of measuring a specific component in a biological sample in a small size, easily and stably with high accuracy.
発明の構成 本発明のバイオセンサは、絶縁性の基板上に測定極と対
極および参照極からなる電極系を有し、前記電極系を酸
化還元酵素および酸化還元酵素と共役する酸化型色素を
含有する多孔体で被覆したことを特徴とする。The biosensor of the present invention has an electrode system consisting of a measurement electrode, a counter electrode, and a reference electrode on an insulating substrate, and contains an oxidoreductase and an oxidative dye that couples with the oxidoreductase. It is characterized in that it is coated with a porous body.
本発明のバイオセンサは、簡易に製造でき、かつこのバ
イオセンサを用いることにより、生体試料を適当量添加
するだけで、試料液の特定成分を高感度に精度よく測定
することができる。The biosensor of the present invention can be easily manufactured, and by using this biosensor, it is possible to measure a specific component of a sample solution with high sensitivity and accuracy by adding an appropriate amount of a biological sample.
実施例の説明 バイオセンサの1つとして、グルコースセンサを例に説
明する。酸化還元酵素としてグルコースオキシダーゼ
を、酸化還元酵素と共役する酸化型色素としてフェリシ
アン化カリウムを用い、電極系を構成する材料として安
定な白金を用いた。第3図にグルコースセンサの一実施
例の模式図を示す。塩化ビニル樹脂からなる絶縁性の基
板10に白金を埋めこみ測定極11と対極12および参
照極13とした。前記電極系を覆うようにナイロン不織
布14を設置した。このナイロン不織布14は、あらか
じめグルコースオキシダーゼとフェリシアン化カリウム
を溶解した液を含浸し、乾燥して作製したものである。Description of Examples A glucose sensor will be described as an example of a biosensor. Glucose oxidase was used as the oxidoreductase, potassium ferricyanide was used as the oxidative dye coupled with the oxidoreductase, and stable platinum was used as the material constituting the electrode system. FIG. 3 shows a schematic diagram of an embodiment of the glucose sensor. Platinum was embedded in an insulating substrate 10 made of vinyl chloride resin to form a measurement electrode 11, a counter electrode 12, and a reference electrode 13. A nylon nonwoven fabric 14 was placed so as to cover the electrode system. The nylon nonwoven fabric 14 is produced by impregnating a liquid in which glucose oxidase and potassium ferricyanide are dissolved in advance and drying.
このナイロン不織布14上にグルコース標準液を添加
し、充分浸透させた後、参照極13を基準に測定極11
の電圧を0〜+0.5Vの間で鋸歯状に0.1V/秒で
変化させた。添加されたグルコースがナイロン不織布1
4に担持されているグルコースオキシダーゼ15により
酸化される際、酵素−色素共役反応によりフェリシアン
化カリウム16が還元され、この反応によって生成され
るフェロシアン化カリウムを測定極11の電圧を掃引す
ることにより酸化し、その時酸化電流が流れる。この酸
化電流は色素の変化量に比例し、色素が充分に存在すれ
ば色素の変化量は基質濃度に対応するため、電流値を測
定すると基質であるグルコースの濃度が検知できる。得
られた電流値と添加したグルコース濃度は、500mg/
dlまで非常により直線性を示した。又ナイロン不織布1
4は測定のたびに交換したが、再現性も良好であった。
又、グルコース標準液の添加量を20〜140μlの範
囲で変化させたが、添加量に関係なく一定の値を示し
た。Glucose standard solution was added onto this nylon nonwoven fabric 14 and allowed to permeate sufficiently.
The voltage was varied between 0 and +0.5 V in a sawtooth manner at 0.1 V / sec. The added glucose is nylon nonwoven fabric 1
When oxidized by the glucose oxidase 15 carried on 4, the potassium-ferricyanide 16 is reduced by the enzyme-dye coupling reaction, and potassium ferrocyanide produced by this reaction is oxidized by sweeping the voltage of the measuring electrode 11, At that time, an oxidation current flows. This oxidation current is proportional to the amount of change in the dye, and if the dye is sufficiently present, the amount of change in the dye corresponds to the concentration of the substrate. Therefore, by measuring the current value, the concentration of glucose, which is the substrate, can be detected. The obtained current value and added glucose concentration were 500 mg /
It showed much more linearity up to dl. Nylon non-woven fabric 1
The sample No. 4 was replaced every time the measurement was made, and the reproducibility was also good.
Further, the addition amount of the glucose standard solution was changed in the range of 20 to 140 μl, but it showed a constant value regardless of the addition amount.
測定極及び対極からなる2電極系においても測定が可能
であるが、対極が少なくとも測定極の2倍以上の面積に
しないと安定した電流値が得られなかった。これは、基
準となる対極の電位が電流を流すことにより動いてしま
うからである。又、銀塩化銀を対極に用いると電位は安
定するが、製造する手間および組み込みの点で不便であ
った。It is possible to measure with a two-electrode system consisting of a measurement electrode and a counter electrode, but a stable current value could not be obtained unless the counter electrode had at least twice the area of the measurement electrode. This is because the potential of the counter electrode, which is the reference, moves when a current flows. When silver-silver chloride was used as the counter electrode, the potential was stable, but it was inconvenient in terms of manufacturing labor and incorporation.
参照極を設置して3電極系にすることによって電位が安
定し、測定極,対極,参照極が同面積でも精度よく測定
することが可能となった。これにより、小型化が可能と
なった。By installing a reference electrode and using a three-electrode system, the potential was stabilized, and it became possible to measure accurately even if the measurement electrode, counter electrode, and reference electrode had the same area. This made it possible to reduce the size.
第4図は塩化ビニル樹脂よりなる絶縁性基板17の上に
白金をスパッタ法あるいは蒸着法により測定極18と対
極19および参照極20を薄膜状に形成した例を示す。
スパッタすることにより電極面積を自由に調節でき、特
に同一の電極を大量に製造する時、効果が大であった。
この上に点線で示すように酵素と酸化型色素を保持した
ナイロン不織布をのせ試料を添加すると、第3図の電極
と同様に良い応答が得られたため、電極毎交換すること
も可能となった。FIG. 4 shows an example in which a measuring electrode 18, a counter electrode 19 and a reference electrode 20 are formed in a thin film on the insulating substrate 17 made of vinyl chloride resin by sputtering or vapor deposition.
The electrode area can be freely adjusted by sputtering, and the effect was great especially when a large number of identical electrodes were manufactured.
When a nylon non-woven fabric holding an enzyme and an oxidative dye was placed on this and a sample was added, a good response was obtained as with the electrode of FIG. 3, and it was possible to replace each electrode. .
酸化型色素としては、上記に用いたフェリシアン化カリ
ウムが安定に反応するので適しているが、P−ベンゾキ
ノンを使えば、反応速度が早いので高速化に適してい
る。又、2,6−ジクロロフェノールインドフェノー
ル,メチレンブルー,フェナジンメトサルフェート,β
−ナフトキノン4−スルホン酸カリウムなども使用でき
る。As the oxidative dye, potassium ferricyanide used above is suitable because it reacts stably, but when P-benzoquinone is used, the reaction speed is fast, which is suitable for increasing the speed. Also, 2,6-dichlorophenol indophenol, methylene blue, phenazine methosulfate, β
-Naphthoquinone 4-potassium sulfonate etc. can also be used.
酸化型色素および酵素を含む多孔体は、試料液をすみや
かに吸収して酵素反応をおこなわせることができるよう
に、親水性の多孔体膜であることが望ましい。たとえ
ば、ろ紙やパルプの不織布,ガラスの多孔体,セラミッ
ク多孔体などを用いると、試料液が均一にすばやく浸透
し再現性も良好であった。さらにナイロン不織布におい
て、界面活性剤で処理したものは、処理しなかったもの
よりすみやかに液が浸透し、再現性が向上した。The porous body containing the oxidative dye and the enzyme is preferably a hydrophilic porous body film so that the sample solution can be quickly absorbed to cause an enzymatic reaction. For example, when a filter paper or pulp non-woven fabric, a glass porous body, a ceramic porous body, or the like was used, the sample solution uniformly and quickly penetrated, and the reproducibility was good. Further, in the nylon nonwoven fabric, the one treated with the surfactant penetrated the liquid more quickly than the one not treated, and the reproducibility was improved.
酸化型色素と酵素を細かく粉砕後加圧して成形体として
電極上に設置することもできる。この加圧成形体に血液
を添加すると、すみやかに浸透し迅速に反応した。な
お、酸化型色素と酵素を加圧成形する際、SiO2のよう
な結着剤を少量混合すると、成形体の強度が増すので取
り扱いが簡易となる。結着剤としては、酵素反応及び電
極反応に無関係で親水性のものが適している。The oxidative dye and the enzyme may be finely crushed and then pressed to be placed on the electrode as a molded body. When blood was added to this pressure-molded body, it quickly permeated and reacted quickly. When the oxidizing dye and the enzyme are pressure-molded, if a small amount of a binder such as SiO2 is mixed, the strength of the molded body is increased, and the handling becomes easy. As the binder, a hydrophilic one which is unrelated to the enzyme reaction and the electrode reaction is suitable.
酸化型色素および酵素は、なるべく血液の液体成分に早
く溶ける状態におくことが望ましい。そこで、色素の溶
液をナイロン不織布に浸漬後、ドライヤーにより熱風乾
燥すると、真空乾燥したものより非常に細かい結晶とな
り、液体にとけやすくなった。又、色素の溶液を浸漬し
たナイロン不織布を、エタノールのような水にとける有
機溶媒中に浸漬後、真空乾燥すると、さらに細かい結晶
を担持することができた。酵素は熱などにより活性が失
活するので、浸漬後真空乾燥を行なった。It is desirable that the oxidized dye and the enzyme be dissolved in the liquid component of blood as soon as possible. Therefore, when the dye solution was dipped in a nylon non-woven fabric and dried with hot air using a dryer, it became much finer crystals than those dried in vacuum, and it became easy to melt into a liquid. Further, the nylon nonwoven fabric in which the dye solution was dipped was immersed in an organic solvent such as ethanol that dissolves in water, and then vacuum dried, whereby finer crystals could be supported. Since the enzyme loses its activity due to heat or the like, it was vacuum dried after immersion.
第5図は、第3図と同じ電極系の上に、グルコースオキ
シダーゼ15を含浸後真空乾燥により担持したナイロン
不織布21を、さらにその上部にフェリシアン化カリウ
ム16を含浸後エタノールに浸漬し乾燥して担持したナ
イロン不織布22を設置した例を示す。血液を添加する
と、フェリシアン化カリウムがすみやかに溶け、グルコ
ースオキシダーゼの層に浸透するため、反応時間が約1
分間と短く、再現性も良好であった。グルコースオキシ
ダーゼの層とフェリシアン化カリウムの層を逆に設置し
ても同様に迅速に反応した。FIG. 5 shows a nylon non-woven fabric 21 impregnated with glucose oxidase 15 and vacuum-dried on the same electrode system as in FIG. 3, and further impregnated with potassium ferricyanide 16 on the upper portion thereof and immersed in ethanol to dry and carry it. An example in which the above-mentioned nylon nonwoven fabric 22 is installed is shown. When blood is added, potassium ferricyanide is rapidly dissolved and penetrates into the glucose oxidase layer, resulting in a reaction time of about 1
The time was short and the reproducibility was good. Even when the glucose oxidase layer and the potassium ferricyanide layer were reversed, the reaction was similarly rapid.
本発明のセンサは、グルコースに限らず、アルコールセ
ンサや、鮮度に関係するイノシンセンサなど酸化還元酵
素の関与する系に用いることができる。酵素は固定して
担持してもよく、固定化することにより、酵素の活性を
長期間安定に保持することができる。The sensor of the present invention is not limited to glucose, but can be used in systems involving oxidoreductases such as alcohol sensors and inosine sensors related to freshness. The enzyme may be immobilized and supported, and by immobilizing it, the activity of the enzyme can be stably maintained for a long period of time.
発明の効果 測定極と対極および参照極からなる電極系に酸化還元酵
素と酸化還元酵素と共役する色素を含んだ親水性の多孔
体を設置し、直接試料液を添加して測定することによ
り、微量の試料液を感度よく測定できるようになった。Effects of the invention A hydrophilic porous body containing a dye that is conjugated with a redox enzyme and a redox enzyme is installed in an electrode system consisting of a measurement electrode, a counter electrode, and a reference electrode, and by directly adding a sample solution for measurement, It has become possible to measure a small amount of sample liquid with high sensitivity.
第1図及び第2図は従来のグルコースセンサの構成を示
す略図、第3図は本発明の一実施例のグルコースセンサ
の断面模式図、第4図は他の例の要部の平面図、第5図
はさらに他の例の断面模式図である。 10……基板、11……測定極、12……対極、13…
…参照極、14……多孔体、15……酵素、16……色
素。1 and 2 are schematic diagrams showing a configuration of a conventional glucose sensor, FIG. 3 is a schematic sectional view of a glucose sensor of one embodiment of the present invention, and FIG. 4 is a plan view of a main part of another example, FIG. 5 is a schematic sectional view of still another example. 10 ... Substrate, 11 ... Measuring electrode, 12 ... Counter electrode, 13 ...
... reference electrode, 14 ... porous body, 15 ... enzyme, 16 ... dye.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59030544AJPH0640086B2 (en) | 1984-02-20 | 1984-02-20 | Biosensor |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59030544AJPH0640086B2 (en) | 1984-02-20 | 1984-02-20 | Biosensor |
Publication Number | Publication Date |
---|---|
JPS60173459A JPS60173459A (en) | 1985-09-06 |
JPH0640086B2true JPH0640086B2 (en) | 1994-05-25 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59030544AExpired - LifetimeJPH0640086B2 (en) | 1984-02-20 | 1984-02-20 | Biosensor |
Country | Link |
---|---|
JP (1) | JPH0640086B2 (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8523631D0 (en)* | 1985-09-25 | 1985-10-30 | Pena Ltd Paul De | Bioelectrochemical cell |
JPH0654304B2 (en)* | 1986-08-28 | 1994-07-20 | 松下電器産業株式会社 | Biosensor |
JP2574347B2 (en)* | 1987-12-15 | 1997-01-22 | 松下電器産業株式会社 | Biosensor |
USRE36268E (en)* | 1988-03-15 | 1999-08-17 | Boehringer Mannheim Corporation | Method and apparatus for amperometric diagnostic analysis |
JPH02110362A (en)* | 1988-10-20 | 1990-04-23 | Omron Tateisi Electron Co | Enzyme electrode |
WO1991009139A1 (en)* | 1989-12-15 | 1991-06-27 | Boehringer Mannheim Corporation | Redox mediator reagent and biosensor |
US5508171A (en)* | 1989-12-15 | 1996-04-16 | Boehringer Mannheim Corporation | Assay method with enzyme electrode system |
JP2702818B2 (en)* | 1991-03-26 | 1998-01-26 | 松下電器産業株式会社 | Biosensor and manufacturing method thereof |
US5997817A (en) | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6591125B1 (en) | 2000-06-27 | 2003-07-08 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6338790B1 (en) | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6572745B2 (en) | 2001-03-23 | 2003-06-03 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
EP1578262A4 (en) | 2002-12-31 | 2007-12-05 | Therasense Inc | Continuous glucose monitoring system and methods of use |
USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
EP1718198A4 (en) | 2004-02-17 | 2008-06-04 | Therasense Inc | Method and system for providing data communication in continuous glucose monitoring and management system |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US20100213057A1 (en) | 2009-02-26 | 2010-08-26 | Benjamin Feldman | Self-Powered Analyte Sensor |
EP2473098A4 (en) | 2009-08-31 | 2014-04-09 | Abbott Diabetes Care Inc | Analyte signal processing device and methods |
JP6783109B2 (en)* | 2015-10-15 | 2020-11-11 | アークレイ株式会社 | Biosensor |
US12239463B2 (en) | 2020-08-31 | 2025-03-04 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH043500A (en)* | 1990-04-19 | 1992-01-08 | Mitsubishi Electric Corp | Suction nozzle for electronic-component mounting machine |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH043500A (en)* | 1990-04-19 | 1992-01-08 | Mitsubishi Electric Corp | Suction nozzle for electronic-component mounting machine |
Publication number | Publication date |
---|---|
JPS60173459A (en) | 1985-09-06 |
Publication | Publication Date | Title |
---|---|---|
JPH0640086B2 (en) | Biosensor | |
US5171689A (en) | Solid state bio-sensor | |
US4897173A (en) | Biosensor and method for making the same | |
EP0136362B1 (en) | Biosensor | |
US5185256A (en) | Method for making a biosensor | |
EP0359831B2 (en) | Biosensor and process for its production | |
Stradiotto et al. | Electrochemical sensors: A powerful tool in analytical chemistry | |
US5229282A (en) | Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system | |
JPH0452893B2 (en) | ||
JPH0524453B2 (en) | ||
JPH0430543B2 (en) | ||
JPS63128252A (en) | Biosensor | |
JPH046907B2 (en) | ||
JPH04221B2 (en) | ||
JPH043500B2 (en) | ||
JP2590803B2 (en) | Biosensor | |
JPH01134246A (en) | Biosensor | |
JPH058776B2 (en) | ||
JP2543057B2 (en) | Biosensor manufacturing method and biosensor electrode plate manufacturing method | |
JPS63317097A (en) | Biosensor | |
JPH0481141B2 (en) | ||
JPH0640087B2 (en) | Biosensor | |
JP2590802B2 (en) | Biosensor | |
JPS63317095A (en) | Biosensor | |
JPS63139244A (en) | Glucose sensor |
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |