Movatterモバイル変換


[0]ホーム

URL:


JPH06331944A - Nonlinear optical element - Google Patents

Nonlinear optical element

Info

Publication number
JPH06331944A
JPH06331944AJP5123693AJP12369393AJPH06331944AJP H06331944 AJPH06331944 AJP H06331944AJP 5123693 AJP5123693 AJP 5123693AJP 12369393 AJP12369393 AJP 12369393AJP H06331944 AJPH06331944 AJP H06331944A
Authority
JP
Japan
Prior art keywords
light
layer
carriers
optical element
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123693A
Other languages
Japanese (ja)
Inventor
Shigeru Nakamura
滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC CorpfiledCriticalNEC Corp
Priority to JP5123693ApriorityCriticalpatent/JPH06331944A/en
Publication of JPH06331944ApublicationCriticalpatent/JPH06331944A/en
Pendinglegal-statusCriticalCurrent

Links

Abstract

PURPOSE:To suppress the degradation in an impressed electrostatic field by electric field screening and to eliminate the factors for hindering the high-speed operation of the nonlinear optical element which executes high-speed light-light control utilizing the band filling effect by absorption of control light and the carrier sweep by impression of the electrostatic field by not only providing the nonlinear optical element with a large element capacity but also decreasing the quantity of electricity for the sweep. CONSTITUTION:A reverse bias voltage is applied between electrodes 1 and 11 and the electrostatic field is impressed to a GaAs core layer 5. Regions 11 introduced with many non-light emitting centers are formed on both sides of stripes. Control light pulses are absorbed by the GaAs core layer 5, by which carriers are formed and a nonlinear refractive index change is generated. The carriers formed in the stripe loading parts of the core among these carriers are swept and the nonlinear refractive index change is restored. The signal light propagating in the optical waveguide region of the element is subjected to phase modulation by this nonlinear refractive index change. On the other hand, the carriers formed are mostly dissipated by non-light emission recoupling and are not swept.

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学素子に関
し、特に光ファイバ通信や光情報処理等の分野で光制御
素子として用いられる非線形光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear optical element, and more particularly to a nonlinear optical element used as an optical control element in the fields of optical fiber communication and optical information processing.

【0002】[0002]

【従来の技術】光ファイバ通信システムや光情報処理シ
ステムの高速化には、光制御を行う素子の動作の高速化
が必要不可欠である。従来、光制御素子においては、電
気信号により光制御を行う方法(電気−光制御)がとら
れてきたが、近年、より高速の動作が期待される方法と
して、光により光制御を行う方法(光−光制御)が注目
されている。
2. Description of the Related Art In order to increase the speed of an optical fiber communication system or an optical information processing system, it is necessary to increase the speed of the operation of an element for optical control. Conventionally, in a light control element, a method of performing light control by an electric signal (electric-light control) has been taken, but in recent years, as a method expected to operate at a higher speed, a method of performing light control by light ( Light-light control) is drawing attention.

【0003】例えば、特願平4−341863号明細書
には、光吸収により非線形屈折率変化を示す光導波部に
静電界を印加する手段を有する非線形光学素子が記載さ
れている。この素子の光導波部では、制御光が吸収さ
れ、励起されたキャリアによるバンドフィリング効果に
よって非線形屈折率変化が引き起こされる。この非線形
屈折率変化により、光導波部を伝搬する信号光が位相変
調される。バンドフィリング効果による非線形屈折率変
化の場合、その発現に要する時間は非常に短い(1ps
以下)が、消失に要する時間は、励起されたキャリアの
寿命(通常1ns以上)によって定まり、素子の高速動
作を妨げる。そこで、特願平4−341863号明細書
に記載の素子では、光導波部に静電界を印加し励起され
たキャリアを光導波部外に掃引することにより、非線形
屈折率変化の回復を高速化している。また、キャリアが
掃引される際、空間的に分離された電子と正孔によって
印加静電界が多少なりともスクリーニングされ、電界強
度が低下する。しかし、素子の動作速度は、光導波部内
に励起されたキャリアが静電界によって光導波部外へ走
行するのに要する時間で律速される。したがって、印加
静電界強度の低下は、キャリアの走行速度を低下させ、
素子の高速動作を妨げる。そこで、特願平4−3418
63号明細書に記載の素子では、電界印加に用いる電極
の面積を大きくし素子の電気容量を大きくすることによ
って、電界スクリーニングによる印加静電界強度の低下
を抑制している。
For example, Japanese Patent Application No. 4-341863 describes a non-linear optical element having means for applying an electrostatic field to an optical waveguide section which exhibits a non-linear refractive index change due to light absorption. In the optical waveguide portion of this element, the control light is absorbed, and the nonlinear refractive index change is caused by the band-filling effect of the excited carriers. Due to this change in the nonlinear refractive index, the signal light propagating through the optical waveguide is phase-modulated. In the case of a nonlinear refractive index change due to the band-filling effect, the time required for its development is very short (1 ps
However, the time required for disappearance is determined by the lifetime of the excited carriers (usually 1 ns or more), which hinders high-speed operation of the device. Therefore, in the element described in Japanese Patent Application No. 4-341863, the recovery of the nonlinear refractive index change is speeded up by applying an electrostatic field to the optical waveguide and sweeping the excited carriers to the outside of the optical waveguide. ing. Further, when the carriers are swept, the electrostatic field to be applied is screened to some extent by the spatially separated electrons and holes, and the electric field strength is reduced. However, the operating speed of the device is limited by the time required for carriers excited inside the optical waveguide to travel outside the optical waveguide due to the electrostatic field. Therefore, the decrease in the applied electrostatic field strength reduces the carrier traveling speed,
Prevents high-speed operation of the device. Therefore, Japanese Patent Application No. 4-3418
In the device described in Japanese Patent No. 63, the area of an electrode used for applying an electric field is increased and the electric capacity of the device is increased to suppress a decrease in the applied electrostatic field strength due to electric field screening.

【0004】図2に、上記の特徴を有する非線形光学素
子の一例を示す。Siを1018cm-3ドーピングしたG
aAs基板2上に、Siを1018cm-3ドーピングした
厚さ2μmのAlxGa1-xAs(x=0.07)下部
クラッド層3、ノンドーピングで厚さ0.2μmのAl
xGa1-xAs(x=0.07)下部クラッド層4、ノ
ンドーピングで厚さ0.5μmのGaAsコア層5、ノ
ンドーピングで厚さ0.2μmのAlxGa1-xAs
(x=0.07)上部クラッド層6、Beを1018cm
-3ドーピングした厚さ0.6μmのAlxGa1-xAs
(x=0.07)上部クラッド層7、Beを1018cm
-3ドーピングした厚さ0.2μmのGaAsキャップ層
8が順に積層されている。さらに、エッチングプロセス
により高さ0.9μm、幅4μmのストライプが形成さ
れている。素子表面にはSiO2絶縁膜9と電極10が
積層され、電極10はGaAsキャップ層8にオーミッ
ク接触している。また、基板2の裏面にもオーミック電
極1が形成されている。
FIG. 2 shows an example of a nonlinear optical element having the above characteristics. G doped with 1018 cm-3 of Si
An Alx Ga1-x As (x = 0.07) lower clad layer 3 having a thickness of 2 μm doped with 1018 cm−3 of Si on an aAs substrate 2 and an undoped Al layer having a thickness of 0.2 μm.
x Ga1-x As (x = 0.07) lower cladding layer 4, non-doped 0.5 μm thick GaAs core layer 5, non-doped 0.2 μm thick Alx Ga1-x As
(X = 0.07) Upper cladding layer 6, Be 1018 cm
-3 Doped Alx Ga1-x As with a thickness of 0.6 μm
(X = 0.07) Upper clad layer 7, Be 1018 cm
A −3 doped GaAs cap layer 8 having a thickness of 0.2 μm is sequentially stacked. Furthermore, stripes having a height of 0.9 μm and a width of 4 μm are formed by the etching process. A SiO2 insulating film 9 and an electrode 10 are laminated on the device surface, and the electrode 10 is in ohmic contact with the GaAs cap layer 8. The ohmic electrode 1 is also formed on the back surface of the substrate 2.

【0005】図2の非線形光学素子では、制御光パルス
がGaAsコア層5に吸収されることによって非線形屈
折率変化が起こる。電極1,10間に逆バイアス電圧を
印加することによって、GaAsコア層5には静電界が
印加され、電子および正孔はそれぞれ下部クラッドと上
部クラッドへ掃引される。この結果、非線形屈折率変化
は消失する。信号光は、この非線形屈折率変化によって
位相変調される。この素子では、非線形屈折率変化の回
復時間はキャリア寿命で制限されず、高速の光制御が実
現される。
In the non-linear optical element shown in FIG. 2, the non-linear refractive index change occurs due to the absorption of the control light pulse by the GaAs core layer 5. By applying a reverse bias voltage between the electrodes 1 and 10, an electrostatic field is applied to the GaAs core layer 5, and electrons and holes are swept to the lower clad and the upper clad, respectively. As a result, the nonlinear refractive index change disappears. The signal light is phase-modulated by this nonlinear refractive index change. In this element, the recovery time of the change in nonlinear refractive index is not limited by the carrier life, and high-speed optical control is realized.

【0006】[0006]

【発明が解決しようとする課題】図2に示した素子で
は、上述のように、光導波部内に励起されたキャリアが
光導波部外へ走行するのに要する時間で動作速度が律速
される。そこで、動作速度の高速化のためには、電界ス
クリーニングによって生じる印加静電界強度の低下を抑
制することが必要である。
In the device shown in FIG. 2, the operating speed is limited by the time required for the carriers excited in the optical waveguide to travel outside the optical waveguide, as described above. Therefore, in order to increase the operation speed, it is necessary to suppress the decrease in the applied electrostatic field strength caused by the electric field screening.

【0007】この印加静電界強度の低下は、素子の電気
容量を大きくすることと掃引される電気量を小さくする
ことによって抑制することが可能である。その理由は、
簡単化すれば以下のように説明される。素子の電気容量
をC、1個の制御光パルスで生成され掃引される電気量
をΔQ、これによる電圧低下をΔVとすると、ΔV=Δ
Q/Cとなる。したがって、Cを大きくするか、または
ΔQを小さくすることによってΔVを小さくすることが
可能となる。
This decrease in the applied electrostatic field strength can be suppressed by increasing the electric capacity of the element and decreasing the amount of electricity swept. The reason is,
If it simplifies, it will be described as follows. If the electric capacity of the device is C, the electric quantity generated and swept by one control light pulse is ΔQ, and the voltage drop due to this is ΔV, then ΔV = Δ
It becomes Q / C. Therefore, it is possible to reduce ΔV by increasing C or decreasing ΔQ.

【0008】図2に示した素子では、電極1,10は大
きな面積で対向しているため、電気容量も大きい。しか
し、この素子では、ストライプ装荷部以外のコア層で制
御光吸収により生じたキャリアも掃引される。すなわ
ち、信号光の位相変調に寄与しない余分なキャリアも掃
引されることになる。これは、キャリア掃引の際の印加
静電界強度の低下を抑制する上で望ましくない。
In the device shown in FIG. 2, since the electrodes 1 and 10 face each other with a large area, the electric capacity is large. However, in this device, carriers generated by absorption of control light in the core layer other than the stripe loading portion are also swept. That is, extra carriers that do not contribute to the phase modulation of the signal light are also swept. This is not desirable in suppressing the decrease in the applied electrostatic field strength during the carrier sweep.

【0009】本発明の目的は、大きな素子容量を持つだ
けでなく、制御光吸収により生成されたキャリアのうち
信号光制御に寄与する分のみを掃引する構造とすること
によって、掃引される電気量を低減し、制御光吸収によ
る印加静電界強度の低下を抑え、これによって高速に動
作する非線形光学素子を提供することにある。
An object of the present invention is to have a structure in which not only a large element capacitance but also a portion of carriers generated by absorption of control light that contributes to signal light control are swept, so that the amount of electricity to be swept is swept. To suppress a decrease in applied electrostatic field intensity due to absorption of control light, thereby providing a nonlinear optical element that operates at high speed.

【0010】[0010]

【課題を解決するための手段】本発明は、光吸収により
非線形屈折率変化を生ずる半導体材料で成るコア層と、
このコア層に接合するクラッド層とで、層に垂直な方向
に光閉じ込め構造が形成され、層に平行な方向にも光閉
じ込め構造を実現する手段と、光導波路の光導波領域に
静電界を印加する手段とを有する非線形光学素子におい
て、コア層の光導波領域以外の部分に非発光中心が多数
導入された領域を有することを特徴とする。
DISCLOSURE OF THE INVENTION The present invention comprises a core layer made of a semiconductor material which causes a nonlinear refractive index change by light absorption,
A light confinement structure is formed in the direction perpendicular to the layer with the clad layer joined to this core layer, and a means for realizing the light confinement structure in the direction parallel to the layer and an electrostatic field in the optical waveguide region of the optical waveguide. A non-linear optical element having a means for applying is characterized by having a region in which a large number of non-radiative centers are introduced in a portion other than the optical waveguide region of the core layer.

【0011】[0011]

【実施例】図1は、本発明による非線形光学素子の一実
施例の構造を示す断面図である。Siを1018cm-3
ーピングしたGaAs基板2上に、Siを1018cm-3
ドーピングした厚さ2μmのAlxGa1-xAs(x=
0.07)下部クラッド層3、ノンドーピングで厚さ
0.2μmのAlxGa1-xAs(x=0.07)下部
クラッド層4、ノンドーピングで厚さ0.5μmのGa
Asコア層5、ノンドーピングで厚さ0.2μmのAl
xGa1-xAs(x=0.07)上部クラッド層6、B
eを1018cm-3ドーピングした厚さ0.6μmのAl
xGa1-xAs(x=0.07)上部クラッド層7、B
eを1018cm-3ドーピングした厚さ0.2μmのGa
Asキャップ層8が順に積層されている。さらに、エッ
チングプロセスにより高さ0.9μm、幅4μmのスト
ライプが形成されている。ストライプの両側には、プロ
トン注入により非発光中心が多数導入された領域11が
形成されている。素子表面にはSiO2絶縁膜9と電極
10が積層され、電極10はGaAsキャップ層8にオ
ーミック接触している。また、基板2の裏面にもオーミ
ック電極1が形成されている。
1 is a sectional view showing the structure of an embodiment of a nonlinear optical element according to the present invention. Si on top 1018 cm-3 doped GaAs substrate 2, the Si 1018 cm-3
Doped Alx Ga1-x As (x =
0.07) Lower cladding layer 3, undoped and 0.2 μm thick Alx Ga1-x As (x = 0.07) Lower cladding layer 4, undoped and 0.5 μm thick Ga
As core layer 5, undoped and 0.2 μm thick Al
x Ga1-x As (x = 0.07) Upper cladding layer 6, B
Al with a thickness of 0.6 μm doped with 1018 cm−3 of e
x Ga1-x As (x = 0.07) Upper cladding layer 7, B
Ga having a thickness of 0.2 μm doped with 1018 cm−3 of e
The As cap layer 8 is sequentially stacked. Furthermore, stripes having a height of 0.9 μm and a width of 4 μm are formed by the etching process. Regions 11 in which a large number of non-radiative centers are introduced by proton injection are formed on both sides of the stripe. A SiO2 insulating film 9 and an electrode 10 are laminated on the device surface, and the electrode 10 is in ohmic contact with the GaAs cap layer 8. The ohmic electrode 1 is also formed on the back surface of the substrate 2.

【0012】この素子に、GaAsコア層5を透過する
波長に設定された信号光を伝搬させる。ここで、GaA
sコア層5で吸収される波長に設定された制御光パルス
を入射すると、キャリアが生成される。キャリアの生成
は主にコア層のストライプ装荷部、すなわち光導波領域
で起こるが、制御光をこの領域だけに結合させることは
困難であるので、これ以外の領域でもキャリアが生成さ
れる。光導波領域では、キャリアの生成により非線形屈
折率変化が生じ、さらに、これらのキャリアが印加静電
界によって掃引されることにより非線形屈折率変化が回
復する。素子を伝搬する信号光は、この光導波領域での
高速の非線形屈折率変化により位相変調される。
Signal light having a wavelength that is transmitted through the GaAs core layer 5 is propagated through this device. Where GaA
When a control light pulse set to a wavelength absorbed by the s-core layer 5 is incident, carriers are generated. The generation of carriers mainly occurs in the stripe loading portion of the core layer, that is, the optical waveguide region, but it is difficult to couple the control light only to this region, so carriers are also generated in other regions. In the optical waveguide region, the nonlinear refractive index changes due to the generation of carriers, and these carriers are swept by the applied electrostatic field to recover the nonlinear refractive index change. The signal light propagating through the element is phase-modulated by the fast nonlinear refractive index change in the optical waveguide region.

【0013】他方、コア層の光導波部以外の領域には、
非発光中心が多数導入されており、この領域で生成され
たキャリアは大部分が非発光再結合によって消滅する。
非発光再結合の寿命は、1psのオーダーにまで短くす
ることが可能であり、キャリアが掃引されないうちに非
発光再結合によって消滅させることが可能となる。これ
によって、掃引される電気量は必要最小限まで低減さ
れ、電界スクリーニングによる印加静電界の低下が抑制
される。
On the other hand, in the area other than the optical waveguide portion of the core layer,
Many non-radiative centers are introduced, and most of the carriers generated in this region disappear by non-radiative recombination.
The lifetime of non-radiative recombination can be shortened to the order of 1 ps, and carriers can be eliminated by non-radiative recombination before sweeping. As a result, the amount of electricity to be swept is reduced to the necessary minimum, and the decrease in the applied electrostatic field due to electric field screening is suppressed.

【0014】以上、GaAs−AlGaAs系材料を用
いた非線形光学素子を例にとって説明したが、本発明
は、InP系材料などの他の半導体材料を用いた場合に
おいても、同様の効果が得られる。また、コアがバルク
の場合だけでなく、多重量子井戸構造とした場合におい
ても同様の効果が得られる。
Although the non-linear optical element using the GaAs-AlGaAs-based material has been described above as an example, the present invention can also obtain the same effect when another semiconductor material such as the InP-based material is used. Further, the same effect can be obtained not only when the core is a bulk, but also when the core has a multiple quantum well structure.

【0015】[0015]

【発明の効果】以上説明したように、本発明の非線形光
学素子では、大きな素子容量を有するだけでなく、制御
光吸収により生成されたキャリアのうち信号光の制御に
寄与する分のみを掃引する構造としたため、掃引される
電気量が低減され、印加静電界強度の低下が抑制される
という効果がある。これによって、本発明の非線形光学
素子においては高速動作が可能となる。
As described above, the nonlinear optical element of the present invention not only has a large element capacitance, but also sweeps only the carrier generated by the absorption of the control light that contributes to the control of the signal light. Since the structure is adopted, the amount of electricity to be swept is reduced, and the reduction of the applied electrostatic field strength is suppressed. As a result, the nonlinear optical element of the present invention can operate at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非線形光学素子の一実施例の構造を示
す断面図である。
FIG. 1 is a cross-sectional view showing the structure of an example of a nonlinear optical element of the present invention.

【図2】従来の技術による非線形光学素子の一実施例の
構造を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of an example of a conventional nonlinear optical element.

【符号の説明】[Explanation of symbols]

1 電極 2 SiドープGaAs基板 3 SiドープAlGaAs下部クラッド層 4 ノンドープAlGaAs下部クラッド層 5 ノンドープGaAsコア層 6 ノンドープAlGaAs上部クラッド層 7 BeドープAlGaAs上部クラッド層 8 BeドープGaAsキャップ層 9 SiO2電極 10 電極 11 非発光中心が多数導入された領域1 electrode 2 Si-doped GaAs substrate 3 Si-doped AlGaAs lower cladding layer 4 Non-doped AlGaAs lower cladding layer 5 Non-doped GaAs core layer 6 Non-doped AlGaAs upper cladding layer 7 Be-doped AlGaAs upper cladding layer 8 Be-doped GaAs cap layer 9 SiO2 electrode 10 Electrode 11 Area where many non-emissive centers are introduced

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】光吸収により非線形屈折率変化を生ずる半
導体材料で成るコア層と、このコア層に接合するクラッ
ド層とで、層に垂直な方向に光閉じ込め構造が形成さ
れ、層に平行な方向にも光閉じ込め構造を実現する手段
と、光導波路の光導波領域に静電界を印加する手段とを
有する非線形光学素子において、コア層の光導波領域以
外の部分に非発光中心が多数導入された領域を有するこ
とを特徴とする非線形光学素子。
1. A core layer made of a semiconductor material that causes a nonlinear refractive index change by light absorption, and a clad layer joined to the core layer form a light confinement structure in a direction perpendicular to the layer and are parallel to the layer. In a non-linear optical element having means for realizing an optical confinement structure in the direction as well as means for applying an electrostatic field to the optical waveguide region of the optical waveguide, a large number of non-radiative centers are introduced into the portion other than the optical waveguide region of the core layer. A non-linear optical element having a curved region.
【請求項2】SiドープGaAs基板上に、Siドープ
AlGaAs下部クラッド層、ノンドープAlGaAs
下部クラッド層、ノンドープGaAsコア層、ノンドー
プAlGaAs上部クラッド層、BeドープAlGaA
s上部クラッド層が順次積層され、前記上部クラッド層
はストライプ状に形成され、ストライプの両側に非発光
中心が多数導入された領域が形成され、素子表面に絶縁
膜と電極が、裏面に電極が形成されていることを特徴と
する非線形光学素子。
2. A Si-doped GaAs substrate, a Si-doped AlGaAs lower cladding layer, and non-doped AlGaAs.
Lower cladding layer, non-doped GaAs core layer, non-doped AlGaAs upper cladding layer, Be-doped AlGaA
The upper clad layer is sequentially laminated, the upper clad layer is formed in a stripe shape, and regions having a large number of non-radiative centers introduced are formed on both sides of the stripe. A nonlinear optical element characterized by being formed.
JP5123693A1993-05-261993-05-26Nonlinear optical elementPendingJPH06331944A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP5123693AJPH06331944A (en)1993-05-261993-05-26Nonlinear optical element

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP5123693AJPH06331944A (en)1993-05-261993-05-26Nonlinear optical element

Publications (1)

Publication NumberPublication Date
JPH06331944Atrue JPH06331944A (en)1994-12-02

Family

ID=14866994

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP5123693APendingJPH06331944A (en)1993-05-261993-05-26Nonlinear optical element

Country Status (1)

CountryLink
JP (1)JPH06331944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0737852A3 (en)*1995-04-131998-07-08CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A.Method of and device for measuring the kerr non linearity coefficient in a single mode optical fibre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0737852A3 (en)*1995-04-131998-07-08CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A.Method of and device for measuring the kerr non linearity coefficient in a single mode optical fibre

Similar Documents

PublicationPublication DateTitle
EP0254568B1 (en)A semiconductor laser device
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
JP2606079B2 (en) Optical semiconductor device
JP4047785B2 (en) Semiconductor optoelectronic waveguide
EP0280281B1 (en)Variable oscillation wavelength semiconductor laser device
JP2921397B2 (en) Nonlinear optical element
JP3384447B2 (en) Absorption type optical modulator and method of manufacturing the same
JPH06331944A (en)Nonlinear optical element
JPH0951142A (en) Semiconductor light emitting device
JP2715864B2 (en) Nonlinear optical element
JPH0563301A (en)Semiconductor optical element and optical communication system
JPH0545003B2 (en)
JP2004037485A (en) Semiconductor optical modulator and semiconductor optical device
JPH06222305A (en)Nonlinear optical element
JP2001013472A (en)Optical semiconductor element and optical communication equipment
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP2541089B2 (en) Non-linear optical element
JP2670051B2 (en) Quantum well type optical modulator
JPH06102476A (en)Semiconductor optical modulator, semiconductor photodetector and integrated light source and its production
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JPH07199239A (en)Nonlinear optical element
JP2000305055A (en) Electroabsorption optical modulator
JP4961732B2 (en) Light modulator integrated light source
JP3189062B2 (en) Non-linear optical device
JPH07234389A (en) Semiconductor optical device

Legal Events

DateCodeTitleDescription
A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20040524

R150Certificate of patent (=grant) or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110604

Year of fee payment:7

FPAYRenewal fee payment (prs date is renewal date of database)

Year of fee payment:7

Free format text:PAYMENT UNTIL: 20110604

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120604

Year of fee payment:8

FPAYRenewal fee payment (prs date is renewal date of database)

Year of fee payment:8

Free format text:PAYMENT UNTIL: 20120604

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130604

Year of fee payment:9

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp