【0001】[0001]
【産業上の利用分野】本発明は、ポリ(β−ヒドロキシ
アルカノエート)からなる微生物分解性マルチフイラメ
ントとその製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable multifilament comprising poly (β-hydroxyalkanoate) and a method for producing the same.
【0002】[0002]
【従来の技術】従来、漁業や農業、土木用として用いら
れる産業資材用繊維としては、強度及び耐候性の優れた
ものが要求されており、主としてポリアミド、ポリエス
テル、ビニロン、ポリオレフィン等からなるものが使用
されている。しかし、これらの繊維は自己分解性がな
く、使用後、海や山野に放置すると種々の公害を引き起
こすという問題がある。この問題は、使用後、焼却、埋
め立てあるいは回収再生により処理すれば解決される
が、これらの処理には多大の費用を要するため、現実に
は海や山野に放置され、景観を損なうばかりでなく、鳥
や海洋生物、ダイバー等に絡みついて殺傷したり、船の
スクリューに絡みついて船舶事故を起こしたりする事態
がしばしば発生している。2. Description of the Related Art Conventionally, fibers having excellent strength and weather resistance have been required as fibers for industrial materials used for fisheries, agriculture and civil engineering, and those mainly composed of polyamide, polyester, vinylon, polyolefin and the like have been demanded. It is used. However, these fibers are not self-degradable, and there is a problem in that they cause various pollutions if left in the sea or mountains after use. This problem can be solved by incineration, landfilling, or recovery and recycling after use, but since such processing requires a great deal of money, it is actually left in the sea or mountains, which not only damages the landscape. In many cases, birds, marine life, and divers are entangled and killed, and entangled with the screw of a ship to cause a ship accident.
【0003】このような問題を解決する方法として、自
然分解性(微生物分解性又は生分解性)の素材を用いる
ことが考えられる。As a method for solving such a problem, it is possible to use a material which is naturally degradable (biodegradable or biodegradable).
【0004】従来、自然分解性ポリマーとして、セルロ
ーズやキチン等の多糖類、カット・グット(腸線)や再
生コラーゲン等の蛋白質やポリペプチド(ポリアミノ
酸)、ポリ(β−ヒドロキシアルカノエート)、ポリグ
リコリドやポリラクチドのようなポリ(α−オキシ酸)
、ポリ−ε−カプロラクトン等の脂肪族ポリエステル
等がよく知られている。Conventionally, as naturally degradable polymers, polysaccharides such as cellulose and chitin, proteins and polypeptides (polyamino acids) such as cut gut (intestinal line) and regenerated collagen, poly (β-hydroxyalkanoate), polyglycolide. Poly (α-oxy acid) such as and polylactide
, And aliphatic polyesters such as poly-ε-caprolactone are well known.
【0005】しかし、これらのポリマーから繊維を製造
する場合、多糖類やポリアミノ酸のように湿式紡糸法で
製造しなければならなかったり、ポリ(α−オキシ酸)
のように素材のコストが極めて高いため製造原価が高価
になったり、高強度の繊維を得ることができなかったり
するという問題があった。However, when fibers are produced from these polymers, they must be produced by a wet spinning method like polysaccharides and polyamino acids, or poly (α-oxy acid) s are used.
As described above, since the cost of the material is extremely high, there are problems that the manufacturing cost becomes high and that high strength fiber cannot be obtained.
【0006】そのなかで、ポリ−ε−カプロラクトンは
比較的安価な完全生分解性の合成高分子であって、溶融
紡糸が可能であるが、融点が60℃と低いためにその用途
が一部制限されるという問題があった。[0006] Among them, poly-ε-caprolactone is a relatively inexpensive, completely biodegradable synthetic polymer and can be melt-spun, but its use is partly due to its low melting point of 60 ° C. There was a problem of being limited.
【0007】また、安価な自然崩壊性の素材として、ポ
リエチレンに澱粉を配合したものが検討されており、直
鎖状低密度ポリエチレンに澱粉を約6%配合して製膜し
たフィルムが買物袋として一部実用化されている。As an inexpensive material which is naturally disintegratable, polyethylene is mixed with starch, and a film formed by blending linear low-density polyethylene with about 6% starch is used as a shopping bag. Some have been put to practical use.
【0008】しかし、このような澱粉を配合したポリエ
チレンから繊維を製造しても、完全に生分解されないば
かりか、強度等の機械的特性が著しく劣ったものとな
り、高強度を必要とする産業資材用として使用すること
はできない。[0008] However, even if fibers are produced from polyethylene mixed with such starch, not only are they not completely biodegraded, but mechanical properties such as strength are remarkably inferior, and industrial materials requiring high strength. It cannot be used as a service.
【0009】微生物が自然界で産生するポリ(β−ヒド
ロキシアルカノエート)は、融点が130〜180 ℃の熱可
塑性ポリエステルである。従来、ポリ(β−ヒドロキシ
アルカノエート)から繊維を製造することも試みられて
いるが、引張強度が3g/dのモノフイラメントが得ら
れたという報道(1992年1月17日付日刊工業新聞) があ
るのみで、実用上十分な強度を有するマルチフイラメン
トが得られたという報告はない。その大きな理由は、ポ
リ(β−ヒドロキシアルカノエート)は、結晶化速度が
ナイロンやポリエチレンテレフタレート等と比べて極め
て遅いため、溶融紡糸時及び巻取時にフイラメント間で
融着を起こしてパッケージからの解舒が困難になること
であった。融着が起こらないように、生産性を度外視し
て、例えば結晶化が十分進むような条件で紡糸しても延
伸が困難となり、強度の低い糸条しか得られない。Poly (β-hydroxyalkanoate), which is naturally produced by microorganisms, is a thermoplastic polyester having a melting point of 130 to 180 ° C. Although it has been attempted to produce fibers from poly (β-hydroxyalkanoate), it was reported that a monofilament having a tensile strength of 3 g / d was obtained (Nikkan Kogyo Shimbun, January 17, 1992). However, there is no report that a multifilament having practically sufficient strength was obtained. The main reason for this is that poly (β-hydroxyalkanoate) has a much slower crystallization rate than nylon, polyethylene terephthalate, etc., and therefore fusion occurs between filaments during melt spinning and winding, resulting in unpacking from the package. It was difficult for him to come. Even if the spinning is performed under the condition that the crystallization is sufficiently advanced so that the fusion does not occur, the drawing becomes difficult and only the yarn having low strength can be obtained.
【0010】[0010]
【発明が解決しようとする課題】本発明は、比較的安価
で、かつ、実用に供することができる一定の耐熱性と強
度を有し、微生物により完全に分解されるポリ(β−ヒ
ドロキシアルカノエート)(共重合体を含む。以下同
じ。)からなるマルチフイラメントとその製造法を提供
しようとするものである。DISCLOSURE OF THE INVENTION The present invention is a poly (β-hydroxyalkanoate) which is relatively inexpensive and has a certain level of heat resistance and strength that can be put to practical use and is completely decomposed by microorganisms. ) (Including a copolymer; the same applies hereinafter) and a method for producing the same.
【0011】[0011]
【課題を解決するための手段】本発明は、上記課題を解
決するものであり、その要旨は、次のとおりである。 (1) 実質的にポリ(β−ヒドロキシアルカノエート)か
らなるマルチフイラメントであって、その引張強度が
2.0g/d以上であることを特徴とする微生物分解性マ
ルチフイラメント。 (2) 実質的にポリ(β−ヒドロキシアルカノエート)か
らなるポリマーを 140〜220 ℃で溶融紡糸し、紡出糸条
を40〜80℃で空冷した後、引き続いて1段又は2段以上
で 1.2倍以上に延伸することを特徴とする微生物分解性
マルチフイラメントの製造法。The present invention is intended to solve the above-mentioned problems, and the gist thereof is as follows. (1) A multifilament consisting essentially of poly (β-hydroxyalkanoate) having a tensile strength of
A biodegradable multifilament characterized by having a content of 2.0 g / d or more. (2) A polymer consisting essentially of poly (β-hydroxyalkanoate) is melt-spun at 140 to 220 ° C, and the spun yarn is air-cooled at 40 to 80 ° C, followed by one or more steps. A method for producing a microbial-degradable multifilament, which comprises drawing 1.2 times or more.
【0012】以下、本発明について詳細に説明する。本
発明において用いられるポリ(β−ヒドロキシアルカノ
エート) としては、ポリ−3−ヒドロキシプロピオネー
ト、ポリ−3−ヒドロキシブチレート、ポリ−3−ヒド
ロキシカプロレート、ポリ−3−ヒドロキシヘプタノエ
ート、ポリ−3−ヒドロキシオクタノエート及びこれら
とポリ−3−ヒドロキシバリレートやポリ−4−ヒドロ
キシブチレートとの共重合体等が挙げられ、これらは通
常微生物が産生する微生物ポリエステルとして得られ
る。この中でも、最も好ましいものはポリ−3−ヒドロ
キシブチレートとポリ−3−ヒドロキシバリレートとの
共重合体及びポリ−3−ヒドロキシブチレートとポリ−
4−ヒドロキシブチレートとの共重合体である。The present invention will be described in detail below. Examples of the poly (β-hydroxyalkanoate) used in the present invention include poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycaprolate, and poly-3-hydroxyheptanoate. , Poly-3-hydroxyoctanoate and copolymers of these with poly-3-hydroxyvalerate and poly-4-hydroxybutyrate, etc., and these are usually obtained as microbial polyesters produced by microorganisms. Among these, the most preferable ones are copolymers of poly-3-hydroxybutyrate and poly-3-hydroxyvalerate, and poly-3-hydroxybutyrate and poly-.
It is a copolymer with 4-hydroxybutyrate.
【0013】ポリ(β−ヒドロキシアルカノエート)
は、分子量が約30,000〜1,000,000 のものが、製糸性及
び得られる糸条の特性の点で好ましい。Poly (β-hydroxyalkanoate)
Having a molecular weight of about 30,000 to 1,000,000 is preferable from the viewpoints of spinnability and properties of the obtained yarn.
【0014】なお、ポリ(β−ヒドロキシアルカノエー
ト)には、上記強度特性と微生物分解性を満足するマル
チフイラメントを与える範囲内で少量の他の生分解性ポ
リマーが混合されていてもよい。また、窒化硼素や二酸
化チタンのような結晶核剤を 0.1〜5.0 重量%、好まし
くは 0.5〜2.0 重量%含有させることが望ましい。さら
に、トリアセチンのような可塑剤を1〜20重量%含有さ
せることも好ましい。It should be noted that the poly (β-hydroxyalkanoate) may be mixed with a small amount of another biodegradable polymer within a range that provides a multifilament satisfying the above strength characteristics and microbial degradability. Further, it is desirable to contain a crystal nucleating agent such as boron nitride or titanium dioxide in an amount of 0.1 to 5.0% by weight, preferably 0.5 to 2.0% by weight. Further, it is also preferable to contain a plasticizer such as triacetin in an amount of 1 to 20% by weight.
【0015】本発明のマルチフイラメントは、上記のよ
うな実質的にポリ(β−ヒドロキシアルカノエート)か
らなるポリマーを以下に述べる最適条件で溶融紡糸し
て、延伸することにより製造することができる。The multifilament of the present invention can be produced by melt spinning the above-mentioned polymer substantially consisting of poly (β-hydroxyalkanoate) under the optimum conditions described below and stretching.
【0016】溶融紡糸の温度は、用いるポリ(β−ヒド
ロキシアルカノエート)の分子量等により異なるが 140
〜220 ℃とすることが必要である。紡糸温度が 140℃未
満では溶融押出しが困難であり、 220℃を超えるとポリ
(β−ヒドロキシアルカノエート)の分解が顕著とな
り、高強度のマルチフイラメントを得ることが困難とな
る。The temperature of melt spinning varies depending on the molecular weight of poly (β-hydroxyalkanoate) used and the like.
It is necessary to set the temperature to ~ 220 ° C. When the spinning temperature is less than 140 ° C, melt extrusion is difficult, and when it exceeds 220 ° C, poly (β-hydroxyalkanoate) is significantly decomposed, and it becomes difficult to obtain a high-strength multifilament.
【0017】溶融紡出されたマルチフイラメントは、40
〜80℃で空冷され、通常の合成繊維用紡糸油剤が付与さ
れた後、引き続いてローラ間で1段又は2段以上の冷延
伸もしくは熱延伸に供される。全延伸倍率は、目的とす
るマルチフイラメントの要求性能により異なるが、紡糸
速度を10〜500 m/分として、 2.0g/d以上の引張強
度を維持するには 1.2倍以上の延伸倍率とすることが必
要である。The melt spun multifilament is 40
After air-cooling at -80 ° C and application of a conventional synthetic fiber spinning oil, it is subsequently subjected to one or more cold or hot stretching between rollers. The total draw ratio depends on the required performance of the target multifilament, but with a spinning speed of 10 to 500 m / min, a draw ratio of 1.2 or more is required to maintain a tensile strength of 2.0 g / d or more. is necessary.
【0018】このようにして得られる本発明のマルチフ
イラメントは、前述のように実用に耐え得る一定の耐熱
性と優れた強度特性と微生物分解性を有するものであ
る。The multifilament of the present invention thus obtained has certain heat resistance that can withstand practical use, excellent strength characteristics, and microbial degradability, as described above.
【0019】[0019]
【実施例】次に、本発明を実施例により具体的に説明す
る。なお、引張強度特性はJIS L 1013に準じて測定し
た。また、試料を土壌中に2カ月埋めておいて取り出
し、マルチフイラメントがその形状を失っているか、引
張強度保持率が50%以下になっている場合を微生物分解
性が良好であると判断した。EXAMPLES Next, the present invention will be specifically described by way of examples. The tensile strength characteristics were measured according to JIS L 1013. Further, the sample was buried in soil for 2 months and then taken out. When the multifilament lost its shape or the tensile strength retention rate was 50% or less, it was judged that the biodegradability was good.
【0020】実施例1〜5 表1に示す共重合組成で、分子量が約 750,000のポリ−
3−ヒドロキシブチレート(PHB)とポリ−3−ヒド
ロキシバリレート(PHV)との共重合体に表1に示す
量の結晶核剤(窒化硼素)及び可塑剤(トリアセチン)
を配合したものを、0.3mmφ×36ホールの紡糸口金から
約 180℃で溶融紡出し、約60℃の空気で冷却し、ストレ
ート型油剤を付与した後、引き続いて 100℃のローラと
非加熱のローラとの間で、表1に示す延伸倍率で延伸
し、約200d/36fのマルチフイラメントを得た。得られ
たマルチフイラメントの引張強度及び微生物分解性を評
価した結果を表1に示す。Examples 1 to 5 Polycopolymers having a copolymer composition shown in Table 1 and a molecular weight of about 750,000 were used.
The amount of the crystal nucleating agent (boron nitride) and the plasticizer (triacetin) shown in Table 1 in the copolymer of 3-hydroxybutyrate (PHB) and poly-3-hydroxyvalerate (PHV)
Melted at about 180 ℃ from a spinneret of 0.3 mmφ x 36 holes, cooled with air at about 60 ℃, and applied a straight type oil agent, followed by a 100 ℃ roller and non-heating. Stretching was performed between the roller and the roller at the stretching ratio shown in Table 1 to obtain a multifilament of about 200 d / 36 f. Table 1 shows the results of evaluating the tensile strength and microbial degradability of the obtained multifilament.
【0021】[0021]
【表1】[Table 1]
【0022】[0022]
【発明の効果】本発明によれば、実用に耐え得る一定の
耐熱性と強度特性を有し、かつ微生物分解性のマルチフ
イラメントが提供される。本発明のマルチフイラメント
は、漁業資材、農業用資材、土木用資材、衛生材料、廃
棄物処理材等として好適であり、使用後微生物が存在す
る環境(土中又は水中)に放置しておけば一定期間後に
は完全に生分解されるため、特別な廃棄物処理を必要と
せず、公害防止に有用である。According to the present invention, there is provided a microbial degradable multifilament which has certain heat resistance and strength characteristics that can be practically used. INDUSTRIAL APPLICABILITY The multifilament of the present invention is suitable as a fishery material, an agricultural material, a civil engineering material, a sanitary material, a waste treatment material, etc., and can be left in an environment (underground or underwater) where microorganisms are present after use. Since it is completely biodegraded after a certain period of time, it does not require special waste treatment and is useful for pollution prevention.
フロントページの続き (72)発明者 高橋 修治 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 金元 直貴 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 牟田 善信 千葉県浦安市東野1−24−15Front Page Continuation (72) Inventor Shuji Takahashi 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd. Central Research Laboratories (72) Inventor Naoki Kanemoto 23, Uji Kozakura Uji City, Kyoto Prefecture Unitika Institute Central Research Laboratories ( 72) Inventor Yoshinobu Muta 1-24-15 Higashino, Urayasu City, Chiba Prefecture
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7635493AJPH06264306A (en) | 1993-03-09 | 1993-03-09 | Biodegradable multifilament and its production |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7635493AJPH06264306A (en) | 1993-03-09 | 1993-03-09 | Biodegradable multifilament and its production |
| Publication Number | Publication Date |
|---|---|
| JPH06264306Atrue JPH06264306A (en) | 1994-09-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7635493APendingJPH06264306A (en) | 1993-03-09 | 1993-03-09 | Biodegradable multifilament and its production |
| Country | Link |
|---|---|
| JP (1) | JPH06264306A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7553923B2 (en) | 1999-03-25 | 2009-06-30 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
| US7641825B2 (en) | 2004-08-03 | 2010-01-05 | Tepha, Inc. | Method of making a polyhydroxyalkanoate filament |
| WO2012133231A1 (en)* | 2011-03-25 | 2012-10-04 | 国立大学法人 東京大学 | Biodegradable polyester fiber having excellent thermal stability and strength, and method for producing same |
| US9125719B2 (en) | 2003-05-08 | 2015-09-08 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
| US9555155B2 (en) | 2014-12-11 | 2017-01-31 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
| JP2018159142A (en)* | 2017-03-22 | 2018-10-11 | 国立大学法人信州大学 | Method for producing biodegradable fiber |
| EP3404130A4 (en)* | 2016-01-12 | 2019-08-21 | Tokyo Institute of Technology | BIODEGRADABLE ALIPHATIC POLYESTER FIBERS, AND METHOD FOR MANUFACTURING THE SAME |
| US10500303B2 (en) | 2014-08-15 | 2019-12-10 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
| WO2023022015A1 (en)* | 2021-08-18 | 2023-02-23 | 株式会社カネカ | Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same |
| JP2023111771A (en)* | 2022-01-31 | 2023-08-10 | Kbセーレン株式会社 | Biodegradable polyester fiber and method for producing the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7553923B2 (en) | 1999-03-25 | 2009-06-30 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
| US10136982B2 (en) | 2003-05-08 | 2018-11-27 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
| US9125719B2 (en) | 2003-05-08 | 2015-09-08 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
| US9333066B2 (en) | 2003-05-08 | 2016-05-10 | Tepha, Inc. | Method of making a medical textile from polyhydroxyalkanoate fibers |
| US10314683B2 (en) | 2003-05-08 | 2019-06-11 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
| US10111738B2 (en) | 2003-05-08 | 2018-10-30 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
| US7641825B2 (en) | 2004-08-03 | 2010-01-05 | Tepha, Inc. | Method of making a polyhydroxyalkanoate filament |
| WO2012133231A1 (en)* | 2011-03-25 | 2012-10-04 | 国立大学法人 東京大学 | Biodegradable polyester fiber having excellent thermal stability and strength, and method for producing same |
| JP5924623B2 (en)* | 2011-03-25 | 2016-05-25 | 国立大学法人 東京大学 | Biodegradable polyester fiber excellent in thermal stability and strength and method for producing the same |
| US11426484B2 (en) | 2014-08-15 | 2022-08-30 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
| US10500303B2 (en) | 2014-08-15 | 2019-12-10 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
| US11944709B2 (en) | 2014-08-15 | 2024-04-02 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
| US10227713B2 (en) | 2014-12-11 | 2019-03-12 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
| US10590566B2 (en) | 2014-12-11 | 2020-03-17 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
| US9555155B2 (en) | 2014-12-11 | 2017-01-31 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
| US11828006B2 (en) | 2014-12-11 | 2023-11-28 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
| EP3404130A4 (en)* | 2016-01-12 | 2019-08-21 | Tokyo Institute of Technology | BIODEGRADABLE ALIPHATIC POLYESTER FIBERS, AND METHOD FOR MANUFACTURING THE SAME |
| JP2018159142A (en)* | 2017-03-22 | 2018-10-11 | 国立大学法人信州大学 | Method for producing biodegradable fiber |
| WO2023022015A1 (en)* | 2021-08-18 | 2023-02-23 | 株式会社カネカ | Stretching multifilament and method for manufacturing same, multifilament and method for manufacturing same, and staple and method for manufacturing same |
| JP2023111771A (en)* | 2022-01-31 | 2023-08-10 | Kbセーレン株式会社 | Biodegradable polyester fiber and method for producing the same |
| Publication | Publication Date | Title |
|---|---|---|
| JPH06264306A (en) | Biodegradable multifilament and its production | |
| JPH0593318A (en) | Microorganism degradable conjugate fiber and its nonwoven fabric | |
| JPH10147653A (en) | Biodegradable oriented film | |
| JPH06264305A (en) | Biodegradable fiber and its production | |
| JP3182077B2 (en) | Biodegradable film | |
| JP3304237B2 (en) | Core / sheath type biodegradable composite fiber | |
| JP3499053B2 (en) | Biodegradable polyester fiber | |
| US5349044A (en) | Polyamide monofilament suture manufactured from higher order polyamide | |
| JP3585663B2 (en) | Method for producing biodegradable monofilament | |
| JP3497561B2 (en) | Improved biodegradable polyester fiber | |
| JP3342566B2 (en) | Biodegradable composite monofilament and its production method | |
| JPH06269239A (en) | Fishing line | |
| JPH0593316A (en) | Microorganism degradable conjugate fiber | |
| JP2736390B2 (en) | Fishing line and its manufacturing method | |
| JP2005350829A (en) | Polylactic acid fiber having excellent hydrolytic resistance | |
| JPH07324227A (en) | Biodegradable conjugate fiber | |
| JP3468884B2 (en) | Biodegradable filament and its manufacturing method | |
| JPH07126914A (en) | Biodegradable monofilament and its production | |
| JPH09195122A (en) | Biodegradable fiber | |
| JPH1180524A (en) | Biodegradable mulching film | |
| JP3375435B2 (en) | Biodegradable composite monofilament | |
| JP3615841B2 (en) | Biodegradable fishing line and method for producing the same | |
| JP3154855B2 (en) | Biodegradable composite fiber | |
| JPH0578913A (en) | Bio-degradable multifilament | |
| JPH0559611A (en) | Highly strong polycaprolactone monofilament and its production |